Citation: | Dandan Zheng, Xiya Zhang, Jia Xu, Shuwen Chen, Bin Wang, Xiaoqin Yuan. LncRNA LINC01503 promotes angiogenesis in colorectal cancer by regulating VEGFA expression via miR-342-3p and HSP60 binding[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240190 |
Unproofed Manuscript: The manuscript has been professionally copyedited and typeset to confirm the JBR’s formatting, but still needs proofreading by the corresponding author to ensure accuracy and correct any potential errors introduced during the editing process. It will be replaced by the online publication version.
Colorectal cancer (CRC) ranks among the top five most common malignant tumors worldwide and has a high mortality rate. Angiogenesis plays an important role in CRC progression; however, anti-angiogenesis therapy still has many limitations. Long non-coding RNAs (lncRNAs) participate in tumor progression by regulating vascular endothelial growth factor expression in metastatic CRC. Thus, targeting specific lncRNA may provide some new hope for anti-angiogenic strategies. Through analyzing data both from both clinical samples and The Cancer Genome Atlas database, we found that the lncRNA LINC01503 was specifically upregulated in CRC tissues, and was associated with tumor progression and a poor overall survival. We also demonstrated that LINC01503 enhanced the capacity of tube formation and migration of vascular endothelial cells, thus promoting CRC tumorigenesis by upregulating vascular endothelial growth factor A (VEGFA) expression in CRC cells. Mechanistically, LINC01503 promoted the expression of VEGFA by simultaneously regulating the stability of both the mRNA and VEGFA by binding to miR-342-3p and the chaperone HSP60. The upregulation of LINC01503 in CRC cells was attributed to the CREB-binding protein CBP/p300-mediated H3K27 acetylation of the LINC01503 promoter region. Taken together, our findings clarify the mechanism by which LINC01503 may promote CRC angiogenesis, implicating that LINC01503 may serve as a potential prognostic biomarker and therapeutic target for CRC.
None.
CLC number: R735.3, Document code: A
The authors reported no conflict of interests.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209–249. doi: 10.3322/caac.21660
|
[2] |
Advani S, Kopetz S. Ongoing and future directions in the management of metastatic colorectal cancer: update on clinical trials[J]. J Surg Oncol, 2019, 119(5): 642–652. doi: 10.1002/jso.25441
|
[3] |
Siegel RL, Miller KD, Fuchs HE, et al. Cancer statistics, 2022[J]. CA Cancer J Clin, 2022, 72(1): 7–33. doi: 10.3322/caac.21708
|
[4] |
Paget S. The distribution of secondary growths in cancer of the breast. 1889[J]. Cancer Metastasis Rev, 1989, 8(2): 98–101. https://pubmed.ncbi.nlm.nih.gov/2673568/
|
[5] |
De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis[J]. Nat Rev Cancer, 2017, 17(8): 457–474. doi: 10.1038/nrc.2017.51
|
[6] |
Ronca R, Benkheil M, Mitola S, et al. Tumor angiogenesis revisited: regulators and clinical implications[J]. Med Res Rev, 2017, 37(6): 1231–1274. doi: 10.1002/med.21452
|
[7] |
Murphy MP, Koepke LS, Lopez MT, et al. Articular cartilage regeneration by activated skeletal stem cells[J]. Nat Med, 2020, 26(10): 1583–1592. doi: 10.1038/s41591-020-1013-2
|
[8] |
Schito L, Rey S. Hypoxia: turning vessels into vassals of cancer immunotolerance[J]. Cancer Lett, 2020, 487: 74–84. doi: 10.1016/j.canlet.2020.05.015
