• ISSN 1674-8301
  • CN 32-1810/R
Articles in press have been peer-reviewed and accepted, which are not yet assigned to volumes /issues, but are citable by Digital Object Identifier (DOI).
Epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI) plays an important role in cancer therapy. However, EGFR is highly expressed in the skin and gives rise to one of the most concerning issues for the EGFR-TKI treatment, namely skin toxicity. Antibiotics and corticosteroids are usually used to treat the EGFR inhibitor-associated skin rash, with prominent side effects over long-time use. Pien Tze Huang (PZH) Unguentum Compositum is a traditional product for external application which is made of traditional Chinese medicine and oil base. Herein, we reported the case of a 50-year-old man who presented with skin rash on the face, head, and back induced by an EGFR-TKI named erlotinib. By using PZH Unguentum Compositum, we observed that the skin rash was mitigated and eventually disappeared. This case report suggests that PZH Unguentum Compositum may be an effective therapy in treating skin rash caused by EGFR-TKI with fewer side effects.
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by progressive cognitive defects. The role of the central immune dominated by microglia in the progression of AD has been extensively investigated. However, little is known about the peripheral immune system in AD pathogenesis. Recently, with the discovery of the meningeal lymphatic vessels and glymphatic system, the roles of acquired immunity in the maintenance of central homeostasis and neurodegenerative diseases have attracted increasing attention. T cells not only regulate the function of neurons, astrocytes, microglia, oligodendrocytes and brain microvascular endothelial cells, but also participate in clearance of β-amyloid (Aβ) plaques. Apart from producing antibodies to bind Aβ peptides, B cells affect Aβ-related cascades via a variety of antibody-independent mechanisms. This review systemically summarizes the recent progress in understanding pathophysiological roles of T cells and B cells in AD.
Lupus nephritis (LN) has a high incidence in systemic lupus erythematosus (SLE) patients, but there is a lack of sensitive predictive markers and mechanisms. The purpose of the study was to reveal the association between the CD4+CD8+ double positive T (DPT) lymphocytes and LN. The study included the patients with SLE with no renal impairment (SLE-NRI), LN, nephritic syndrome (NS), or nephritis. Peripheral blood lymphocyte subsets were analyzed by flow cytometry. Biochemical measurements were performed for peripheral blood in accordance with the recommendations proposed by the National Center for Clinical Laboratories. The proportions of DPT cells in LN group were significantly higher than that in SLE-NRI group (t=4.012, P<0.001), NS group (t=3.240, P=0.001), and nephritis group (t=2.57, P=0.011). In LN group, the risk of renal impairment increased significantly in a DPT cells proportion dependent manner. In cases of high proportion of DPT cells, the risk of LN was 5.136 times higher than when the proportion of DPT cells was within the normal range. These findings indicated that the proportion of DPT cells could be a potential marker to evaluate LN susceptibility, and the interference of NS and nephritis could be effectively excluded when assessing the risk of renal impairment during SLE with DPT cells proportion.
Lead (Pb) and furan are toxic agents, and persistent exposure to humans and animals may impair reproductive function. We therefore explored the effect of Pb and furan on male rat hypothalamic-pituitary-gonadal reproductive status, oxidative stress, inflammation, and genomic integrity. We found that co-exposure to Pb and furan reduced the activities of testicular function enzymes and endogenous antioxidant levels, total sulfhydryl group, and glutathione. Sperm abnormality, biomarkers of oxidative stress, inflammation, and p53 expression were increased in dose-dependent manner by treatment with furan and Pb. Typical rat gonad histoarchitecture features were also damaged. Convincingly, co-exposure to furan—a steroid hormone disruptor; and lead—a toxic metal common in water pipes—induced male reproductive function derangement by decreasing the antioxidant defences in rats, increasing abnormalities in spermatozoa morphology, and reducing reproductive hormone in circulation. These pathophysiological alterations, if persistent, might provide a permissive environment for potentiating reproductive dysfunction and infertility.
