[1] |
Legård GE, Pedersen BK. Muscle as an endocrine organ[M]//Zoladz JA. Muscle and Exercise Physiology. London: Academic Press, 2019: 285–307.
|
[2] |
Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis[J]. Nature, 2012, 481(7382): 463–468. doi: 10.1038/nature10777
|
[3] |
Wu J, Boström P, Sparks LM, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human[J]. Cell, 2012, 150(2): 366–376. doi: 10.1016/j.cell.2012.05.016
|
[4] |
Wrann CD, White JP, Salogiannnis J, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway[J]. Cell Metab, 2013, 18(5): 649–659. doi: 10.1016/j.cmet.2013.09.008
|
[5] |
Wrann CD. FNDC5/Irisin - their role in the nervous system and as a mediator for beneficial effects of exercise on the brain[J]. Brain Plast, 2015, 1(1): 55–61. doi: 10.3233/BPL-150019
|
[6] |
|
[7] |
Zhang R, Lahens NF, Ballance HI, et al. A circadian gene expression atlas in mammals: implications for biology and medicine[J]. Proc Natl Acad Sci U S A, 2014, 111(45): 16219–16224. doi: 10.1073/pnas.1408886111
|
[8] |
Mure LS, Le HD, Benegiamo G, et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues[J]. Science, 2018, 359(6381): eaao0318. doi: 10.1126/science.aao0318
|
[9] |
Aton SJ, Herzog ED. Come together, right..now: synchronization of rhythms in a mammalian circadian clock[J]. Neuron, 2005, 48(4): 531–534. doi: 10.1016/j.neuron.2005.11.001
|
[10] |
Eastman CI, Suh C, Tomaka VA, et al. Circadian rhythm phase shifts and endogenous free-running circadian period differ between African-Americans and European-Americans[J]. Sci Rep, 2015, 5: 8381. doi: 10.1038/srep08381
|
[11] |
Tahara Y, Aoyama S, Shibata S. The mammalian circadian clock and its entrainment by stress and exercise[J]. J Physiol Sci, 2017, 67(1): 1–10. doi: 10.1007/s12576-016-0450-7
|
[12] |
Liu C, Li S, Liu T, et al. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism[J]. Nature, 2007, 447(7143): 477–481. doi: 10.1038/nature05767
|
[13] |
|
[14] |
Harfmann BD, Schroder EA, Esser KA. Circadian rhythms, the molecular clock, and skeletal muscle[J]. J Biol Rhythms, 2015, 30(2): 84–94. doi: 10.1177/0748730414561638
|
[15] |
Tahara Y, Shibata S. Entrainment of the mouse circadian clock: effects of stress, exercise, and nutrition[J]. Free Radic Biol Med, 2018, 119: 129–138. doi: 10.1016/j.freeradbiomed.2017.12.026
|
[16] |
Miyazaki M, Schroder E, Edelmann SE, et al. Age-associated disruption of molecular clock expression in skeletal muscle of the spontaneously hypertensive rat[J]. PLoS One, 2011, 6(11): e27168. doi: 10.1371/journal.pone.0027168
|
[17] |
Higashida K, Kim SH, Jung SR, et al. Effects of resveratrol and SIRT1 on PGC-1α activity and mitochondrial biogenesis: a reevaluation[J]. PLoS Biol, 2013, 11(7): e1001603. doi: 10.1371/journal.pbio.1001603
|
[18] |
Puigserver P, Wu Z, Park CW, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis[J]. Cell, 1998, 92(6): 829–839. doi: 10.1016/S0092-8674(00)81410-5
|
[19] |
|
[20] |
Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD +-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control[J]. Cell, 2008, 134(2): 329–340. doi: 10.1016/j.cell.2008.07.002
|
[21] |
Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging[J]. Cell, 2013, 153(7): 1448–1460. doi: 10.1016/j.cell.2013.05.027
|
[22] |
Ashton A, Foster RG, Jagannath A. Photic entrainment of the circadian system[J]. Int J Mol Sci, 2022, 23(2): 729. doi: 10.3390/ijms23020729
|
[23] |
