4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Ramendu Hom Chaudhuri. The role of amino acids in skeletal muscle health and sarcopenia: A narrative review[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240167
Citation: Ramendu Hom Chaudhuri. The role of amino acids in skeletal muscle health and sarcopenia: A narrative review[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240167

Unproofed Manuscript: The manuscript has been professionally copyedited and typeset to confirm the JBR’s formatting, but still needs proofreading by the corresponding author to ensure accuracy and correct any potential errors introduced during the editing process. It will be replaced by the online publication version.

The role of amino acids in skeletal muscle health and sarcopenia: A narrative review

More Information
  • Corresponding author:

    Ramendu Hom Chaudhuri, Department of Orthopaedics, Sri Aurobindo Seva Kendra, Jodhpur Park, Kolkata, West Bengal 700068, India. Email: health.research.001@gmail.com

  • Received Date: June 06, 2024
  • Revised Date: September 26, 2024
  • Accepted Date: September 30, 2024
  • The skeletal muscle is the largest organ present inside the body and is responsible for mechanical activities like maintaining posture, movement, respiratory function, and support for the health and functioning of other systems of the body. Skeletal muscle atrophy is a condition associated with a reduction in muscle size, strength, and activity, which leads to an increased dependency on movement, an increased risk of falls, and a reduced quality of life. Various conditions like osteoarthritis, osteoporosis, and fractures are directly associated with an increased muscle atrophy. Additionally, numerous risk factors, like aging, malnutrition, physical inactivity, and certain disease conditions, through distinct pathways negatively affect skeletal muscle health and lead to muscle atrophy. Among the various determinants of the overall muscle health, the rate of muscle protein synthesis and degradation is an important parameter that eventually alters the fate of overall muscle health. In conditions of excessive skeletal muscle atrophy, including sarcopenia, the rate of muscle protein degradation usually exceeds the rate of protein synthesis. The availability of amino acids in the systemic circulation is a crucial step for muscle protein synthesis. The current review aimed to consolidate the existing evidence of amino acids, highlight their mechanisms of action, and assess their roles and effectiveness in enhancing skeletal muscle health.

  • None.

    None.

    CLC number: R685, Document code: A

    The authors reported no conflict of interests.