Right heart thrombus (RHTh) with concurrent acute pulmonary embolism (PE) is rare and can seriously destabilize hemodynamics, leading to an emergency situation with high mortality. Diagnosis and treatment of RHTh with acute PE are not yet standardized. There are few reports of acute PE concurrent with RHTh and even less is known about patients with a right heart mural thrombus. For physicians, the diagnostic choice and treatment of these patients are particularly difficult due to the lack of knowledge. Here, we report a rare case of partial mural RHTh (type C RHTh) with acute PE. The mural mass in the right heart was initially diagnosed as atrial myxoma according to transthoracic echocardiography (TTE), and both pulmonary embolus and the mural mass were completely absorbed after administering Rivaroxiban. This case suggests that TTE alone is insufficient to identify and diagnoses a right heart mural mass such as this. However, novel oral anticoagulants may be effective at alleviating PE with type C RHTh.
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder. The major pathological changes in AD progression are the generation and accumulation of amyloid-beta (Aβ) peptides, and the presence of abnormally hyperphosphorylated tau proteins in the brain. Autophagy is a conserved degradation pathway that eliminates abnormal protein aggregates and damaged organelles. Previous studies have suggested that autophagy plays a key role in the production and clearance of Aβ peptides. to maintain a steady-state of Aβ peptides levels. However, a growing body of evidence suggests that autophagy is significantly impaired in the pathogenesis of AD, especially in Aβ metabolisation. Therefore, this article reviews the latest studies concerning the mechanisms of autophagy, the metabolisation of Aβ peptides, and the defective autophagy in the production and clearance of Aβ peptides. Here, we also summarize established and new strategies for targeting autophagy in vivo and through clinical AD trials in order to identify gaps in our knowledge and to generate further questions.
Sirtuin 3 (SIRT3), the main family member of mitochondrial deacetylase, targets the majority of substrates controlling mitochondrial biogenesis via lysine deacetylation and modulates important cellular functions such as energy metabolism, reactive oxygen species production and clearance, oxidative stress, and aging. Deletion of SIRT3 has a deleterious effect on mitochondrial biogenesis, thus leading to the defect in mitochondrial function and insufficient ATP production. Imbalance of mitochondrial dynamics leads to excessive mitochondrial biogenesis, dampening mitochondrial function. Mitochondrial dysfunction plays an important role in several diseases related to aging, such as cardiovascular disease, cancer and neurodegenerative diseases. Peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) launches mitochondrial biogenesis through activating nuclear respiratory factors. These factors act on genes, transcribing and translating mitochondrial DNA to generate new mitochondria. PGC1α builds a bridge between SIRT3 and mitochondrial biogenesis. This review described the involvement of SIRT3 and mitochondrial dynamics, particularly mitochondrial biogenesis in aging-related diseases, and further illustrated the role of the signaling events between SIRT3 and mitochondrial biogenesis in the pathological process of aging-related diseases.
The superior vena cava (SVC) is the main component of non-pulmonary vein (PV) ectopy in patients with atrial fibrillation (AF). Researchers have found that epicardial adipose tissue (EAT) volume is related to the AF substrate, which can be defined by the low voltage area (LVA). This study aimed to investigate the relationship between SVC-EAT and SVC-AF. Twenty-six patients with SVC-AF triggers were identified as the SVC-AF group. Other three groups were defined and included as the LVA-AF group (LVA>5%), non-LVA-AF group (LVA<5%), and physical examination (PE) group. EAT around left atrium (LA-EAT) and SVC-EAT volumes were obtained using a cardiac risk assessment module. According to the SVC/LA-EAT ratio, there are significant differences between the SVC-AF group and the three control groups (the SVC-AF group 0.092±0.041 vs. the LVA-AF group 0.054±0.026, the non-LVA-AF group 0.052±0.022, and the PE group 0.052±0.019, all P<0.001). Receiver operating characteristic curve analysis suggests the optimal cut-off point of SVC/LA-EAT ratio is 6.8% for detecting SVC-AF patients, with 81.1% sensitivity, 73.1% specificity, and an area under the curve of 0.83 (95% confidence interval, 0.75–0.91). Those with SVC-AF have a higher SVC/LA-EAT ratio and empirical SVC isolation could be considered if the SVC/LA-EAT ratio was over 6.8%.
