• ISSN 1674-8301
  • CN 32-1810/R
Articles in press have been peer-reviewed and accepted, which are not yet assigned to volumes /issues, but are citable by Digital Object Identifier (DOI).
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has spread throughout the world, which becomes a global public health emergency. Undernourishment prolongs its convalescence and has an adverse effect on its prognosis, especially in diabetic patients. The purpose of this study was to evaluate the prevalence and characteristics of undernourishment and to determine how it is related to the prognostic outcomes in the diabetic patients with coronavirus disease 2019 (COVID-19). A retrospective, multicenter study was conducted in 85 diabetic COVID-19 patients from three hospitals in Hubei Province. All patients were assessed using the European Nutritional Risk Screening 2002 (NRS-2002) and other nutritional assessments when admitted. Of them, 35 (41.18%) were at risk of malnutrition (NRS score ≥3). Severe COVID-19 patients had a significantly lower level of serum albumin and prealbumin and higher NRS score than non-severe patients. Multivariate logistic regression analysis showed that serum prealbumin and NRS score increased the likelihood of progression into severe status (P<0.05). Meanwhile, single factor and multivariate analysis determined that grade of illness severity was an independent predictor for malnutrition. Furthermore, prealbumin and NRS score could well predict severe status for COVID-19 patients. The malnutrition group (NRS score ≥3) had more severe illness than the normal nutritional (NRS score <3) group (P<0.001), and had a longer length of in-hospital stay and higher mortality. Malnutrition is highly prevalent among COVID-19 patients with diabetes. It is associated with severely ill status and poor prognosis. Evaluation of nutritional status should be strengthened, especially the indicators of NRS-2002 and the level of serum prealbumin.
Development is a sophisticated process maintained by various signal transduction pathways, including the Hedgehog (Hh) pathway. Several important functions are executed by the Hh signaling cascade such as organogenesis, tissue regeneration, and tissue homeostasis, among various others. Considering the multiple functions carried out by this pathway, any mutation causing aberrant Hh signaling may lead to myriad developmental abnormalities besides cancers. In the present review article, we explored a wide range of diseases caused by aberrant Hh signaling, including developmental defects and cancers. Finally, we concluded this mini-review with various treatment strategies for Hh-induced diseases.
Intraoperative hypotension happens in everyday clinical practice. It was suggested to have a strong association with adverse postoperative outcomes. Hypotension Prediction Index (HPI) was developed to predict intraoperative hypotension in real time. It is based on machine-learning derived algorithm and is to predict hypotension (mean arterial pressure < 65 mmHg), so the clinicians can perform pre-emptive treatment. However, pressure autoregulation also plays an important role in maintaining adequate organ perfusion/oxygenation during hypotension. Cerebral oxygenation monitor provides clinicians with the values of an objective end organ oxygenation. We report a case that cerebral oxygenation monitor was used together with HPI to guide intraoperative blood pressure management. We believe this can provide an individualized intraoperative blood pressure management in order to avoid over or under treating hypotension.
The Journal of Biomedical Research--2021, 35(6)
Original Article
Abnormal expression of long interspersed element-1 (LINE-1) has been implicated in drug resistance, while our previous study showed that chemotherapy drug paclitaxel (PTX) increased LINE-1 level with unknown mechanism. Bioinformatics analysis suggested the regulation of LINE-1 mRNA by drug-induced stress granules (SGs). This study aimed to explore whether and how SGs are involved in drug-induced LINE-1 increase and thereby promotes drug resistance of triple negative breast cancer (TNBC) cells. We demonstrated that SGs increased LINE-1 expression by recruiting and stabilizing LINE-1 mRNA under drug stress, thereby adapting TNBC cells to chemotherapy drugs. Moreover, LINE-1 inhibitor efavirenz (EFV) could inhibit drug-induced SG to destabilize LINE-1. Our study provides the first evidence of the regulation of LINE-1 by SGs that could be an important survival mechanism for cancer cells exposed to chemotherapy drugs. The findings provide a useful clue for developing new chemotherapeutic strategies against TNBCs.