  • [1]
    Tortora GJ, Derrickson B. Muscular tissue[M]//Tortora GJ, Derrickson B. Principles of Anatomy & Physiology. 14th ed. New Jersey: John Wiley & Sons, 2014: 291–327. (查阅网上资料, 未找到出版地及年份信息, 请确认) (查阅网上资料, 未找到标黄信息, 请确认)
    [2]
    Pedersen BK. Muscle as a secretory organ[J]. Compr Physiol, 2013, 3(3): 1337–1362. https://pubmed.ncbi.nlm.nih.gov/23897689/
    [3]
    Hoffman JR, Falvo MJ. Protein - which is best?[J]. J Sports Sci Med, 2004, 3(3): 118–130. https://pubmed.ncbi.nlm.nih.gov/24482589/
    [4]
    Wu G. Functional amino acids in nutrition and health[J]. Amino Acids, 2013, 45(3): 407–411. doi: 10.1007/s00726-013-1500-6
    [5]
    Moulaee K, Neri G. Electrochemical amino acid sensing: a review on challenges and achievements[J]. Biosensors (Basel), 2021, 11(12): 502. https://pubmed.ncbi.nlm.nih.gov/34940259/
    [6]
    Xiao F, Guo F. Impacts of essential amino acids on energy balance[J]. Mol Metab, 2022, 57: 101393. doi: 10.1016/j.molmet.2021.101393
    [7]
    Choi BH, Coloff JL. The diverse functions of non-essential amino acids in cancer[J]. Cancers (Basel), 2019, 11(5): 675. doi: 10.3390/cancers11050675
    [8]
    Lacey JM, Wilmore DW. Is glutamine a conditionally essential amino acid?[J]. Nutr Rev, 1990, 48(8): 297–309. doi: 10.1111/j.1753-4887.1990.tb02967.x
    [9]
    Fürst P, Stehle P. What are the essential elements needed for the determination of amino acid requirements in humans?[J]. J Nutr, 2004, 134(6): 1558S–1565S. doi: 10.1093/jn/134.6.1558S
    [10]
    Kamei Y, Hatazawa Y, Uchitomi R, et al. Regulation of skeletal muscle function by amino acids[J]. Nutrients, 2020, 12(1): 261. doi: 10.3390/nu12010261
    [11]
    Weinert DJ. Nutrition and muscle protein synthesis: a descriptive review[J]. J Can Chiropr Assoc, 2009, 53(3): 186–193. https://pubmed.ncbi.nlm.nih.gov/19714233/
    [12]
    Yao K, Yin YL, Chu W, et al. Dietary arginine supplementation increases mTOR signaling activity in skeletal muscle of neonatal pigs[J]. J Nutr, 2008, 138(5): 867–872. doi: 10.1093/jn/138.5.867
    [13]
    Lama-Sherpa TD, Jeong MH, Jewell JL. Regulation of mTORC1 by the rag GTPases[J]. Biochem Soc Trans, 2023, 51(2): 655–664. doi: 10.1042/BST20210038
    [14]
    Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 183–203. https://pubmed.ncbi.nlm.nih.gov/31937935/
    [15]
    Muller M, Bélanger J, Hadj-Aissa I, et al. GATOR1 mutations impair PI3 kinase-dependent growth factor signaling regulation of mTORC1[J]. Int J Mol Sci, 2024, 25(4): 2068. doi: 10.3390/ijms25042068
    [16]
    Tang X, Zhang Y, Wang G, et al. Molecular mechanism of S-adenosylmethionine sensing by SAMTOR in mTORC1 signaling[J]. Sci Adv, 2022, 8(26): eabn3868. doi: 10.1126/sciadv.abn3868
    [17]
    Rehman SU, Ali R, Zhang H, et al. Research progress in the role and mechanism of Leucine in regulating animal growth and development[J]. Front Physiol, 2023, 14: 1252089. doi: 10.3389/fphys.2023.1252089
    [18]
    Nosaka K, Sacco P, Mawatari K. Effects of amino acid supplementation on muscle soreness and damage[J]. Int J Sport Nutr Exerc Metab, 2006, 16(6): 620–635. doi: 10.1123/ijsnem.16.6.620
    [19]
    Aguirre N, van Loon LJC, Baar K. The role of amino acids in skeletal muscle adaptation to exercise[J]. Nestle Nutr Inst Workshop Ser, 2013, 76: 85–102. doi: 10.1159/000350261
    [20]
    Katsanos CS, Kobayashi H, Sheffield-Moore M, et al. A high proportion of leucine is required for optimal stimulation of the rate of muscle protein synthesis by essential amino acids in the elderly[J]. Am J Physiol Endocrinol Metab, 2006, 291(2): E381–E387. doi: 10.1152/ajpendo.00488.2005