|
[9] |
Zhang Y, Sun J, Qi Y, et al. Long non-coding RNA TPT1-AS1 promotes angiogenesis and metastasis of colorectal cancer through TPT1-AS1/NF90/VEGFA signaling pathway[J]. Aging (Albany NY), 2020, 12(7): 6191–6205. https://pubmed.ncbi.nlm.nih.gov/32248186/
|
[10] |
Choi YI, Lee SH, Ahn BK, et al. Intestinal perforation in colorectal cancers treated with bevacizumab (Avastin ®)[J]. Cancer Res Treat, 2008, 40(1): 33–35. doi: 10.4143/crt.2008.40.1.33
|
[11] |
Chen C, He W, Huang J, et al. LNMAT1 promotes lymphatic metastasis of bladder cancer via CCL2 dependent macrophage recruitment[J]. Nat Commun, 2018, 9(1): 3826. doi: 10.1038/s41467-018-06152-x
|
[12] |
Kopp F, Mendell JT. Functional classification and experimental dissection of long noncoding RNAs[J]. Cell, 2018, 172(3): 393–407. doi: 10.1016/j.cell.2018.01.011
|
[13] |
Herman AB, Tsitsipatis D, Gorospe M. Integrated lncRNA function upon genomic and epigenomic regulation[J]. Mol Cell, 2022, 82(12): 2252–2266. doi: 10.1016/j.molcel.2022.05.027
|
[14] |
Wang X, Cheng H, Zhao J, et al. Long noncoding RNA DLGAP1-AS2 promotes tumorigenesis and metastasis by regulating the Trim21/ELOA/LHPP axis in colorectal cancer[J]. Mol Cancer, 2022, 21(1): 210. doi: 10.1186/s12943-022-01675-w
|
[15] |
Rizk NI, Kassem DH, Abulsoud AI, et al. Revealing the role of serum exosomal novel long non-coding RNA NAMPT-AS as a promising diagnostic/prognostic biomarker in colorectal cancer patients[J]. Life Sci, 2024, 352: 122850. doi: 10.1016/j.lfs.2024.122850
|
[16] |
Eldash S, Sanad EF, Nada D, et al. The intergenic type LncRNA (LINC RNA) faces in cancer with in silico scope and a directed lens to LINC00511: a step toward ncRNA precision[J]. Noncoding RNA, 2023, 9(5): 58. https://pubmed.ncbi.nlm.nih.gov/37888204/
|
[17] |
Pichler M, Rodriguez-Aguayo C, Nam SY, et al. Therapeutic potential of FLANC, a novel primate-specific long non-coding RNA in colorectal cancer[J]. Gut, 2020, 69(10): 1818–1831. doi: 10.1136/gutjnl-2019-318903
|
[18] |
Wu H, Wei M, Jiang X, et al. lncRNA PVT1 promotes tumorigenesis of colorectal cancer by stabilizing miR-16–5p and interacting with the VEGFA/VEGFR1/AKT axis[J]. Mol Ther Nucleic Acids, 2020, 20: 438–450. doi: 10.1016/j.omtn.2020.03.006
|
[19] |
Xie J, Jiang Y, Jiang Y, et al. Super-enhancer-driven long non-coding RNA LINC01503, regulated by TP63, is over-expressed and oncogenic in squamous cell carcinoma[J]. Gastroenterology, 2018, 154(8): 2137–2151. e1.
|
[20] |
Zheng D, Cao M, Zuo S, et al. RANBP1 promotes colorectal cancer progression by regulating pre-miRNA nuclear export via a positive feedback loop with YAP[J]. Oncogene, 2022, 41(7): 930–942. doi: 10.1038/s41388-021-02036-5
|
[21] |
Budczies J, Klauschen F, Sinn BV, et al. Cutoff finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization[J]. PLoS One, 2012, 7(12): e51862. doi: 10.1371/journal.pone.0051862
|
[22] |
Detre S, Saclani Jotti G, Dowsett M. A "quickscore" method for immunohistochemical semiquantitation: validation for oestrogen receptor in breast carcinomas[J]. J Clin Pathol, 1995, 48(9): 876–878. doi: 10.1136/jcp.48.9.876
|
[23] |
Weidner N, Folkman J, Pozza F, et al. Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma[J]. J Natl Cancer Inst, 1992, 84(24): 1875–1887. doi: 10.1093/jnci/84.24.1875