Hannibal J. Comparative neurology of circadian photoreception: the retinohypothalamic tract (RHT) in sighted and naturally blind mammals[J]. Front Neurosci, 2021, 15: 640113. doi: 10.3389/fnins.2021.640113
|
[24] |
Michel S, Colwell CS. Cellular communication and coupling within the suprachiasmatic nucleus[J]. Chronobiol Int, 2001, 18(4): 579–600. doi: 10.1081/CBI-100106074
|
[25] |
Grone BP, Chang D, Bourgin P, et al. Acute light exposure suppresses circadian rhythms in clock gene expression[J]. J Biol Rhythms, 2011, 26(1): 78–81. doi: 10.1177/0748730410388404
|
[26] |
Mendoza JY, Dardente H, Escobar C, et al. Dark pulse resetting of the suprachiasmatic clock in Syrian hamsters: behavioral phase-shifts and clock gene expression[J]. Neuroscience, 2004, 127(2): 529–537. doi: 10.1016/j.neuroscience.2004.05.026
|
[27] |
Richardson CE, Gradisar M, Short MA, et al. Can exercise regulate the circadian system of adolescents? Novel implications for the treatment of delayed sleep-wake phase disorder[J]. Sleep Med Rev, 2017, 34: 122–129. doi: 10.1016/j.smrv.2016.06.010
|
[28] |
Sen S, Raingard H, Dumont S, et al. Ultradian feeding in mice not only affects the peripheral clock in the liver, but also the master clock in the brain[J]. Chronobiol Int, 2017, 34(1): 17–36. doi: 10.1080/07420528.2016.1231689
|
[29] |
Wams EJ, Riede SJ, van der Laan I, et al. Mechanisms of non-photic entrainment[M]//Kumar V. Biological Timekeeping: Clocks, Rhythms and Behaviour. New Delhi: Springer, 2017: 395–404.
|
[30] |
Reebs SG, Mrosovsky N. Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve[J]. J Biol Rhythms, 1989, 4(1): 39–48. doi: 10.1177/074873048900400103
|
[31] |
van Oosterhout F, Lucassen EA, Houben T, et al. Amplitude of the SCN clock enhanced by the behavioral activity rhythm[J]. PLoS One, 2012, 7(6): e39693. doi: 10.1371/journal.pone.0039693
|
[32] |
Saderi N, Cazarez-Márquez F, Buijs FN, et al. The NPY intergeniculate leaflet projections to the suprachiasmatic nucleus transmit metabolic conditions[J]. Neuroscience, 2013, 246: 291–300. doi: 10.1016/j.neuroscience.2013.05.004
|
[33] |
Inyushkin AN, Petrova AA, Tkacheva MA, et al. Effects of neuropeptide Y on neuron spike activity in the rat suprachiasmatic nucleus in vitro[J]. Neurosci Behav Physiol, 2017, 47(3): 337–344. doi: 10.1007/s11055-017-0402-6
|
[34] |
Melancon MO, Lorrain D, Dionne IJ. Exercise and sleep in aging: emphasis on serotonin[J]. Pathol Biol, 2014, 62(5): 276–283. doi: 10.1016/j.patbio.2014.07.004
|
[35] |
Richards J, Gumz ML. Advances in understanding the peripheral circadian clocks[J]. FASEB J, 2012, 26(9): 3602–3613. doi: 10.1096/fj.12-203554
|
[36] |
Yamazaki S, Numano R, Abe M, et al. Resetting central and peripheral circadian oscillators in transgenic rats[J]. Science, 2000, 288(5466): 682–685. doi: 10.1126/science.288.5466.682
|
[37] |
Schiaffino S, Blaauw B, Dyar KA. The functional significance of the skeletal muscle clock: lessons from Bmal1 knockout models[J]. Skelet Muscle, 2016, 6: 33. doi: 10.1186/s13395-016-0107-5
|
[38] |
Schroder EA, Esser KA. Circadian rhythms, skeletal muscle molecular clocks, and exercise[J]. Exerc Sport Sci Rev, 2013, 41(4): 224–229. doi: 10.1097/JES.0b013e3182a58a70
|
[39] |
Hodge BA, Wen Y, Riley LA, et al. The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle[J]. Skelet Muscle, 2015, 5: 17. doi: 10.1186/s13395-015-0039-5
|
[40] |