Acute myocardial infarction (AMI) is one of the main reasons of disease-related death. The introduction of percutaneous coronary intervention to clinical practice dramatically decreased the mortality rate in AMI. Adverse cardiac remodeling is a serious problem in cardiology. An increase in the effectiveness of AMI treatment and prevention of adverse cardiac remodeling is difficult to achieve without understanding the mechanism(s) of reperfusion cardiac injury and cardiac remodeling. Inhibition of pyroptosis prevents the development of postinfarction and pressure overload-induced cardiac remodeling, mitigated cardiomyopathy induced by diabetes and metabolic syndrome. Therefore, it is reasonable to hypothesize that the pyroptosis inhibitors may find a role in clinical practice for treatment of AMI and prevention of cardiac remodeling, diabetes and metabolic syndrome-triggered cardiomyopathy. It was demonstrated that pyroptosis interacts closely with apoptosis and autophagy. Pyroptosis could be inhibited by nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 inhibitors, caspase-1 inhibitors, microRNA, angiotensin-converting enzyme inhibitors, angiotensin II receptor blockers, and traditional Chinese herbal medicines.
Aging, subjected to scientific scrutiny, is extensively defined as a time-dependent decline in function that involves the majority of organisms. The time-dependent accretion of cellular lesions is generally a universal trigger of aging. Mitochondrial dysfunction is a sign of aging. Dysfunctional mitochondria are identified and removed by mitophagy, a selective form of macroautophagy. Increased mitochondrial damage resulting from reduced biogenesis and clearance may promote the aging process. The primary purpose of this paper is to illustrate in detail the effect of mitophagy on aging and emphasize on the association between mitophagy and other signs of aging including dietary restriction, telomere shortening, epigenetic alterations, and protein imbalance. The evidence regarding the effect of these relationships on aging is still limited, and although the relationship between mitophagy and aging has been long-awaited, analyzing of its details remains the main challenge in aging studies.
Liver diseases with the central pathogenetic mechanism of oxidative stress is one of the main causes of mortality worldwide. Therefore, dihydroquinoline derivatives, which are precursors of hepatoprotectors and have antioxidant activity, are of interest. We have previously found that some compounds in this class have the ability to normalize redox homeostasis under experimental conditions. Here, we initially analyzed the hepatoprotective potential of the dihydroquinoline derivative 1-benzoyl-6-hydroxy-2,2,4-trimethyl-1,2-dihydroquinoline (BHDQ) for carbon tetrachloride (CCl4)-induced liver injury in rats. Result suggested that BHDQ normalized the alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transpeptidase in serum. We also observed an improvement in liver tissue morphology related to BHDQ. Animals with CCl4-induced liver injuries treated with BHDQ had less oxidative stress compared to animals with (CCl4)-induced liver injury. BHDQ promoted activation changes in superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione transferase on control values in animals with (CCl4)-induced liver injury. BHDQ also activated gene transcription in Sod1 and Gpx1 via nuclear factor erythroid 2-related factor 2 and Forkhead box other 1 factors. Therefore, the compound of concern has a hepatoprotective effect by inhibiting the development of necrotic processes in the liver tissue, through antioxidation.
In this paper, we propose a framework based deep learning for medical image translation using paired and unpaired training data. Initially, a deep neural network with an encoder-decoder structure is proposed for image-to-image translation using paired training data. A multi-scale context aggregation approach is then used to extract various features from different levels of encoding, which are used during the corresponding network decoding stage. At this point, we further propose an edge-guided generative adversarial network for image-to-image translation based on unpaired training data. An edge constraint loss function is used to improve network performance in tissue boundaries. To analyze framework performance, we conducted five different medical image translation tasks. The assessment demonstrates that the proposed deep learning framework brings significant improvement beyond state-of-the-arts.
