4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Ruxu Sun, Hongjing Zhu, Ying Wang, Jianan Wang, Chao Jiang, Qiuchen Cao, Yeran Zhang, Yichen Zhang, Songtao Yuan, Qinghuai Liu. Circular RNA expression and the competitive endogenous RNA network in pathological, age-related macular degeneration events: A cross-platform normalization study[J]. The Journal of Biomedical Research, 2023, 37(5): 367-381. DOI: 10.7555/JBR.37.20230010
Citation: Ruxu Sun, Hongjing Zhu, Ying Wang, Jianan Wang, Chao Jiang, Qiuchen Cao, Yeran Zhang, Yichen Zhang, Songtao Yuan, Qinghuai Liu. Circular RNA expression and the competitive endogenous RNA network in pathological, age-related macular degeneration events: A cross-platform normalization study[J]. The Journal of Biomedical Research, 2023, 37(5): 367-381. DOI: 10.7555/JBR.37.20230010

Circular RNA expression and the competitive endogenous RNA network in pathological, age-related macular degeneration events: A cross-platform normalization study

More Information
  • Corresponding author:

    Songtao Yuan and Qinghuai Liu, Department of Ophthalmology, the First Affiliated Hospital of Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China. Tel/Fax: +86-25-68303110 and +86-25-68303160, E-mails: yuansongtao@vip.sina.com and liuqh@njmu.edu.cn

  • These authors contributed equally to this work.

  • Received Date: January 15, 2023
  • Revised Date: February 19, 2023
  • Accepted Date: February 19, 2023
  • Available Online: April 27, 2023
  • Published Date: April 27, 2023
  • Age-related macular degeneration (AMD) causes irreversible blindness in people aged over 50 worldwide. The dysfunction of the retinal pigment epithelium is the primary cause of atrophic AMD. In the current study, we used the ComBat and Training Distribution Matching method to integrate data obtained from the Gene Expression Omnibus database. We analyzed the integrated sequencing data by the Gene Set Enrichment Analysis. Peroxisome and tumor necrosis factor-α (TNF-α) signaling and nuclear factor kappa B (NF-κB) were among the top 10 pathways, and thus we selected them to construct AMD cell models to identify differentially expressed circular RNAs (circRNAs). We then constructed a competing endogenous RNA network, which is related to differentially expressed circRNAs. This network included seven circRNAs, 15 microRNAs, and 82 mRNAs. The Kyoto Encyclopedia of Genes and Genomes analysis of mRNAs in this network showed that the hypoxia-inducible factor-1 (HIF-1) signaling pathway was a common downstream event. The results of the current study may provide insights into the pathological processes of atrophic AMD.

  • We would like to thank the Core Facility of the First Affiliated Hospital of Nanjing Medical University for its help in the detection of experimental samples.

    This research was funded by the National Natural Science Foundation of China (Grant No. 81970821); and the Postgraduate Research Innovation Program of Jiangsu Provinc (Grant No. SJCX21_0624). The funding organization had no role in the design or conduction of this research.

    CLC number: R774.5, Document code: A

    The authors reported no conflict of interests.