Pizarro A, Hayer K, Lahens NF, et al. CircaDB: a database of mammalian circadian gene expression profiles[J]. Nucleic Acids Res, 2013, 41(D1): D1009–D1013. doi: 10.1093/nar/gks1161
|
[41] |
Riley LA, Esser KA. The role of the molecular clock in skeletal muscle and what it is teaching us about muscle-bone crosstalk[J]. Curr Osteoporos Rep, 2017, 15(3): 222–230. doi: 10.1007/s11914-017-0363-2
|
[42] |
Maak S, Norheim F, Drevon CA, et al. Progress and challenges in the biology of FNDC5 and irisin[J]. Endocr Rev, 2021, 42(4): 436–456. doi: 10.1210/endrev/bnab003
|
[43] |
Roca-Rivada A, Castelao C, Senin LL, et al. FNDC5/irisin is not only a myokine but also an adipokine[J]. PLoS One, 2013, 8(4): e60563. doi: 10.1371/journal.pone.0060563
|
[44] |
Huh JY. The role of exercise-induced myokines in regulating metabolism[J]. Arch Pharm Res, 2018, 41(1): 14–29. doi: 10.1007/s12272-017-0994-y
|
[45] |
|
[46] |
Handschin C, Spiegelman BM. The role of exercise and PGC1α in inflammation and chronic disease[J]. Nature, 2008, 454(7203): 463–469. doi: 10.1038/nature07206
|
[47] |
Lecker SH, Zavin A, Cao P, et al. Expression of the irisin precursor FNDC5 in skeletal muscle correlates with aerobic exercise performance in patients with heart failure[J]. Circ Heart Fail, 2012, 5(6): 812–818. doi: 10.1161/CIRCHEARTFAILURE.112.969543
|
[48] |
Zhang W, Chang L, Zhang C, et al. Irisin: a myokine with locomotor activity[J]. Neurosci Lett, 2015, 595: 7–11. doi: 10.1016/j.neulet.2015.03.069
|
[49] |
Zhang Y, Li R, Meng Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling[J]. Diabetes, 2014, 63(2): 514–525. doi: 10.2337/db13-1106
|
[50] |
Phillips C, Baktir MA, Srivatsan M, et al. Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling[J]. Front Cell Neurosci, 2014, 8: 170. doi: 10.3389/fncel.2014.00170
|
[51] |
Jodeiri Farshbaf M, Alviña K. Multiple roles in neuroprotection for the exercise derived myokine Irisin[J]. Front Aging Neurosci, 2021, 13: 649929. doi: 10.3389/fnagi.2021.649929
|
[52] |
Piya MK, Harte AL, Sivakumar K, et al. The identification of irisin in human cerebrospinal fluid: influence of adiposity, metabolic markers, and gestational diabetes[J]. Am J Physiol Endocrinol Metab, 2014, 306(5): E512–E518. doi: 10.1152/ajpendo.00308.2013
|
[53] |
Jodeiri Farshbaf M, Ghaedi K, Megraw TL, et al. Does PGC1α/FNDC5/BDNF elicit the beneficial effects of exercise on neurodegenerative disorders?[J]. Neuromolecular Med, 2016, 18(1): 1–15. doi: 10.1007/s12017-015-8370-x
|
[54] |
Steiner JL, Murphy EA, McClellan JL, et al. Exercise training increases mitochondrial biogenesis in the brain[J]. J Appl Physiol, 2011, 111(4): 1066–1071. doi: 10.1152/japplphysiol.00343.2011
|
[55] |
Cheng A, Wan R, Yang JL, et al. Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines[J]. Nat Commun, 2012, 3: 1250. doi: 10.1038/ncomms2238
|
[56] |
Zsuga J, More CE, Erdei T, et al. Blind spot for sedentarism: redefining the diseasome of physical inactivity in view of circadian system and the irisin/BDNF axis[J]. Front Neurol, 2018, 9: 818. doi: 10.3389/fneur.2018.00818
|
[57] |
Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks[J]. Annu Rev Physiol, 2010, 72: 517–549. doi: 10.1146/annurev-physiol-021909-135821
|
[58] |
Marchant EG, Mistlberger RE. Entrainment and phase shifting of circadian rhythms in mice by forced treadmill running[J]. Physiol Behav, 1996, 60(2): 657–663. doi: 10.1016/S0031-9384(96)80045-X
|
[59] |