Acute myocardial infarction (AMI) is a severe cardiovascular disease. This study aimed to identify crucial microRNAs (miRNAs) and mRNAs in AMI by establishing a miRNA-mRNA network. The microarray datasets GSE31568, GSE148153, and GSE66360 were downloaded from the Gene Expression Omnibus (GEO) database. We identified differentially expressed miRNAs (DE-miRNAs) and mRNAs (DE-mRNAs) in AMI samples compared with normal control samples. The consistently changing miRNAs in both GSE31568 and GSE148153 datasets were selected as candidate DE-miRNAs. The interactions between the candidate DE-miRNAs and DE-mRNAs were analyzed, and a miRNA-mRNA network and a protein-protein interaction network were constructed, along with functional enrichment and pathway analyses. A total of 209 DE-miRNAs in the GSE31568 dataset, 857 DE-miRNAs in the GSE148153 dataset, and 351 DE-mRNAs in the GSE66360 dataset were identified. Eighteen candidate DE-miRNAs were selected from both the GSE31568 and GSE148153 datasets. Furthermore, miR-646, miR-127-5p, miR-509-5p, miR-509-3-5p, and miR-767-5p were shown to have a higher degree in the miRNA-mRNA network. THBS-1 as well as FOS was a hub gene in the miRNA-mRNA network and the protein-protein interaction (PPI) network, respectively. CDKN1A was important in both miRNA-mRNA network and PPI network. We established a miRNA-mRNA network in AMI and identified five miRNAs and three genes, which might be used as biomarkers and potential therapeutic targets for patients with AMI.
Isometric exercise (IE) is a promising intervention of noninvasive revascularization in patients with acute myocardial infarction (AMI). This study aimed to investigate the impact and mechanisms of IE training on arteriogenesis in AMI. Male Sprague-Dawley rats were randomly assigned into the sham-operation group (SO), myocardial infarction (MI) group, and 13 IE subgroups treated according to training intensity, frequency, duration, or monocyte chemoattractant protein-1 (MCP-1), or/and fibroblast growth factor-2 (FGF-2) inhibitors for eight weeks. Our results demonstrated that the IE group achieved superior improvement compared with the MI group in terms of left ventricular ejection fraction (LVEF), myocardial infarction size (MIS), arterial density (AD), monocytes (MNCs), smooth muscle cells (SMCs), endothelial cells (ECs), relative collateral blood flow (RCBF), MCP-1, and FGF-2 at the endpoint. Positive correlations between MCP-1 and MNCs, MNCs and FGF-2, FGF-2 and SMCs, SMCs and AD, as well as AD and RCBF were observed. This study demonstrated that with MI of 100% load 20 times daily for eight weeks, the arteriogenesis was improved, which may be attributed to the recruitment of MNCs and SMCs in remote ischemic myocardium caused by increases in MCP-1 and FGF-2 expression.
Atopic dermatitis (AD) is a common skin disorder difficult to be treated with medication. This study investigated the potential of ovalicin extracted from Cordyceps militaris for the treatment of AD using in vitro and in vivo models. We found that, in canine macrophage cell line DH82, lipopolysaccharide (LPS) upregulated the expression of genes associated with inflammation and pruritic responses through activating calcium and interleukin-31 (IL-31) signaling, and the upregulation could be suppressed by ovalicin, with an effect significantly stronger than dexamethasone. Ovalicin also reduced the expression of IL-31 downstream genes, including JAK2 (Janus kinase 2), TRPV1 (transient receptor potential vanilloid receptor-1), and HRH2 (histamine receptor H2). Ovalicin significantly alleviated the allergic symptoms in the AD mouse model. Histologically, the number of macrophages and mast cells infiltrated in the dermis was significantly reduced by ovalicin treatment. In the skin tissue of AD mice, reduction of IL-31 receptor was observed in the ovalicin treated group compared to the group without ovalicin treatment. To our knowledge, this is the first study to elucidate the anti-atopic mechanism of ovalicin, which could be an alternative to steroidal drugs commonly used for AD treatment.