    [21]
    Brunani A, Cancello R, Gobbi M, et al. Comparison of protein- or amino acid-based supplements in the rehabilitation of men with severe obesity: a randomized controlled pilot study[J]. J Clin Med, 2023, 12(13): 4257. doi: 10.3390/jcm12134257
    [22]
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People[J]. Age Ageing, 2010, 39(4): 412–423. doi: 10.1093/ageing/afq034
    [23]
    Yuan S, Larsson SC. Epidemiology of sarcopenia: prevalence, risk factors, and consequences[J]. Metabolism, 2023, 144: 155533. doi: 10.1016/j.metabol.2023.155533
    [24]
    Petermann-Rocha F, Balntzi V, Gray SR, et al. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis[J]. J Cachexia Sarcopenia Muscle, 2022, 13(1): 86–99. doi: 10.1002/jcsm.12783
    [25]
    Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis[J]. Age Ageing, 2019, 48(1): 16–31. doi: 10.1093/ageing/afy169
    [26]
    Schmidt M, Schüler SC, Hüttner SS, et al. Adult stem cells at work: regenerating skeletal muscle[J]. Cell Mol Life Sci, 2019, 76(13): 2559–2570. doi: 10.1007/s00018-019-03093-6
    [27]
    Brack AS, Muñoz-Cánoves P. The ins and outs of muscle stem cell aging[J]. Skelet Muscle, 2015, 6: 1. doi: 10.1186/s13395-016-0072-z
    [28]
    Alway SE, Myers MJ, Mohamed JS. Regulation of satellite cell function in sarcopenia[J]. Front Aging Neurosci, 2014, 6: 246. https://pubmed.ncbi.nlm.nih.gov/25295003/
    [29]
    Yin J, Qian Z, Chen Y, et al. MicroRNA regulatory networks in the pathogenesis of sarcopenia[J]. J Cell Mol Med, 2020, 24(9): 4900–4912. doi: 10.1111/jcmm.15197
    [30]
    Tan KT, Ang SJ, Tsai SY. Sarcopenia: tilting the balance of protein homeostasis[J]. Proteomics, 2020, 20(5-6): 1800411 doi: 10.1002/pmic.201800411
    [31]
    Wiedmer P, Jung T, Castro JP, et al. Sarcopenia – Molecular mechanisms and open questions[J]. Ageing Res Rev, 2021, 65: 101200. doi: 10.1016/j.arr.2020.101200
    [32]
    Plotkin DL, Roberts MD, Haun CT, et al. Muscle fiber type transitions with exercise training: shifting perspectives[J]. Sports, 2021, 9(9): 127. doi: 10.3390/sports9090127
    [33]
    Miljkovic N, Lim JY, Miljkovic I, et al. Aging of skeletal muscle fibers[J]. Ann Rehabil Med, 2015, 39(2): 155–162. doi: 10.5535/arm.2015.39.2.155
    [34]
    Dowling P, Gargan S, Swandulla D, et al. Fiber-type shifting in sarcopenia of old age: proteomic profiling of the contractile apparatus of skeletal muscles[J]. Int J Mol Sci, 2023, 24(3): 2415. doi: 10.3390/ijms24032415
    [35]
    Larsson L, Degens H, Li M, et al. Sarcopenia: aging-related loss of muscle mass and function[J]. Physiol Rev, 2019, 99(1): 427–511. doi: 10.1152/physrev.00061.2017
    [36]
    Murphy MP. How mitochondria produce reactive oxygen species[J]. Biochem J, 2009, 417(1): 1–13. doi: 10.1042/BJ20081386
    [37]
    Li R, Jia Z, Trush MA. Defining ROS in biology and medicine[J]. React Oxyg Species (Apex), 2016, 1(1): .9–21. https://pubmed.ncbi.nlm.nih.gov/29707643/
    [38]
    Tirichen H, Yaigoub H, Xu W, et al. Mitochondrial reactive oxygen species and their contribution in chronic kidney disease progression through oxidative stress[J]. Front Physiol, 2021, 12. 627837.
    [39]
    Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release[J]. Physiol Rev, 2014, 94(3): 909–950. doi: 10.1152/physrev.00026.2013
    [40]
    Damiano S, Muscariello E, La Rosa G, et al. Dual role of reactive oxygen species in muscle function: can antioxidant dietary supplements counteract age-related sarcopenia?[J]. Int J Mol Sci, 2019, 20(15): 3815. doi: 10.3390/ijms20153815