Amyotrophic lateral sclerosis (ALS) is known as a progressive paralysis disorder characterized by degeneration of upper and lower motor neurons and has an average survival time of three to five years. Growing evidence has suggested the bidirectional link between gut microbiota and neurodegeneration. Here we aimed to report one female case with ALS who benefited from washed microbiota transplantation (WMT), an improved fecal microbiota transplantation (FMT), through a transendoscopic enteral tube during a 12-month follow-up. Notedly, the accidental scalp trauma the patient suffered later was treated with prescribed antibiotics which caused ALS deterioration. The subsequent rescue WMTs successfully stopped the progression of the disease with quick improvement. The plateaus and reversals occurred during the whole course of WMT. The stool and blood samples from the first WMT to the last were collected for dynamic microbial and metabolomic analysis. We observed the microbial and metabolomic changing trend consistent with the disease status. This case report for the first time shows the direct clinical evidence on using WMT for treating ALS, indicating that WMT may be the novel treatment strategy for controlling this so-called incurable disease.
Mast cell activation syndrome (MCAS) includes a group of disorders that result in the inappropriate release of inflammatory mediators from mast cells. These mediators can affect multiple organ systems and lead to significant morbidity, and possible fatality. Although reactions, typically in response to various nonspecific stimuli, are usually mild, they may put those with MCAS at increased risk of anaphylaxis. In this case report, we present two clinical scenarios of MCAS, and identify possible factors triggering mast cell mediator release. We also define a preoperative preventive pathway, outline anesthetic considerations, and discuss the management of immediate hypersensitivity reactions in patients with MCAS. Meticulous preoperative preparation, avoidance of triggers, and development of a plan to treat possible adverse organ responses are paramount of good outcomes.
The Journal of Biomedical Research--2022, 36(5)
Editorial Commentary
Review Article
Obesity is a worldwide health, economic and social concern, despite efforts made to counteract the spreading wave of eating and nourishment-associated disorders. The review aims to show how the glial cells, astrocytes, contribute to the central regulation of appetite and energy metabolism. The hypothalamus is the brain center responsible for nutrients and nutritional hormone sensing, signal processing, and execution of metabolic and behavioral responses, directed at sustaining energy homeostasis. The astrocytes are endowed with receptors, transporters and enzymatic machinery responsible for glucose, lactate, fatty acids, ketone bodies, as well as leptin or ghrelin transport and metabolism, and that render them supporters and partners for neurons in governing the brain and body energy intake and expenditure. However, the role of astrocytes associated with brain energy metabolism reaches far beyond simple fuel contingent—they contribute to cognitive performance. The cognitive decline which often accompanies high fat- and/or high-calorie diets and correlates with neuroinflammation and astrogliosis, is a major concern. The last two decades of research enabled us to acknowledge the astroglia in obesity-associated dysfunctions and to investigate astrocytes as contributors to the pathology, as well as targets for therapy.
Spinal cord injury (SCI) leads to permanent deficits in neural function without effective therapies, which places a substantial burden on families and society. Astrocytes, the major glia supporting the normal function of neurons in the spinal cord, become active and form glial scars after SCI, which has long been regarded as a barrier for axon regeneration. However, recent progress has indicated the beneficial role of astrocytes in spinal repair. During the past three decades, astrocyte transplantation for SCI treatment has gained increasing attention. In this review, we first summarize the progress of using rodent astrocytes as the primary step for spinal repair. Rodent astrocytes can survive well, migrate extensively, and mature in spinal injury; they can also inhibit host reactive glial scar formation, stimulate host axon regeneration, and promote motor, sensory, respiratory, and autonomic functional recovery. Then, we review the progress in spinal repair by using human astrocytes of various origins, including the fetal brain, fetal spinal cord, and pluripotent stem cells. Finally, we introduce some key questions that merit further research in the future, including rapid generation of large amounts of human astrocytes with high purity, identification of the right origins of astrocytes to maximize neural function improvement while minimizing side effects, testing human astrocyte transplantation in chronic SCI, and verification of the long-term efficacy and safety in large animal models.