  • [1]
    Mitchell P, Liew G, Gopinath B, et al. Age-related macular degeneration[J]. Lancet, 2018, 392(10153): 1147–1159. doi: 10.1016/S0140-6736(18)31550-2
    [2]
    Datta S, Cano M, Ebrahimi K, et al. The impact of oxidative stress and inflammation on RPE degeneration in non-neovascular AMD[J]. Prog Retin Eye Res, 2017, 60: 201–218. doi: 10.1016/j.preteyeres.2017.03.002
    [3]
    Persad PJ, Heid IM, Weeks DE, et al. Joint analysis of nuclear and mitochondrial variants in age-related macular degeneration identifies novel loci TRPM1 and ABHD2/RLBP1[J]. Invest Ophthalmol Vis Sci, 2017, 58(10): 4027–4038. doi: 10.1167/iovs.17-21734
    [4]
    SanGiovanni JP, Arking DE, Iyengar SK, et al. Mitochondrial DNA variants of respiratory complex I that uniquely characterize haplogroup T2 are associated with increased risk of age-related macular degeneration[J]. PLoS One, 2009, 4(5): e5508. doi: 10.1371/journal.pone.0005508
    [5]
    Liu B, Wei L, Meyerle C, et al. Complement component C5a promotes expression of IL-22 and IL-17 from human T cells and its implication in age-related macular degeneration[J]. J Transl Med, 2011, 9: 111. doi: 10.1186/1479-5876-9-111
    [6]
    Cousins SW, Espinosa-Heidmann DG, Csaky KG. Monocyte activation in patients with age-related macular degeneration: a biomarker of risk for choroidal neovascularization?[J]. Arch Ophthalmol, 2004, 122(7): 1013–1018. doi: 10.1001/archopht.122.7.1013
    [7]
    Yang L, Wilusz JE, Chen L. Biogenesis and regulatory roles of circular RNAs[J]. Annu Rev Cell Dev Biol, 2022, 38: 263–289. doi: 10.1146/annurev-cellbio-120420-125117
    [8]
    Chen X, Jiang C, Sun R, et al. Circular noncoding RNA NR3C1 acts as a miR-382–5p sponge to protect RPE functions via regulating PTEN/AKT/mTOR signaling pathway[J]. Mol Ther, 2020, 28(3): 929–945. doi: 10.1016/j.ymthe.2020.01.010
    [9]
    Dhirachaikulpanich D, Li X, Porter LF, et al. Integrated microarray and RNAseq transcriptomic analysis of retinal pigment epithelium/choroid in age-related macular degeneration[J]. Front Cell Dev Biol, 2020, 8: 808. doi: 10.3389/fcell.2020.00808
    [10]
    Thompson JA, Tan J, Greene CS. Cross-platform normalization of microarray and RNA-seq data for machine learning applications[J]. PeerJ, 2016, 4: e1621. doi: 10.7717/peerj.1621
    [11]
    Orozco LD, Chen HH, Cox C, et al. Integration of eQTL and a single-cell atlas in the human eye identifies causal genes for age-related macular degeneration[J]. Cell Rep, 2020, 30(4): 1246–1259.e6. doi: 10.1016/j.celrep.2019.12.082
    [12]
    Newman AM, Gallo NB, Hancox LS, et al. Systems-level analysis of age-related macular degeneration reveals global biomarkers and phenotype-specific functional networks[J]. Genome Med, 2012, 4(2): 16. doi: 10.1186/gm315
    [13]
    Gálvez JM, Castillo-Secilla D, Herrera LJ, et al. Towards improving skin cancer diagnosis by integrating microarray and RNA-Seq datasets[J]. IEEE J Biomed Health Inform, 2020, 24(7): 2119–2130. doi: 10.1109/JBHI.2019.2953978
    [14]
    Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies[J]. Nucleic Acids Res, 2015, 43(7): e47. doi: 10.1093/nar/gkv007
    [15]
    Chen X, Sun R, Yang D, et al. LINC00167 regulates RPE differentiation by targeting the miR-203a-3p/SOCS3 axis[J]. Mol Ther Nucleic Acids, 2020, 19: 1015–1026. doi: 10.1016/j.omtn.2019.12.040
    [16]
    Zhang Y, Li J, Cui Q, et al. Circular RNA hsa_circ_0006091 as a novel biomarker for hepatocellular carcinoma[J]. Bioengineered, 2022, 13(2): 1988–2003. doi: 10.1080/21655979.2021.2006952
    [17]
    Kim KW, Kim K, Kim HJ, et al. Posttranscriptional modulation of KCNQ2 gene expression by the miR-106b microRNA family[J]. Proc Natl Acad Sci U S A, 2021, 118(47): e2110200118. doi: 10.1073/pnas.2110200118
    [18]
    Kanehisa M, Furumichi M, Tanabe M, et al. KEGG: new perspectives on genomes, pathways, diseases and drugs[J]. Nucleic Acids Res, 2017, 45(D1): D353–D361. doi: 10.1093/nar/gkw1092