    [41]
    Annesley SJ, Fisher PR. Mitochondria in health and disease[J]. Cells, 2019, 8(7): 680. doi: 10.3390/cells8070680
    [42]
    Meng SJ, Yu LJ. Oxidative stress, molecular inflammation and sarcopenia[J]. Int J Mol Sci, 2010, 11(4): 1509–1526. doi: 10.3390/ijms11041509
    [43]
    Aldahhan RA, Motawei KH, Al-Hariri MT. Lipotoxicity-related sarcopenia: a review[J]. J Med Life, 2022, 15(11): 1334–1339. doi: 10.25122/jml-2022-0157
    [44]
    del Consuelo Velázquez-Alva M, Irigoyen-Camacho ME, Lazarevich I, et al. Sarcopenia: biological bases[J]. Cir Cir, 2016, 84(Supl 1): 36–42.
    [45]
    Dalle S, Rossmeislova L, Koppo K. The role of inflammation in age-related sarcopenia[J]. Front Physiol, 2017, 8: 1045. doi: 10.3389/fphys.2017.01045
    [46]
    Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways[J]. Int J Biochem Cell Biol, 2005, 37(10): 1974–1984. doi: 10.1016/j.biocel.2005.04.018
    [47]
    Lang CH, Frost RA, Nairn AC, et al. TNF-α impairs heart and skeletal muscle protein synthesis by altering translation initiation[J]. Am J Physiol Endocrinol Metab, 2002, 282(2): E336–E347. doi: 10.1152/ajpendo.00366.2001
    [48]
    Tu Y, Chen C, Pan J, et al. The ubiquitin proteasome pathway (UPP) in the regulation of cell cycle control and DNA damage repair and its implication in tumorigenesis[J]. Int J Clin Exp Pathol, 2012, 5(8): 726–738. https://pubmed.ncbi.nlm.nih.gov/23071855/
    [49]
    Hirata Y, Nomura K, Senga Y, et al. Hyperglycemia induces skeletal muscle atrophy via a WWP1/KLF15 axis[J]. JCI Insight, 2019, 4(4): e124952. doi: 10.1172/jci.insight.124952
    [50]
    Chen H, Huang X, Dong M, et al. The association between sarcopenia and diabetes: from pathophysiology mechanism to therapeutic strategy[J]. Diabetes Metab Syndr Obes, 2023, 16: 1541–1554. doi: 10.2147/DMSO.S410834
    [51]
    Suva MA, Kheni DB, Sureja VP. Aflapin®: a novel and selective 5-lipoxygenase inhibitor for arthritis management[J]. Indian J Pain, 2018, 32(1): 16–23. doi: 10.4103/ijpn.ijpn_71_17
    [52]
    O’Reilly SC, Jones A, Muir KR, et al. Quadriceps weakness in knee osteoarthritis: the effect on pain and disability[J]. Ann Rheum Dis, 1998, 57(10): 588–594. doi: 10.1136/ard.57.10.588
    [53]
    Noehren B, Kosmac K, Walton RG, et al. Alterations in quadriceps muscle cellular and molecular properties in adults with moderate knee osteoarthritis[J]. Osteoarthritis Cartilage, 2018, 26(10): 1359–1368. doi: 10.1016/j.joca.2018.05.011
    [54]
    de Souza Silva JM, Alabarse PVG, de Oliveira Nunes Teixeira V, et al. Muscle wasting in osteoarthritis model induced by anterior cruciate ligament transection[J]. PLoS One, 2018, 13(4): e0196682. doi: 10.1371/journal.pone.0196682
    [55]
    Levinger P, Caldow MK, Feller JA, et al. Association between skeletal muscle inflammatory markers and walking pattern in people with knee osteoarthritis[J]. Arthritis Care Res (Hoboken), 2011, 63(12): 1715–1721. doi: 10.1002/acr.20625
    [56]
    Ghiasi MS, Chen J, Vaziri A, et al. Bone fracture healing in mechanobiological modeling: a review of principles and methods[J]. Bone Rep, 2017, 6: 87–100. doi: 10.1016/j.bonr.2017.03.002
    [57]
    Madsen OR, Lauridsen UB, Sørensen OH. Quadriceps strength in women with a previous hip fracture: relationships to physical ability and bone mass[J]. Scand J Rehabil Med, 2000, 32(1): 37–40. doi: 10.1080/003655000750045721
    [58]