|
[24] |
The Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer[J]. Nature, 2012, 487(7407): 330–337. doi: 10.1038/nature11252
|
[25] |
Zhou Q, Hou Z, Zuo S, et al. LUCAT1 promotes colorectal cancer tumorigenesis by targeting the ribosomal protein L40-MDM2-p53 pathway through binding with UBA52[J]. Cancer Sci, 2019, 110(4): 1194–1207. doi: 10.1111/cas.13951
|
[26] |
Yao Z, Yang Y, Sun M, et al. New insights into the interplay between long non-coding RNAs and RNA-binding proteins in cancer[J]. Cancer Commun (Lond), 2022, 42(2): 117–140. doi: 10.1002/cac2.12254
|
[27] |
Huang Y, Yeh CT. Functional compartmentalization of HSP60-survivin interaction between mitochondria and cytosol in cancer cells[J]. Cells, 2019, 9(1): 23. doi: 10.3390/cells9010023
|
[28] |
Jung G, Hernández-Illán E, Moreira L, et al. Epigenetics of colorectal cancer: biomarker and therapeutic potential[J]. Nat Rev Gastroenterol Hepatol, 2020, 17(2): 111–130. doi: 10.1038/s41575-019-0230-y
|
[29] |
Raisner R, Kharbanda S, Jin L, et al. Enhancer activity requires CBP/P300 bromodomain-dependent histone H3K27 acetylation[J]. Cell Rep, 2018, 24(7): 1722–1729. doi: 10.1016/j.celrep.2018.07.041
|
[30] |
Viallard C, Larrivée B. Tumor angiogenesis and vascular normalization: alternative therapeutic targets[J]. Angiogenesis, 2017, 20(4): 409–426. doi: 10.1007/s10456-017-9562-9
|
[31] |
Liu Y, Li Q, Tang D, et al. SNHG17 promotes the proliferation and migration of colorectal adenocarcinoma cells by modulating CXCL12-mediated angiogenesis[J]. Cancer Cell Int, 2020, 20(1): 566. doi: 10.1186/s12935-020-01621-0
|
[32] |
Hou P, Lin T, Meng S, et al. Long noncoding RNA SH3PXD2A-AS1 promotes colorectal cancer progression by regulating p53-mediated gene transcription[J]. Int J Biol Sci, 2021, 17(8): 1979–1994. doi: 10.7150/ijbs.58422
|
[33] |
Chen X, Zeng K, Xu M, et al. SP1-induced lncRNA-ZFAS1 contributes to colorectal cancer progression via the miR-150–5p/VEGFA axis[J]. Cell Death Dis, 2018, 9(10): 982. doi: 10.1038/s41419-018-0962-6
|
[34] |
Wu J, Liu T, Rios Z, et al. Heat shock proteins and cancer[J]. Trends Pharmacol Sci, 2017, 38(3): 226–256. doi: 10.1016/j.tips.2016.11.009
|
[35] |
Schopf FH, Biebl MM, Buchner J. The HSP90 chaperone machinery[J]. Nat Rev Mol Cell Biol, 2017, 18(6): 345–360. doi: 10.1038/nrm.2017.20
|
[36] |
Forouzanfar F, Barreto G, Majeed M, et al. Modulatory effects of curcumin on heat shock proteins in cancer: a promising therapeutic approach[J]. Biofactors, 2019, 45(5): 631–640. doi: 10.1002/biof.1522
|
[37] |
El-Sheikh NM, Abulsoud AI, Fawzy A, et al. LncRNA NNT-AS1/hsa-miR-485–5p/HSP90 axis in-silico and clinical prospect correlated-to histologic grades-based CRC stratification: a step toward ncRNA Precision[J]. Pathol Res Pract, 2023, 247: 154570. doi: 10.1016/j.prp.2023.154570
|
[38] |
Azoitei N, Diepold K, Brunner C, et al. HSP90 supports tumor growth and angiogenesis through PRKD2 protein stabilization[J]. Cancer Res, 2014, 74(23): 7125–7136. doi: 10.1158/0008-5472.CAN-14-1017
|
[39] |
Klemke L, De Oliveira T, Witt D, et al. Hsp90-stabilized MIF supports tumor progression via macrophage recruitment and angiogenesis in colorectal cancer[J]. Cell Death Dis, 2021, 12(2): 155. doi: 10.1038/s41419-021-03426-z
|
[40] |