    [19]
    Yu G, Wang LG, Han Y, et al. clusterProfiler: an R package for comparing biological themes among gene clusters[J]. OMICS, 2012, 16(5): 284–287. doi: 10.1089/omi.2011.0118
    [20]
    Müller C, Charniga C, Temple S, et al. Quantified F-actin morphology is predictive of phagocytic capacity of stem cell-derived retinal pigment epithelium[J]. Stem Cell Rep, 2018, 10(3): 1075–1087. doi: 10.1016/j.stemcr.2018.01.017
    [21]
    Foltz SM, Greene CS, Taroni JN. Cross-platform normalization enables machine learning model training on microarray and RNA-Seq data simultaneously[J]. Commun Biol, 2023, 6(1): 222. doi: 10.1038/s42003-023-04588-6
    [22]
    Saddala MS, Lennikov A, Mukwaya A, et al. Transcriptome-wide analysis of differentially expressed chemokine receptors, SNPs, and SSRs in the age-related macular degeneration[J]. Hum Genomics, 2019, 13(1): 15. doi: 10.1186/s40246-019-0199-1
    [23]
    Zhao C, Yasumura D, Li X, et al. mTOR-mediated dedifferentiation of the retinal pigment epithelium initiates photoreceptor degeneration in mice[J]. J Clin Invest, 2011, 121(1): 369–383. doi: 10.1172/JCI44303
    [24]
    Kurihara T, Westenskow PD, Gantner ML, et al. Hypoxia-induced metabolic stress in retinal pigment epithelial cells is sufficient to induce photoreceptor degeneration[J]. eLife, 2016, 5: e14319. doi: 10.7554/eLife.14319
    [25]
    Vogt SD, Curcio CA, Wang L, et al. Retinal pigment epithelial expression of complement regulator CD46 is altered early in the course of geographic atrophy[J]. Exp Eye Res, 2011, 93(4): 413–423. doi: 10.1016/j.exer.2011.06.002
    [26]
    Kozumi K, Kodama T, Murai H, et al. Transcriptomics identify thrombospondin-2 as a biomarker for NASH and advanced liver fibrosis[J]. Hepatology, 2021, 74(5): 2452–2466. doi: 10.1002/hep.31995
    [27]
    Baek JH, Lim D, Park KH, et al. Quantitative proteomic analysis of aqueous humor from patients with drusen and reticular pseudodrusen in age-related macular degeneration[J]. BMC Ophthalmol, 2018, 18(1): 289. doi: 10.1186/s12886-018-0941-9
    [28]
    Gadaleta RM, Garcia-Irigoyen O, Cariello M, et al. Fibroblast Growth Factor 19 modulates intestinal microbiota and inflammation in presence of Farnesoid X Receptor[J]. EBioMedicine, 2020, 54: 102719. doi: 10.1016/j.ebiom.2020.102719
    [29]
    Choudhary M, Ismail EN, Yao P, et al. LXRs regulate features of age-related macular degeneration and may be a potential therapeutic target[J]. JCI Insight, 2020, 5(1): e131928. doi: 10.1172/jci.insight.131928
    [30]
    Lu H, Yang Y, Kuang D, et al. Expression profile of circRNA in peripheral blood mononuclear cells of patients with rheumatoid arthritis[J]. BMC Med Genomics, 2022, 15(1): 77. doi: 10.1186/s12920-022-01225-9
    [31]
    Iparraguirre L, Muñoz-Culla M, Prada-Luengo I, et al. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis[J]. Hum Mol Genetics, 2017, 26(18): 3564–3572. doi: 10.1093/hmg/ddx243
    [32]
    Duan X, Yu X, Li Z. Circular RNA hsa_circ_0001658 regulates apoptosis and autophagy in gastric cancer through microRNA-182/Ras-related protein Rab-10 signaling axis[J]. Bioengineered, 2022, 13(2): 2387–2397. doi: 10.1080/21655979.2021.2024637
    [33]
    Lei Q, Liang Z, Lei Q, et al. Analysis of circRNAs profile in TNF-α treated DPSC[J]. BMC Oral Health, 2022, 22(1): 269. doi: 10.1186/s12903-022-02267-2
    [34]
    Kuschel A, Simon P, Tug S. Functional regulation of HIF-1α under normoxia—is there more than post-translational regulation?[J]. J Cell Physiol, 2012, 227(2): 514–524. doi: 10.1002/jcp.22798
    [35]
    Dong S, Liang S, Cheng Z, et al. ROS/PI3K/Akt and Wnt/β-catenin signalings activate HIF-1α-induced metabolic reprogramming to impart 5-fluorouracil resistance in colorectal cancer[J]. J Exp Clin Cancer Res, 2022, 41(1): 15. doi: 10.1186/s13046-021-02229-6
  • Related Articles