    Macdonald JH, Evans SF, Davies HL, et al. Matched-cohort study of body composition, physical function, and quality of life in men with idiopathic vertebral fracture[J]. Arthritis Care Res (Hoboken), 2012, 64(1): 92–100. doi: 10.1002/acr.20580
    [59]
    Kubota M, Uchida K, Kokubo Y, et al. Postoperative gait analysis and hip muscle strength in patients with pelvic ring fracture[J]. Gait Posture, 2013, 38(3): 385–390. doi: 10.1016/j.gaitpost.2012.12.016
    [60]
    Szulc P. Impact of bone fracture on muscle strength and physical performance—narrative review[J]. Curr Osteoporos Rep, 2020, 18(6): 633–645. doi: 10.1007/s11914-020-00623-1
    [61]
    Shrestha A, Dani M, Kemp P, et al. Acute sarcopenia after elective and emergency surgery[J]. Aging Dis, 2022, 13(6): 1759–1769. doi: 10.14336/AD.2022.0404
    [62]
    Walsh M, Woodhouse LJ, Thomas SG, et al. Physical impairments and functional limitations: a comparison of individuals 1 year after total knee arthroplasty with control subjects[J]. Phys Ther, 1998, 78(3): 248–258. doi: 10.1093/ptj/78.3.248
    [63]
    Pandor I, Patil P, Wadkar V, et al. Benefits of essential amino acid supplementation in patients following total knee arthroplasty[J]. Int J Ortho Sci, 2023, 9(2): 292–296. doi: 10.22271/ortho.2023.v9.i2d.3382
    [64]
    Ueyama H, Kanemoto N, Minoda Y, et al. 2020 Chitranjan S. Ranawat award: perioperative essential amino acid supplementation suppresses rectus femoris muscle atrophy and accelerates early functional recovery following total knee arthroplasty[J]. Bone Joint J, 2020, 102-B(6 Supple A): 10–18.
    [65]
    Bloch SAA, Lee JY, Wort SJ, et al. Sustained elevation of circulating growth and differentiation factor-15 and a dynamic imbalance in mediators of muscle homeostasis are associated with the development of acute muscle wasting following cardiac surgery[J]. Crit Care Med, 2013, 41(4): 982–989. doi: 10.1097/CCM.0b013e318274671b
    [66]
    Valenzuela T. Efficacy of progressive resistance training interventions in older adults in nursing homes: a systematic review[J]. J Am Med Dir Assoc, 2012, 13(5): 418–428. doi: 10.1016/j.jamda.2011.11.001
    [67]
    Neelemaat F, Bosmans JE, Thijs A, et al. Post-discharge nutritional support in malnourished elderly individuals improves functional limitations[J]. J Am Med Dir Assoc, 2011, 12(4): 295–301. doi: 10.1016/j.jamda.2010.12.005
    [68]
    Park S, Church DD, Azhar G, et al. Anabolic response to essential amino acid plus whey protein composition is greater than whey protein alone in young healthy adults[J]. J Int Soc Sports Nutr, 2020, 17(1): 9. doi: 10.1186/s12970-020-0340-5
    [69]
    Solerte SB, Gazzaruso C, Bonacasa R, et al. Nutritional supplements with oral amino acid mixtures increases whole-body lean mass and insulin sensitivity in elderly subjects with sarcopenia[J]. Am J Cardiol, 2008, 101(11A): 69E–77E. doi: 10.1016/j.amjcard.2008.03.004
    [70]
    Rondanelli M, Opizzi A, Antoniello N, et al. Effect of essential amino acid supplementation on quality of life, amino acid profile and strength in institutionalized elderly patients[J]. Clin Nutr, 2011, 30(5): 571–577. doi: 10.1016/j.clnu.2011.04.005
    [71]
    Howatson G, van Someren KA. The prevention and treatment of exercise-induced muscle damage[J]. Sports Med, 2008, 38(6): 483–503. doi: 10.2165/00007256-200838060-00004
    [72]
    Remelli F, Vitali A, Zurlo A, et al. Vitamin D deficiency and sarcopenia in older persons[J]. Nutrients, 2019, 11(12): 2861. doi: 10.3390/nu11122861
    [73]