Glial cells play an essential part in the neuron system. They can not only serve as structural blocks in the human brain but also participate in many biological processes. Extensive studies have shown that astrocytes and microglia play an important role in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, as well as glioma, epilepsy, ischemic stroke, and infections. Positron emission tomography is a functional imaging technique providing molecular-level information before anatomic changes are visible and has been widely used in many above-mentioned diseases. In this review, we focus on the positron emission tomography tracers used in pathologies related to glial cells, such as glioma, Alzheimer's disease, and neuroinflammation.
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by irreversible deterioration of upper and lower motor neurons (MNs). Previously, studies on the involvement of glial cells in the pathogenic process of ALS have mainly revolved around astrocytes and microglia. And oligodendrocytes (OLs) have only recently been highlighted. Grey matter demyelination within the motor cortex and proliferation of the oligodendrocyte precursor cells (OPCs) was observed in ALS patients. The selective ablation of mutant SOD1 (the dysfunctional superoxide dismutase) from the oligodendrocyte progenitors after birth significantly delayed disease onset and prolonged the overall survival in ALS mice model (SOD1G37R). In this study, we review the several mechanisms of oligodendrocyte dysfunction involved in the pathological process of myelin damage and MNs death during ALS. Particularly, we examined the insufficient local energy supply from OLs to axons, impaired differentiation from OPCs into OLs mediated by oxidative stress damage, and inflammatory injury to the OLs. Since increasing evidence depicted that ALS is not a disease limited to MNs damage, exploring the mechanisms by which oligodendrocyte dysfunction is involved in MNs death would contribute to a more comprehensive understanding of ALS and identifying potential drug targets.
Oligodendrocyte lineage cells (OL-lineage cells) are a cell population that are crucial for mammalian central nervous system (CNS) myelination. OL-lineage cells go through developmental stages, initially differentiating into oligodendrocyte precursor cells (OPCs), before becoming immature oligodendrocytes, then mature oligodendrocytes (OLs). While the main function of cell lineage is in myelin formation, and increasing number of studies have turned to explore the immunological characteristics of these cells. Initially, these studies focused on discovering how OPCs and OLs are affected by the immune system, and then, how these immunological changes influence the myelination process. However, recent studies have uncovered another feature of OL-lineage cells in our immune systems. It would appear that OL-lineage cells also express immunological factors such as cytokines and chemokines in response to immune activation, and the expression of these factors changes under various pathologic conditions. Evidence suggests that OL-lineage cells actually modulate immune functions. Indeed, OL-lineage cells appear to play both "victim" and "agent" in the CNS which raises a number of questions. Here, we summarize immunologic changes in OL-lineage cells and their effects, as well as consider OL-lineage cell changes which influence immune cells under pathological conditions. We also describe some of the underlying mechanisms of these changes and their effects. Finally, we describe several studies which use OL-lineage cells as immunotherapeutic targets for demyelination diseases.
Mini-review
Cerebral small vessel disease (CSVD) is a leading cause of stroke and dementia. As the most common type of inherited CSVD, cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is characterized by the NOTCH3 gene mutation which leads to Notch3 ectodomain deposition and extracellular matrix aggregation around the small vessels. It further causes smooth muscle cell degeneration and small vessel arteriopathy in the central nervous system. Compromised cerebral blood flow occurs in the early stage of CADASIL and is associated with white matter hyperintensity, the typical neuroimaging pathology of CADASIL. This suggests that cerebral hypoperfusion may play an important role in the pathogenesis of CADASIL. However, the mechanistic linkage between NOTCH3 mutation and cerebral hypoperfusion remains unknown. Therefore, in this mini-review, it examines the cellular and molecular mechanisms contributing to cerebral hypoperfusion in CADASIL.