Schroeder AM, Truong D, Loh DH, et al. Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild-type and vasoactive intestinal peptide-deficient mice[J]. J Physiol, 2012, 590(23): 6213–6226. doi: 10.1113/jphysiol.2012.233676
|
[60] |
Hughes ATL, Samuels RE, Baño-Otálora B, et al. Timed daily exercise remodels circadian rhythms in mice[J]. Commun Biol, 2021, 4(1): 761. doi: 10.1038/s42003-021-02239-2
|
[61] |
Ehlen JC, Brager AJ, Baggs J, et al. Bmal1 function in skeletal muscle regulates sleep[J]. eLife, 2017, 6: e26557. doi: 10.7554/eLife.26557
|
[62] |
Weinert D, Weiß T. A nonlinear interrelationship between period length and the amount of activity—Age-dependent changes[J]. Biol Rhythm Res, 1997, 28(1): 105–120. doi: 10.1076/brhm.28.1.105.12983
|
[63] |
Weinert D, Schottner K. An inbred lineage of Djungarian hamsters with a strongly attenuated ability to synchronize[J]. Chronobiol Int, 2007, 24(6): 1065–1079. doi: 10.1080/07420520701791588
|
[64] |
Antle MC, Sterniczuk R, Smith VM, et al. Non-photic modulation of phase shifts to long light pulses[J]. J Biol Rhythms, 2007, 22(6): 524–533. doi: 10.1177/0748730407306882
|
[65] |
Steinlechner S, Stieglitz A, Ruf T. Djungarian hamsters: a species with a labile circadian pacemaker? Arrhythmicity under a light-dark cycle induced by short light pulses[J]. J Biol Rhythms, 2002, 17(3): 248–258. doi: 10.1177/074873040201700308
|
[66] |
|
[67] |
Youngstedt SD, Elliott JA, Kripke DF. Human circadian phase-response curves for exercise[J]. J Physiol, 2019, 597(8): 2253–2268. doi: 10.1113/JP276943
|
[68] |
Buxton OM, Lee CW, L'Hermite-Balériaux M, et al. Exercise elicits phase shifts and acute alterations of melatonin that vary with circadian phase[J]. Am J Physiol Regul Integr Comp Physiol, 2003, 284(3): R714–R724. doi: 10.1152/ajpregu.00355.2002
|
[69] |
Buxton OM, Frank SA, L'Hermite-Balériaux M, et al. Roles of intensity and duration of nocturnal exercise in causing phase delays of human circadian rhythms[J]. Am J Physiol, 1997, 273(3): E536–E542. doi: 10.1152/ajpendo.1997.273.3.E536
|
[70] |
Yamanaka Y, Hashimoto S, Tanahashi Y, et al. Physical exercise accelerates reentrainment of human sleep-wake cycle but not of plasma melatonin rhythm to 8-h phase-advanced sleep schedule[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298(3): R681–R691. doi: 10.1152/ajpregu.00345.2009
|
[71] |
Lang C, Richardson C, Short MA, et al. Low-intensity scheduled morning exercise for adolescents with a late chronotype: a novel treatment to advance circadian phase?[J]. Sleep Adv, 2022, 3(1): zpac021. doi: 10.1093/sleepadvances/zpac021
|
[72] |
Kalak N, Gerber M, Kirov R, et al. Daily morning running for 3 weeks improved sleep and psychological functioning in healthy adolescents compared with controls[J]. J Adolesc Health, 2012, 51(6): 615–622. doi: 10.1016/j.jadohealth.2012.02.020
|
[73] |
Tilp M, Scharf C, Payer G, et al. Physical exercise during the morning school-break improves basic cognitive functions[J]. Mind Brain Educ, 2020, 14(1): 24–31. doi: 10.1111/mbe.12228
|
[74] |
Zhai Q, Zeng Y, Gu Y, et al. Time-restricted feeding entrains long-term behavioral changes through the IGF2-KCC2 pathway[J]. iScience, 2022, 25(5): 104267. doi: 10.1016/j.isci.2022.104267
|
[75] |
de Goede P, Wefers J, Brombacher EC, et al. Circadian rhythms in mitochondrial respiration[J]. J Mol Endocrinol, 2018, 60(3): R115–R130. doi: 10.1530/JME-17-0196
|
[76] |