    Yang A, Lv Q, Chen F, et al. The effect of vitamin D on sarcopenia depends on the level of physical activity in older adults[J]. J Cachexia Sarcopenia Muscle, 2020, 11(3): 678–689. doi: 10.1002/jcsm.12545
    [74]
    Pedroso JAB, Zampieri TT, Donato Jr J. Reviewing the effects of l-leucine supplementation in the regulation of food intake, energy balance, and glucose homeostasis[J]. Nutrients, 2015, 7(5): 3914–3937. doi: 10.3390/nu7053914
    [75]
    Zhang P, Liang X, Shan T, et al. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration[J]. Biochem Biophys Res Commun, 2015, 463(1-2): 102–108. doi: 10.1016/j.bbrc.2015.05.032
    [76]
    Kim HK, Suzuki T, Saito K, et al. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: a randomized controlled trial[J]. J Am Geriatr Soc, 2012, 60(1): 16–23. doi: 10.1111/j.1532-5415.2011.03776.x
    [77]
    Jin CL, Ye JL, Yang J, et al. mTORC1 mediates lysine-induced satellite cell activation to promote skeletal muscle growth[J]. Cells, 2019, 8(12): 1549. doi: 10.3390/cells8121549
    [78]
    Bologna C, Pone E. Clinical study on the efficacy and safety of arginine administered orally in association with other active ingredients for the prevention and treatment of sarcopenia in patients with COVID-19-related pneumonia, hospitalized in a sub-intensive care unit[J]. Healthcare, 2022, 10(1): 162. doi: 10.3390/healthcare10010162
    [79]
    Martínez Y, Li X, Liu G, et al. The role of methionine on metabolism, oxidative stress, and diseases[J]. Amino Acids, 2017, 49(12): 2091–2098. doi: 10.1007/s00726-017-2494-2
    [80]
    Lu M, Zhou L, Stanley WC, et al. Role of the malate–aspartate shuttle on the metabolic response to myocardial ischemia[J]. J Theor Biol, 2008, 254(2): 466–475. doi: 10.1016/j.jtbi.2008.05.033
    [81]
    Amjad S, Nisar S, Bhat AA, et al. Role of NAD+ in regulating cellular and metabolic signaling pathways[J]. Mol Metab, 2021, 49: 101195. doi: 10.1016/j.molmet.2021.101195
    [82]
    Campos-Ferraz PL, Bozza T, Nicastro H, et al. Distinct effects of leucine or a mixture of the branched-chain amino acids (leucine, isoleucine, and valine) supplementation on resistance to fatigue, and muscle and liver-glycogen degradation, in trained rats[J]. Nutrition, 2013, 29(11-12): 1388–1394. doi: 10.1016/j.nut.2013.05.003
    [83]
    Toyoshima K, Nakamura M, Adachi Y, et al. Increased plasma proline concentrations are associated with sarcopenia in the elderly[J]. PLoS One, 2017, 12(9): e0185206. doi: 10.1371/journal.pone.0185206
    [84]
    Brosnan ME, Brosnan JT. Histidine metabolism and function[J]. J Nutr, 2020, 150(S1): 2570S–2575S. https://www.sciencedirect.com/science/article/pii/S002231662202421X?via%3Dihub
    [85]
    Dukes A, Davis C, El Refaey M, et al. The aromatic amino acid tryptophan stimulates skeletal muscle IGF1/p70s6k/mTor signaling in vivo and the expression of myogenic genes in vitro[J]. Nutrition, 2015, 31(7-8): 1018–1024. doi: 10.1016/j.nut.2015.02.011
    [86]
    Tang Q, Tan P, Ma N, et al. Physiological functions of threonine in animals: beyond nutrition metabolism[J]. Nutrients, 2021, 13(8): 2592. doi: 10.3390/nu13082592
    [87]
    Guo C, Zhang X, Xie S, et al. Dietary phenylalanine level could improve growth performance, glucose metabolism and insulin and mTOR signaling pathways of juvenile swimming crabs, Portunus trituberculatus[J]. Aquac Rep, 2022, 27: 101395. doi: 10.1016/j.aqrep.2022.101395
    [88]