Lassa hemorrhagic fever, caused by Lassa mammarenavirus (LASV) infection, accumulates up to 5000 deaths every year. Currently, there is no vaccine available to combat this disease. In this study, a library of 200 bioactive compounds was virtually screened to study their drug-likeness with the capacity to block the α-dystroglycan (α-DG) receptor and prevent LASV influx. Following rigorous absorption, distribution, metabolism, and excretion (ADME) and quantitative structure-activity relationship (QSAR) profiling, molecular docking was conducted with the top ligands against the α-DG receptor. The compounds chrysin, reticuline, and 3-caffeoylshikimic acid emerged as the top three ligands in terms of binding affinity. Post-docking analysis revealed that interactions with Arg76, Asn224, Ser259, and Lys302 amino acid residues of the receptor protein were important for the optimum binding affinity of ligands. Molecular dynamics simulation was performed comprehensively to study the stability of the protein-ligand complexes. In-depth assessment of root-mean-square deviation (RMSD), root mean square fluctuation (RMSF), polar surface area (PSA), B-Factor, radius of gyration (Rg), solvent accessible surface area (SASA), and molecular surface area (MolSA) values of the protein-ligand complexes affirmed that the candidates with the best binding affinity formed the most stable protein-ligand complexes. To authenticate the potentialities of the ligands as target-specific drugs, an in vivo study is underway in real time as the continuation of the research.
Acute hypoxic-ischemic brain damage (HIBD) mainly occurs in adults as a result of perioperative cardiac arrest and asphyxia. The benefits of n-3 polyunsaturated fatty acids (n-3 PUFAs) in maintaining brain growth and development are well documented. However, possible protective targets and underlying mechanisms of mfat-1 mice on HIBD require further investigation. The mfat-1 transgenic mice exhibited protective effects on HIBD, as indicated by reduced infarct range and improved neurobehavioral defects. RNA-seq analysis showed that multiple pathways and targets were involved in this process, with the anti-inflammatory pathway as the most significant. This study has shown for the first time that mfat-1 has protective effects on HIBD in mice. Activation of a G protein-coupled receptor 120 (GPR120)-related anti-inflammatory pathway may be associated with perioperative and postoperative complications, thus innovating clinical intervention strategy may potentially benefit patients with HIBD.
Letter to the Editor
Myocardin in biology and disease
Joseph M. Miano
2015, 29(1): 3-19.   doi: 10.7555/JBR. 29.20140151
+Abstract PDF 5076KB
GYY4137 protects against myocardial ischemia and reperfusion injury by attenuating oxidative stress and apoptosis in rats
Guoliang Meng, Jing Wang, Yujiao Xiao, Wenli Bai, Liping Xie, Liyang Shan, Philip K Moore, Yong Ji
2015, 29(3): 203-213.   doi: 10.7555/JBR.28.20140037
+Abstract PDF 2347KB
Exosomes and their role in the micro-/macro-environment: a comprehensive review
Naureen Javeed, Debabrata Mukhopadhyay
2017, 31(5): 386-394.   doi: 10.7555/JBR.30.20150162
+Abstract PDF 185KB
Immune checkpoint inhibitors in cancer therapy
Eika S. Webb, Peng Liu, Renato Baleeiro, Nicholas R. Lemoine, Ming Yuan, Yaohe Wang
2018, 32(5): 317-326.   doi: 10.7555/JBR.31.20160168
+Abstract PDF 275KB
Recent advances in targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo
Matthew G.K. Benesch, Xiaoyun Tang, Ganesh Venkatraman, Raie T. Bekele, David N. Brindley