Yamanaka Y, Honma S, Honma KI. Two coupled circadian oscillators are involved in nonphotic acceleration of reentrainment to shifted light cycles in mice[J]. J Biol Rhythms, 2018, 33(6): 614–625. doi: 10.1177/0748730418796300
|
[77] |
Ortega GJ, Romanelli L, Golombek DA. Statistical and dynamical analysis of circadian rhythms[J]. J Theor Biol, 1994, 169(1): 15–21. doi: 10.1006/jtbi.1994.1126
|
[78] |
Leise TL, Harrington ME, Molyneux PC, et al. Voluntary exercise can strengthen the circadian system in aged mice[J]. Age, 2013, 35(6): 2137–2152. doi: 10.1007/s11357-012-9502-y
|
[79] |
Weinert D. Age-dependent changes of the circadian system[J]. Chronobiol Int, 2000, 17(3): 261–283. doi: 10.1081/CBI-100101048
|
[80] |
Weinert D, Schöttner K, Meinecke AC, et al. Voluntary exercise stabilizes photic entrainment of djungarian hamsters ( Phodopus sungorus) with a delayed activity onset[J]. Chronobiol Int, 2018, 35(10): 1435–1444. doi: 10.1080/07420528.2018.1490313
|
[81] |
Park TH, Lee HJ, Lee JB. Effect of heat stimulation on circulating irisin in humans[J]. Front Physiol, 2021, 12: 675377. doi: 10.3389/fphys.2021.675377
|
[82] |
Herzog ED, Huckfeldt RM. Circadian entrainment to temperature, but not light, in the isolated suprachiasmatic nucleus[J]. J Neurophysiol, 2003, 90(2): 763–770. doi: 10.1152/jn.00129.2003
|
[83] |
Saini C, Morf J, Stratmann M, et al. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators[J]. Genes Dev, 2012, 26(6): 567–580. doi: 10.1101/gad.183251.111
|
[84] |
A M, Wales TE, Zhou H, et al. Irisin acts through its integrin receptor in a two-step process involving extracellular Hsp90α[J]. Mol Cell, 2023, 83(11): 1903–1920.e12. doi: 10.1016/j.molcel.2023.05.008
|
[85] |
Franco OH, de Laet C, Peeters A, et al. Effects of physical activity on life expectancy with cardiovascular disease[J]. Arch Intern Med, 2005, 165(20): 2355–2360. doi: 10.1001/archinte.165.20.2355
|
[86] |
|
[87] |
Pérez-Martínez P, Mikhailidis DP, Athyros VG, et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: an international panel recommendation[J]. Nutr Rev, 2017, 75(5): 307–326. doi: 10.1093/nutrit/nux014
|
[88] |
Ozemek C, Laddu DR, Lavie CJ, et al. An update on the role of cardiorespiratory fitness, structured exercise and lifestyle physical activity in preventing cardiovascular disease and health risk[J]. Prog Cardiovasc Dis, 2018, 61(5-6): 484–490. doi: 10.1016/j.pcad.2018.11.005
|
[89] |
Smith PJ, Blumenthal JA, Hoffman BM, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials[J]. Psychosom Med, 2010, 72(3): 239–252. doi: 10.1097/PSY.0b013e3181d14633
|
[90] |
Pascoe MC, Parker AG. Physical activity and exercise as a universal depression prevention in young people: a narrative review[J]. Early Interv Psychiatry, 2019, 13(4): 733–739. doi: 10.1111/eip.12737
|
[91] |
Pedersen BK. Physical activity and muscle-brain crosstalk[J]. Nat Rev Endocrinol, 2019, 15(7): 383–392. doi: 10.1038/s41574-019-0174-x
|
[92] |
Vanderlinden J, Boen F, van Uffelen JGZ. Effects of physical activity programs on sleep outcomes in older adults: a systematic review[J]. Int J Behav Nutr Phys Act, 2020, 17(1): 11. doi: 10.1186/s12966-020-0913-3
|
[93] |
Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation[J]. Trends Neurosci, 2007, 30(9): 464–472. doi: 10.1016/j.tins.2007.06.011
|
[94] |
Norheim F, Raastad T, Thiede B, et al. Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training[J]. Am J Physiol Endocrinol Metab, 2011, 301(5): E1013–E1021. doi: 10.1152/ajpendo.00326.2011