    [1]Miao Xu, Yan Gao, Wenjie Yin, Qinghuai Liu, Songtao Yuan. RNA-sequencing expression profile and functional analysis of retinal pigment epithelium in atrophic age-related macular degeneration[J]. The Journal of Biomedical Research, 2024, 38(5): 500-511. DOI: 10.7555/JBR.37.20230320
    [2]Yifei Cheng, Rongjie Shi, Shuai Ben, Silu Chen, Shuwei Li, Junyi Xin, Meilin Wang, Gong Cheng. Genetic variation of circHIBADH enhances prostate cancer risk through regulating HNRNPA1-related RNA splicing[J]. The Journal of Biomedical Research, 2024, 38(4): 358-368. DOI: 10.7555/JBR.38.20240030
    [3]Huiyong Peng, Zhangwei Zhu, Jie Xing, Qian Xu, Changfeng Man, Shengjun Wang, Yingzhao Liu, Zhengdong Zhang. Expression profiling and bioinformatics analysis of serum exosomal circular RNAs in lymph node metastasis of papillary thyroid carcinoma[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.37.20230304
    [4]Lan Ma, Haiyan Chu, Meilin Wang, Zhengdong Zhang. Biological functions and potential implications of circular RNAs[J]. The Journal of Biomedical Research, 2023, 37(2): 89-99. DOI: 10.7555/JBR.36.20220095
    [5]Yujuan Su, Xinghui Guo, Min Zang, Zhengyao Xie, Tingting Zhao, Eugene Yujun Xu. RNA binding protein BOULE forms aggregates in mammalian testis[J]. The Journal of Biomedical Research, 2022, 36(4): 255-268. DOI: 10.7555/JBR.36.20220072
    [6]Sun Zhen, Liu Chen, Cheng Steven Y.. Identification of four novel prognosis biomarkers and potential therapeutic drugs for human colorectal cancer by bioinformatics analysis[J]. The Journal of Biomedical Research, 2021, 35(1): 21-35. DOI: 10.7555/JBR.34.20200021
    [7]Chen Fei, Li Yuancheng, Qin Na, Wang Fengliang, Du Jiangbo, Wang Cheng, Du Fangzhi, Jiang Tao, Jiang Yue, Dai Juncheng, Hu Zhibin, Lu Cheng, Shen Hongbing. RNA-seq analysis identified hormone-related genes associated with prognosis of triple negative breast cancer[J]. The Journal of Biomedical Research, 2020, 34(2): 129-138. DOI: 10.7555/JBR.34.20190111
    [8]Huang Jiancheng, Chen Meng, Xu Kai, Zhou Rongmei, Zhang Shujie, Zhao Chen. Microarray expression profile and functional analysis of circular RNAs in choroidal neovascularization[J]. The Journal of Biomedical Research, 2020, 34(1): 67-74. DOI: 10.7555/JBR.33.20190063
    [9]Wang Jing, He Xuezhi, Lu Xiyi, Amin Karim Muhammad, Miao Dengshun, Zhang Erbao. A novel long non-coding RNA NFIA-AS1 is down-regulated in gastric cancer and inhibits proliferation of gastric cancer cells[J]. The Journal of Biomedical Research, 2019, 33(6): 371-381. DOI: 10.7555/JBR.33.20190015
    [10]Tingting Zhao, Ren Zhang, Mingbo Wang. Prediction of candidate small non-coding RNAs in Agrobacterium by computational analysis[J]. The Journal of Biomedical Research, 2010, 24(1): 33-42.
  • Other Related Supplements

  • Cited by

    Periodical cited type(1)

    1. Liukkonen M, Heloterä H, Siintamo L, et al. Oxidative Stress and Inflammation-Related mRNAs Are Elevated in Serum of a Finnish Wet AMD Cohort. Invest Ophthalmol Vis Sci, 2024, 65(13): 30. DOI:10.1167/iovs.65.13.30
    1. Liukkonen M, Heloterä H, Siintamo L, et al. Oxidative Stress and Inflammation-Related mRNAs Are Elevated in Serum of a Finnish Wet AMD Cohort. Invest Ophthalmol Vis Sci, 2024, 65(13): 30. DOI:10.1167/iovs.65.13.30

    Other cited types(0)

Catalog

    Figures(9)  /  Tables(1)

    Article Metrics

    Article views (1770) PDF downloads (153) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return