Original Article
Astrocytes, the multi-functional glial cells with the most abundant population in the brain, integrate information across their territories to regulate neuronal synaptic and cerebrovascular activities. Astrocytic calcium (Ca2+) signaling is the major readout of cellular functional state of astrocytes. The conventional two-photon in vivo imaging usually focuses on a single horizontal focal plane to capture the astrocytic Ca2+ signals, which leaves >80% spatial information undetected. To fully probe the Ca2+ activity across the whole astrocytic territory, we developed a pipeline for imaging and visualizing volumetric astrocytic Ca2+ time-lapse images. With the pipeline, we discovered a new signal distribution pattern from three-dimensional (3D) astrocytic Ca2+ imaging data of mice under isoflurane anesthetic states. The tools developed in this study enable a better understanding of the spatiotemporal patterns of astrocytic activity in 3D space.
Brief Report
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an early-onset inherited small vessel disease. Decreased cerebral blood flow (CBF) may contribute to white matter hyperintensity (WMH) severity in CADASIL, but more evidence is needed to support this hypothesis. This study comprised six patients with CADASIL who harbored mutations in the coding sequence of NOTCH3 and twelve age-matched neurologically healthy controls. We collected clinical and imaging data from patients with CADASIL and divided the brain into four regions: WMH, normal-appearing white matter (NAWM), gray matter (GM), and global brain. We analyzed the relationship between CBF of each region and the WMH volume. Compared with the control group, CBF was significantly decreased in all four regions in the CADASIL group. Lower CBF in these regions was correlated with higher WMH volume in CADASIL. CBF in the NAWM, GM and global regions was positively correlated with that in WMH region. However, after correction tests, only CBF in the WMH region but not in NAWM, GM and global regions was associated with WMH volume. Our findings suggest that CBF in the WMH region is an influencing factor of the WMH severity in CADASIL.
Myocardin in biology and disease
Joseph M. Miano
2015, 29(1): 3-19.   doi: 10.7555/JBR. 29.20140151
+Abstract PDF 5076KB
Exosomes and their role in the micro-/macro-environment: a comprehensive review
Naureen Javeed, Debabrata Mukhopadhyay
2017, 31(5): 386-394.   doi: 10.7555/JBR.30.20150162
+Abstract PDF 185KB
GYY4137 protects against myocardial ischemia and reperfusion injury by attenuating oxidative stress and apoptosis in rats
Guoliang Meng, Jing Wang, Yujiao Xiao, Wenli Bai, Liping Xie, Liyang Shan, Philip K Moore, Yong Ji
2015, 29(3): 203-213.   doi: 10.7555/JBR.28.20140037
+Abstract PDF 2347KB
Immune checkpoint inhibitors in cancer therapy
Eika S. Webb, Peng Liu, Renato Baleeiro, Nicholas R. Lemoine, Ming Yuan, Yaohe Wang
2018, 32(5): 317-326.   doi: 10.7555/JBR.31.20160168
+Abstract PDF 275KB
Platelets in hemostasis and thrombosis: Novel mechanisms of fibrinogen-independent platelet aggregation and fibronectinmediated protein wave of hemostasis
Yan Hou, Naadiya Carrim, Yiming Wang, Reid C. Gallant, Alexandra Marshall, Heyu Ni
2015, 29(6): 437-444.   doi: 10.7555/JBR.29.20150121
+Abstract PDF 610KB
Recent advances in targeting the autotaxin-lysophosphatidate-lipid phosphate phosphatase axis in vivo