Li Y, Chen X, Li W, et al. Combination of anti-EGFR and Anti-VEGF drugs for the treatment of previously treated metastatic colorectal cancer: a case report and literature review[J]. Front Oncol, 2021, 11: 684309. doi: 10.3389/fonc.2021.684309
|
[41] |
Grassi E, Corbelli J, Papiani G, et al. Current therapeutic strategies in BRAF-mutant metastatic colorectal cancer[J]. Front Oncol, 2021, 11: 601722. doi: 10.3389/fonc.2021.601722
|
[42] |
Itatani Y, Kawada K, Yamamoto T, et al. Resistance to anti-angiogenic therapy in cancer-alterations to anti-VEGF pathway[J]. Int J Mol Sci, 2018, 19(4): 1232. doi: 10.3390/ijms19041232
|
[43] |
Zhang B, Day DS, Ho JW, et al. A dynamic H3K27ac signature identifies VEGFA-stimulated endothelial enhancers and requires EP300 activity[J]. Genome Res, 2013, 23(6): 917–927. doi: 10.1101/gr.149674.112
|
[44] |
El-Derany MO, Hamdy NM, Al-Ansari NL, et al. Integrative role of vitamin D related and Interleukin-28B genes polymorphism in predicting treatment outcomes of Chronic Hepatitis C[J]. BMC Gastroenterol, 2016, 16: 19. doi: 10.1186/s12876-016-0440-5
|
[45] |
Zuo S, Wu L, Wang Y, et al. Long non-coding RNA MEG3 activated by vitamin D suppresses glycolysis in colorectal cancer via promoting c-myc degradation[J]. Front Oncol, 2020, 10: 274. doi: 10.3389/fonc.2020.00274
|
[1] | Gege Yuan, Jiachen Wang, Shuangshuang Qiu, Yunfei Zhu, Qing Cheng, Laihua Li, Jiahao Sha, Xiaoyu Yang, Yan Yuan. Title: Improving in vitro induction efficiency of human primordial germ cell-like cells using N2B27 or NAC-based medium[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240433 |
[2] | Tiwari-Heckler Shilpa, Jiang Z. Gordon, Popov Yury, J. Mukamal Kenneth. Daily high-dose aspirin does not lower APRI in the Aspirin-Myocardial Infarction Study[J]. The Journal of Biomedical Research, 2020, 34(2): 139-142. DOI: 10.7555/JBR.33.20190041 |
[3] | Tao Chun'ai, Gan Yongxin, Su Weidong, Li Zhutian, Tang Xiaolan. Effectiveness of hospital disinfection and experience learnt from 11 years of surveillance[J]. The Journal of Biomedical Research, 2019, 33(6): 408-413. DOI: 10.7555/JBR.33.20180118 |
[4] | Huan Liu, Shijiang Zhang, Yongfeng Shao, Xiaohu Lu, Weidong Gu, Buqing Ni, Qun Gu, Junjie Du. Biomechanical characterization of a novel ring connector for sutureless aortic anastomosis[J]. The Journal of Biomedical Research, 2018, 32(6): 454-460. DOI: 10.7555/JBR.31.20170011 |
[5] | Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023 |
[6] | Kaibo Lin, Shikun Zhang, Jieli Chen, Ding Yang, Mengyi Zhu, Eugene Yujun Xu. Generation and functional characterization of a conditional Pumilio2 null allele[J]. The Journal of Biomedical Research, 2018, 32(6): 434-441. DOI: 10.7555/JBR.32.20170117 |
[7] | Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065 |
[8] | Fengzhen Wang, Mingwan Zhang, Dongsheng Zhang, Yuan Huang, Li Chen, Sunmin Jiang, Kun Shi, Rui Li. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery[J]. The Journal of Biomedical Research, 2018, 32(6): 411-423. DOI: 10.7555/JBR.32.20160170 |
[9] | Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045 |
[10] | Zhi Lin, Liang Chen, Jun Wang, Jianwei Qin, Quan Zhu, Bin Zhang, Yijiang Chen. A single institution experience using the LigaSure vessel sealing system in video-assisted thoracoscopic surgery for primary spontaneous pneumothorax[J]. The Journal of Biomedical Research, 2014, 28(6): 494-497. DOI: 10.7555/JBR.28.20130098 |