2016, 30(4): 272-284.   doi: 10.7555/JBR.30.20150058
+Abstract PDF 462KB
Statistical analysis for genome-wide association study
Ping Zeng, Yang Zhao, Cheng Qian, Liwei Zhang, Ruyang Zhang, Jianwei Gou, Jin Liu, Liya Liu, Feng Chen
2015, 29(4): 285-297.   doi: 10.7555/JBR.29.20140007
+Abstract PDF 3937KB
Platelets in hemostasis and thrombosis: Novel mechanisms of fibrinogen-independent platelet aggregation and fibronectinmediated protein wave of hemostasis
Yan Hou, Naadiya Carrim, Yiming Wang, Reid C. Gallant, Alexandra Marshall, Heyu Ni
2015, 29(6): 437-444.   doi: 10.7555/JBR.29.20150121
+Abstract PDF 610KB
Deciphering the role of hedgehog signaling in pancreatic cancer
Dongsheng Gu, Kelly E Schlotman, Jingwu Xie
2016, 30(5): 353-360.   doi: 10.7555/JBR.30.20150107
+Abstract PDF 376KB
Translating transitions - how to decipher peripheral human B cell development
Mats Bemark
2015, 29(4): 264-284.   doi: 10.7555/JBR.29.20150035
+Abstract PDF 858KB
Autoantibodies in Alzheimer's disease: potential biomarkers, pathogenic roles, and therapeutic implications
Jianming Wu, Ling Li
2016, 30(5): 361-372.   doi: 10.7555/JBR.30.20150131
+Abstract PDF 426KB
Class A scavenger receptor activation inhibits endoplasmic reticulum stress-induced autophagy in macrophage
Hanpeng Huang, Xiaoyu Li, Yan Zhuang, Nan Li, Xudong Zhu, Jin Hu, Jingjing Ben, Qing Yang, Hui Bai, Qi Chen
2014, 28(3): 213-221.   doi: 10.7555/JBR.28.20130105
+Abstract [PDF 11939KB](894)
Dual therapy of rosiglitazone/pioglitazone with glimepiride on diabetic nephropathy in experimentally induced type 2 diabetes rats
Ravi Prakash Rao, Ansima Singh, Arun K Jain, Bhartu Parsharthi Srinivasan
2011, 25(6): 411-417.   doi: 10.1016/S1674-8301(11)60054-7
+Abstract [PDF 1947KB](778)
A clinical perspective on mucoadhesive buccal drug delivery systems
Ritu MGilhotra, Mohd Ikram, Sunny Srivastava, Neeraj Gilhotra
2014, 28(2): 81-97.   doi: 10.7555/JBR.27.20120136
+Abstract [PDF 2323KB](913)
AEG-1 expression correlates with CD133 and PPP6c levels in human glioma tissues
Jia Guo, Xin Chen, Ruxing Xi, Yuwei Chang, Xuanwei Zhang, Xiaozhi Zhang
2014, 28(5): 388-395.   doi: 10.7555/JBR.28.20140015
+Abstract [PDF 14254KB](871)
Lipoprotein metabolism in nonalcoholic fatty liver disease
Zhenghui Gordon Jiang, Simon C. Robson, Zemin Yao
2013, 27(1): 1-13.   doi: 10.7555/JBR.27.20120077
+Abstract [PDF 1247KB](956)
ApoB/apoA1 is an effective predictor of coronary heart disease risk in overweight and obesity
Min Lu, Qun Lu, Yong Zhang, Gang Tian
2011, 25(4): 266-273.   doi: 10.1016/S1674-8301(11)60036-5
+Abstract [PDF 4KB](821)
Development of Leishmania vaccines: predicting the future from past and present experience
Joshua Muli Mutiso, John Chege Macharia, Maria Ndunge Kiio, James Maina Ichagichu, Hitler Rikoi, Michael Muita Gicheru
2013, 27(2): 85-102.   doi: 10.7555/JBR.27.20120064
+Abstract [PDF 4KB](985)
Atrial fibrillation
Thomas M. Munger, Li-Qun Wu, Win K. Shen
2014, 28(1): 1-17.   doi: 10.7555/JBR.28.20130191
+Abstract [PDF 5352KB](1344)
Maternal risk factors for low birth weight for term births in a developed region in China: a hospital-based study of 55,633 pregnancies
Yihua Bian, Zhan Zhang, Qiao Liu, Di Wu, Shoulin Wang
2013, 27(1): 14-22.   doi: 10.7555/JBR.27.20120046
+Abstract [PDF 4KB](839)
Fracture resistance of posterior teeth restored with modern restorative materials
Ibrahim M. Hamouda, Salah H. Shehata
2011, 25(6): 418-424.   doi: 10.1016/S1674-8301(11)60055-9
+Abstract [PDF 763KB](792)