Matthew G.K. Benesch, Xiaoyun Tang, Ganesh Venkatraman, Raie T. Bekele, David N. Brindley
2016, 30(4): 272-284.   doi: 10.7555/JBR.30.20150058
+Abstract PDF 462KB
Statistical analysis for genome-wide association study
Ping Zeng, Yang Zhao, Cheng Qian, Liwei Zhang, Ruyang Zhang, Jianwei Gou, Jin Liu, Liya Liu, Feng Chen
2015, 29(4): 285-297.   doi: 10.7555/JBR.29.20140007
+Abstract PDF 3937KB
Hepatic ischemia-reperfusion injury in liver transplant setting: mechanisms and protective strategies
Rampes Sanketh, Ma Daqing
2019, 33(4): 221-234.   doi: 10.7555/JBR.32.20180087
+Abstract + HTML PDF 1187KB
Deciphering the role of hedgehog signaling in pancreatic cancer
Dongsheng Gu, Kelly E Schlotman, Jingwu Xie
2016, 30(5): 353-360.   doi: 10.7555/JBR.30.20150107
+Abstract PDF 376KB
Autoantibodies in Alzheimer's disease: potential biomarkers, pathogenic roles, and therapeutic implications
Jianming Wu, Ling Li
2016, 30(5): 361-372.   doi: 10.7555/JBR.30.20150131
+Abstract PDF 426KB
Class A scavenger receptor activation inhibits endoplasmic reticulum stress-induced autophagy in macrophage
Hanpeng Huang, Xiaoyu Li, Yan Zhuang, Nan Li, Xudong Zhu, Jin Hu, Jingjing Ben, Qing Yang, Hui Bai, Qi Chen
2014, 28(3): 213-221.   doi: 10.7555/JBR.28.20130105
+Abstract [PDF 11939KB](937)
Dual therapy of rosiglitazone/pioglitazone with glimepiride on diabetic nephropathy in experimentally induced type 2 diabetes rats
Ravi Prakash Rao, Ansima Singh, Arun K Jain, Bhartu Parsharthi Srinivasan
2011, 25(6): 411-417.   doi: 10.1016/S1674-8301(11)60054-7
+Abstract [PDF 1947KB](841)
A clinical perspective on mucoadhesive buccal drug delivery systems
Ritu MGilhotra, Mohd Ikram, Sunny Srivastava, Neeraj Gilhotra
2014, 28(2): 81-97.   doi: 10.7555/JBR.27.20120136
+Abstract [PDF 2323KB](998)
AEG-1 expression correlates with CD133 and PPP6c levels in human glioma tissues
Jia Guo, Xin Chen, Ruxing Xi, Yuwei Chang, Xuanwei Zhang, Xiaozhi Zhang
2014, 28(5): 388-395.   doi: 10.7555/JBR.28.20140015
+Abstract [PDF 14254KB](927)
Lipoprotein metabolism in nonalcoholic fatty liver disease
Zhenghui Gordon Jiang, Simon C. Robson, Zemin Yao
2013, 27(1): 1-13.   doi: 10.7555/JBR.27.20120077
+Abstract [PDF 1247KB](1138)
ApoB/apoA1 is an effective predictor of coronary heart disease risk in overweight and obesity
Min Lu, Qun Lu, Yong Zhang, Gang Tian
2011, 25(4): 266-273.   doi: 10.1016/S1674-8301(11)60036-5
+Abstract [PDF 4KB](876)
Development of Leishmania vaccines: predicting the future from past and present experience
Joshua Muli Mutiso, John Chege Macharia, Maria Ndunge Kiio, James Maina Ichagichu, Hitler Rikoi, Michael Muita Gicheru
2013, 27(2): 85-102.   doi: 10.7555/JBR.27.20120064
+Abstract [PDF 4KB](1123)
Atrial fibrillation
Thomas M. Munger, Li-Qun Wu, Win K. Shen
2014, 28(1): 1-17.   doi: 10.7555/JBR.28.20130191
+Abstract [PDF 5352KB](1718)
Fracture resistance of posterior teeth restored with modern restorative materials
Ibrahim M. Hamouda, Salah H. Shehata
2011, 25(6): 418-424.   doi: 10.1016/S1674-8301(11)60055-9
+Abstract [PDF 763KB](841)
Maternal risk factors for low birth weight for term births in a developed region in China: a hospital-based study of 55,633 pregnancies
Yihua Bian, Zhan Zhang, Qiao Liu, Di Wu, Shoulin Wang
2013, 27(1): 14-22.   doi: 10.7555/JBR.27.20120046
+Abstract [PDF 4KB](886)