    Muyskens JB, Foote DM, Bigot NJ, et al. Cellular and morphological changes with EAA supplementation before and after total knee arthroplasty[J]. J Appl Physiol, 2019, 127(2): 531–545. doi: 10.1152/japplphysiol.00869.2018
    [89]
    Yoon MS. mTOR as a key regulator in maintaining skeletal muscle mass[J]. Front Physiol, 2017, 8: 788. doi: 10.3389/fphys.2017.00788
    [90]
    Esteban I, Aguado C, Sánchez M, et al. Regulation of various proteolytic pathways by insulin and amino acids in human fibroblasts[J]. FEBS Lett, 2007, 581(18): 3415–3421. doi: 10.1016/j.febslet.2007.06.043
    [91]
    Takahara T, Amemiya Y, Sugiyama R, et al. Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes[J]. J Biomed Sci, 2020, 27(1): 87. doi: 10.1186/s12929-020-00679-2
    [92]
    McCarthy JJ, Esser KA. Anabolic and catabolic pathways regulating skeletal muscle mass[J]. Curr Opin Clin Nutr Metab Care, 2010, 13(3): 230–235. doi: 10.1097/MCO.0b013e32833781b5
    [93]
    Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy[J]. Cells, 2020, 9(9): 1970. doi: 10.3390/cells9091970
    [94]
    Tang JE, Phillips SM. Maximizing muscle protein anabolism: the role of protein quality[J]. Curr Opin Clin Nutr Metab Care, 2009, 12(1): 66–71. doi: 10.1097/MCO.0b013e32831cef75
    [95]
    Glynn EL, Fry CS, Drummond MJ, et al. Muscle protein breakdown has a minor role in the protein anabolic response to essential amino acid and carbohydrate intake following resistance exercise[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 299(2): R533–R540. doi: 10.1152/ajpregu.00077.2010
    [96]
    Argilés JM, Campos N, Lopez-Pedrosa JM, et al. Skeletal muscle regulates metabolism via interorgan crosstalk: roles in health and disease[J]. J Am Med Dir Assoc, 2016, 17(9): 789–796. doi: 10.1016/j.jamda.2016.04.019
    [97]
    Dash P, Ghosh G. Amino acid composition, antioxidant and functional properties of protein hydrolysates from Cucurbitaceae seeds[J]. J Food Sci Technol, 2017, 54(13): 4162–4172. doi: 10.1007/s13197-017-2855-6
    [98]
    Liu W, Chen X, Li H, et al. Anti-inflammatory function of plant-derived bioactive peptides: a review[J]. Foods, 2022, 11(15): 2361. doi: 10.3390/foods11152361
    [99]
    Ueyama H, Kanemoto N, Minoda Y, et al. Perioperative essential amino acid supplementation facilitates quadriceps muscle strength and volume recovery after TKA: a double-blinded randomized controlled trial[J]. J Bone Joint Surg Am, 2023, 105(5): 345–353. doi: 10.2106/JBJS.22.00675
    [100]
    Børsheim E, Bui QUT, Tissier S, et al. Effect of amino acid supplementation on muscle mass, strength and physical function in elderly[J]. Clin Nutr, 2008, 27(2): 189–195. doi: 10.1016/j.clnu.2008.01.001
    [101]
    Rondanelli M, Guido D, Faliva MA, et al. Effects of essential amino acid supplementation on pain in the elderly with hip fractures: a pilot, double-blind, placebo-controlled, randomised clinical trial[J]. J Biol Regul Homeost Agents, 2020, 34(2): 721–731. https://pubmed.ncbi.nlm.nih.gov/32462856/
    [102]
    Li ML, Zhang F, Luo HY, et al. Improving sarcopenia in older adults: a systematic review and meta-analysis of randomized controlled trials of whey protein supplementation with or without resistance training[J]. J Nutr Health Aging, 2024, 28(4): 100184. doi: 10.1016/j.jnha.2024.100184
    [103]
    Paddon-Jones D, Sheffield-Moore M, Katsanos CS, et al. Differential stimulation of muscle protein synthesis in elderly humans following isocaloric ingestion of amino acids or whey protein[J]. Exp Gerontol, 2006, 41(2): 215–219. doi: 10.1016/j.exger.2005.10.006
  • Related Articles