|
[95] |
Moon HY, Becke A, Berron D, et al. Running-induced systemic cathepsin B secretion is associated with memory function[J]. Cell Metab, 2016, 24(2): 332–340. doi: 10.1016/j.cmet.2016.05.025
|
[96] |
De la Rosa A, Solana E, Corpas R, et al. Long-term exercise training improves memory in middle-aged men and modulates peripheral levels of BDNF and Cathepsin B[J]. Sci Rep, 2019, 9(1): 3337. doi: 10.1038/s41598-019-40040-8
|
[97] |
Ma C, Ding H, Deng Y, et al. Irisin: a new code uncover the relationship of skeletal muscle and cardiovascular health during exercise[J]. Front Physiol, 2021, 12: 620608. doi: 10.3389/fphys.2021.620608
|
[98] |
Lourenco MV, Frozza RL, de Freitas GB, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models[J]. Nat Med, 2019, 25(1): 165–175. doi: 10.1038/s41591-018-0275-4
|
[99] |
Ruan Q, Zhang L, Ruan J, et al. Detection and quantitation of irisin in human cerebrospinal fluid by tandem mass spectrometry[J]. Peptides, 2018, 103: 60–64. doi: 10.1016/j.peptides.2018.03.013
|
[100] |
EI Hayek L, Khalifeh M, Zibara V, et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF)[J]. J Neurosci, 2019, 39(13): 2369–2382. doi: 10.1523/jneurosci.1661-18.2019
|
[101] |
Kim H, Wrann CD, Jedrychowski M, et al. Irisin mediates effects on bone and fat via αV integrin receptors[J]. Cell, 2018, 175(7): 1756–1768.e17. doi: 10.1016/j.cell.2018.10.025
|
[102] |
Bi J, Zhang J, Ren Y, et al. Irisin reverses intestinal epithelial barrier dysfunction during intestinal injury via binding to the integrin αVβ5 receptor[J]. J Cell Mol Med, 2020, 24(1): 996–1009. doi: 10.1111/jcmm.14811
|
[103] |
Oguri Y, Shinoda K, Kim H, et al. CD81 controls beige fat progenitor cell growth and energy balance via FAK signaling[J]. Cell, 2020, 182(3): 563–577.e20. doi: 10.1016/j.cell.2020.06.021
|
[104] |
Estell EG, Le PT, Vegting Y, et al. Irisin directly stimulates osteoclastogenesis and bone resorption in vitro and in vivo[J]. eLife, 2020, 9: e58172. doi: 10.7554/eLife.58172
|
[105] |
Waseem R, Shamsi A, Mohammad T, et al. FNDC5/Irisin: physiology and pathophysiology[J]. Molecules, 2022, 27(3): 1118. doi: 10.3390/molecules27031118
|
[106] |
Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges[J]. Trends Endocrinol Metab, 2014, 25(2): 89–98. doi: 10.1016/j.tem.2013.10.006
|
[107] |
Chao MV, Rajagopal R, Lee FS. Neurotrophin signalling in health and disease[J]. Clin Sci (Lond), 2006, 110(2): 167–173. doi: 10.1042/CS20050163
|
[108] |
Huang TL, Lee CT, Liu YL. Serum brain-derived neurotrophic factor levels in patients with major depression: effects of antidepressants[J]. J Psychiatr Res, 2008, 42(7): 521–525. doi: 10.1016/j.jpsychires.2007.05.007
|
[109] |
Dean C, Liu H, Staudt T, et al. Distinct subsets of Syt-IV/BDNF vesicles are sorted to axons versus dendrites and recruited to synapses by activity[J]. J Neurosci, 2012, 32(16): 5398–5413. doi: 10.1523/JNEUROSCI.4515-11.2012
|
[110] |
Yang JL, Lin YT, Chuang PC, et al. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1[J]. Neuromol Med, 2014, 16(1): 161–174. doi: 10.1007/s12017-013-8270-x
|
[111] |
Autry AE, Bambah-Mukku D. The role of brain-derived neurotrophic factor in neural circuit development and function[M]//Rubenstein J, Rakic P, Chen B, et al. Synapse Development and Maturation: Comprehensive Developmental Neuroscience. 2nd ed. London: Academic Press, 2020: 443–466.
|
[112] |
Fargali S, Sadahiro M, Jiang C, et al. Role of neurotrophins in the development and function of neural circuits that regulate energy homeostasis[J]. J Mol Neurosci, 2012, 48(3): 654–659. doi: 10.1007/s12031-012-9790-9
|
[113] |
Ishikawa C, Li H, Ogura R, et al. Effects of gravity changes on gene expression of BDNF and serotonin receptors in the mouse brain[J]. PLoS One, 2017, 12(6): e0177833. doi: 10.1371/journal.pone.0177833
|
[114] |
Zsuga J, Biro K, Papp C, et al. The "proactive" model of learning: integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept[J]. Behav Neurosci, 2016, 130(1): 6–18. doi: 10.1037/bne0000116
|
[115] |
Autry AE. Function of brain-derived neurotrophic factor in the hypothalamus: implications for depression pathology[J]. Front Mol Neurosci, 2022, 15: 1028223. doi: 10.3389/fnmol.2022.1028223
|
[116] |
Liang FQ, Sohrabji F, Miranda R, et al. Expression of brain-derived neurotrophic factor and its cognate receptor, TrkB, in the rat suprachiasmatic nucleus[J]. Exp Neurol, 1998, 151(2): 184–193. doi: 10.1006/exnr.1998.6804
|
[117] |
Griffin ÉW, Mullally S, Foley C, et al. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males[J]. Physiol Behav, 2011, 104(5): 934–941. doi: 10.1016/j.physbeh.2011.06.005
|
[118] |
Kobilo T, Liu QR, Gandhi K, et al. Running is the neurogenic and neurotrophic stimulus in environmental enrichment[J]. Learn Mem, 2011, 18(9): 605–609. doi: 10.1101/lm.2283011
|
[119] |
Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition[J]. Eur J Neurosci, 2004, 20(10): 2580–2590. doi: 10.1111/j.1460-9568.2004.03720.x
|
[120] |
Zsuga J, Tajti G, Papp C, et al. FNDC5/irisin, a molecular target for boosting reward-related learning and motivation[J]. Med Hypotheses, 2016, 90: 23–28. doi: 10.1016/j.mehy.2016.02.020
|
[121] |
Liang FQ, Walline R, Earnest DJ. Circadian rhythm of brain-derived neurotrophic factor in the rat suprachiasmatic nucleus[J]. Neurosci Lett, 1998, 242(2): 89–92. doi: 10.1016/S0304-3940(98)00062-7
|
[122] |
Liang FQ, Allen G, Earnest D. Role of brain-derived neurotrophic factor in the circadian regulation of the suprachiasmatic pacemaker by light[J]. J Neurosci, 2000, 20(8): 2978–2987. doi: 10.1523/JNEUROSCI.20-08-02978.2000
|
[123] |
Allen GC, Earnest DJ. Overlap in the distribution of TrkB immunoreactivity and retinohypothalamic tract innervation of the rat suprachiasmatic nucleus[J]. Neurosci Lett, 2005, 376(3): 200–204. doi: 10.1016/j.neulet.2004.11.076
|
[124] |
Michel S, Clark JP, Ding JM, et al. Brain-derived neurotrophic factor and neurotrophin receptors modulate glutamate-induced phase shifts of the suprachiasmatic nucleus[J]. Eur J Neurosci, 2006, 24(4): 1109–1116. doi: 10.1111/j.1460-9568.2006.04972.x
|
[125] |
Serchov T, Heumann R. Constitutive activation of ras in neurons: implications for the regulation of the mammalian circadian clock[J]. Chronobiol Int, 2006, 23(1-2): 191–200. doi: 10.1080/07420520500521970