    [1]Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387
    [2]Fangyuan Li, Yaohui Wang, Xiaochun Ping, Jiani C. Yin, Fufeng Wang, Xian Zhang, Xiang Li, Jing Zhai, Lizong Shen. Molecular evolution of intestinal-type early gastric cancer according to Correa cascade[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240118
    [3]Adittya Arefin, Tanzila Ismail Ema, Tamnia Islam, Md. Saddam Hossen, Tariqul Islam, Salauddin Al Azad, Md. Nasir Uddin Badal, Md. Aminul Islam, Partha Biswas, Nafee Ul Alam, Enayetul Islam, Maliha Anjum, Afsana Masud, Md. Shaikh Kamran, Ahsab Rahman, Parag Kumar Paul. Target specificity of selective bioactive compounds in blocking α-dystroglycan receptor to suppress Lassa virus infection: an in silico approach[J]. The Journal of Biomedical Research, 2021, 35(6): 459-473. DOI: 10.7555/JBR.35.20210111
    [4]Hae Rim Lee, Bon-Sang Koo, Eun-Ok Jeon, Moo-Sung Han, Kyung-Cheol Min, Seung Baek Lee, Yeonji Bae, In-Pil Mo. Pathology and molecular characterization of recent Leucocytozoon caulleryi cases in layer flocks[J]. The Journal of Biomedical Research, 2016, 30(6): 517-524. DOI: 10.7555/JBR.30.2016K0017
    [5]Salam Pradeep Singh, Chitta Ranjan Deb, Sharif Udin Ahmed, Yenisetti Saratchandra, Bolin Kumar Konwar. Molecular docking simulation analysis of the interaction of dietary flavonols with heat shock protein 90[J]. The Journal of Biomedical Research, 2016, 30(1): 67-74. DOI: 10.7555/JBR.30.20130158
    [6]Sahitya K Denduluri, Zhongliang Wang, Zhengjian Yan, Jing Wang, Qiang Wei, Maryam K Mohammed, Rex C Haydon, Hue H Luu, Tong-Chuan He. Molecular pathogenesis and therapeutic strategies of human osteosarcoma[J]. The Journal of Biomedical Research, 2016, 30(1): 5-18. DOI: 10.7555/JBR.30.20150075
    [7]Talambedu Usha, Sushil Kumar Middha, Arvind Kumar Goyal, Mahesh Karthik, DA Manoj, Syed Faizan, Peyush Goyal, HP Prashanth, Veena Pande. Molecular docking studies of anti-cancerous candidates in Hippophae rhamnoides and Hippophae salicifolia[J]. The Journal of Biomedical Research, 2014, 28(5): 406-415. DOI: 10.7555/JBR.28.20130110
    [8]Meilin Wang, Haiyan Chu, Zhengdong Zhang, Qingyi Wei. Molecular epidemiology of DNA repair gene polymorphisms and head and neck cancer[J]. The Journal of Biomedical Research, 2013, 27(3): 179-192. DOI: 10.7555/JBR.27.20130034
    [9]Daniel G Rosen, Zhihong Zhang, Weiwei Shan, Jinsong Liu. Morphological and molecular basis of ovarian serous carcinoma[J]. The Journal of Biomedical Research, 2010, 24(4): 257-263. DOI: 10.1016/S1674-8301(10)60036-X
    [10]Aarti Ruparelia, Frances Wiseman, Olivia Sheppard, Victor L.J. Tybulewicz, Elizabeth M.C. Fisher. Down syndrome and the molecular pathogenesis resulting from trisomy of human chromosome 21[J]. The Journal of Biomedical Research, 2010, 24(2): 87-99.
  • Cited by

    Periodical cited type(3)

    1. Singh S, Malhotra AG, Jha M, et al. Implications of protein conformations to modifying novel inhibitor Oseltamivir for 2009 H1N1 influenza A virus by simulation and docking studies. Virusdisease, 2018, 29(4): 461-467. DOI:10.1007/s13337-018-0480-2
    2. Nasution MAF, Toepak EP, Alkaff AH, et al. Flexible docking-based molecular dynamics simulation of natural product compounds and Ebola virus Nucleocapsid (EBOV NP): a computational approach to discover new drug for combating Ebola. BMC Bioinformatics, 2018, 19(Suppl 14): 419. DOI:10.1186/s12859-018-2387-8
    3. Tambunan US, Zahroh H, Parikesit AA, et al. Screening Analogs of β-OG Pocket Binder as Fusion Inhibitor of Dengue Virus 2. Drug Target Insights, 2015, 9: 33-49. DOI:10.4137/DTI.S31566

    Other cited types(0)

Catalog

    Figures(4)

    Article Metrics

    Article views (265) PDF downloads (109) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return