|
[126] |
Serchov T, Heumann R. Ras activity tunes the period and modulates the entrainment of the suprachiasmatic clock[J]. Front Neurol, 2017, 8: 264. doi: 10.3389/fneur.2017.00264
|
[127] |
Girardet C, Lebrun B, Cabirol-Pol MJ, et al. Brain-derived neurotrophic factor/TrkB signaling regulates daily astroglial plasticity in the suprachiasmatic nucleus: electron-microscopic evidence in mouse[J]. Glia, 2013, 61(7): 1172–1177. doi: 10.1002/glia.22509
|
[128] |
Kim YI, Choi HJ, Colwell CS. Brain-derived neurotrophic factor regulation of N-methyl-D-aspartate receptor-mediated synaptic currents in suprachiasmatic nucleus neurons[J]. J Neurosci Res, 2006, 84(7): 1512–1520. doi: 10.1002/jnr.21063
|
[129] |
Lin SY, Wu K, Levine ES, et al. BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities[J]. Mol Brain Res, 1998, 55(1): 20–27. doi: 10.1016/S0169-328X(97)00349-5
|
[130] |
Carmignoto G, Pizzorusso T, Tia S, et al. Brain-derived neurotrophic factor and nerve growth factor potentiate excitatory synaptic transmission in the rat visual cortex[J]. J Physiol, 1997, 498(1): 153–164. doi: 10.1113/jphysiol.1997.sp021848
|
[131] |
Vanevski F, Xu B. Molecular and neural bases underlying roles of BDNF in the control of body weight[J]. Front Neurosci, 2013, 7: 37. doi: 10.3389/fnins.2013.00037
|
[132] |
Lemarchand E, Maubert E, Haelewyn B, et al. Stressed neurons protect themselves by a tissue-type plasminogen activator-mediated EGFR-dependent mechanism[J]. Cell Death Differ, 2016, 23(1): 123–131. doi: 10.1038/cdd.2015.76
|
[133] |
Zhang W, Shi Y, Peng Y, et al. Neuron activity–induced Wnt signaling up-regulates expression of brain-derived neurotrophic factor in the pain neural circuit[J]. J Biol Chem, 2018, 293(40): 15641–15651. doi: 10.1074/jbc.RA118.002840
|
[134] |
von Gall C, Duffield GE, Hastings MH, et al. CREB in the mouse SCN: a molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access[J]. J Neurosci, 1998, 18(24): 10389–10397. doi: 10.1523/JNEUROSCI.18-24-10389.1998
|
[135] |
Gau D, Lemberger T, von Gall C, et al. Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock[J]. Neuron, 2002, 34(2): 245–253. doi: 10.1016/S0896-6273(02)00656-6
|
[136] |
Badura L, Swanson T, Adamowicz W, et al. An inhibitor of casein kinase Iϵ induces phase delays in circadian rhythms under free-running and entrained conditions[J]. J Pharmacol Exp Ther, 2007, 322(2): 730–738. doi: 10.1124/jpet.107.122846
|
[137] |
Lee B, Almad A, Butcher GQ, et al. Protein kinase C modulates the phase-delaying effects of light in the mammalian circadian clock[J]. Eur J Neurosci, 2007, 26(2): 451–462. doi: 10.1111/j.1460-9568.2007.05664.x
|
[138] |
Bonsall DR, Lall GS. Protein kinase C differentially regulates entrainment of the mammalian circadian clock[J]. Chronobiol Int, 2013, 30(4): 460–469. doi: 10.3109/07420528.2012.741170
|