
Citation: | Alexey N. Inyushkin, Vitalii S. Poletaev, Elena M. Inyushkina, Igor S. Kalberdin, Andrey A. Inyushkin. Irisin/BDNF signaling in the muscle-brain axis and circadian system: A review[J]. The Journal of Biomedical Research, 2024, 38(1): 1-16. DOI: 10.7555/JBR.37.20230133 |
In mammals, the timing of physiological, biochemical and behavioral processes over a 24-h period is controlled by circadian rhythms. To entrain the master clock located in the suprachiasmatic nucleus of the hypothalamus to a precise 24-h rhythm, environmental zeitgebers are used by the circadian system. This is done primarily by signals from the retina via the retinohypothalamic tract, but other cues like exercise, feeding, temperature, anxiety, and social events have also been shown to act as non-photic zeitgebers. The recently identified myokine irisin is proposed to serve as an entraining non-photic signal of exercise. Irisin is a product of cleavage and modification from its precursor membrane fibronectin type Ⅲ domain-containing protein 5 (FNDC5) in response to exercise. Apart from well-known peripheral effects, such as inducing the "browning" of white adipocytes, irisin can penetrate the blood-brain barrier and display the effects on the brain. Experimental data suggest that FNDC5/irisin mediates the positive effects of physical activity on brain functions. In several brain areas, irisin induces the production of brain-derived neurotrophic factor (BDNF). In the master clock, a significant role in gating photic stimuli in the retinohypothalamic synapse for BDNF is suggested. However, the brain receptor for irisin remains unknown. In the current review, the interactions of physical activity and the irisin/BDNF axis with the circadian system are reconceptualized.
Dear Editor,
Treating psoriatic arthritis (PsA) is always difficult. Systemic treatments can be administered either orally or through intramuscular and intra-articular injection, including conventional synthetics, biologics and targeted synthetic disease-modifying antirheumatic drugs[1]. The alternatives, topical external therapies, are not effective on joint lesions due to drug permeability issues. Drugs injected into the articular cavity are also unsuitable for small peripheral joint lesions, the most common manifestations of PsA. The limited treatment options for PsA present a challenge.
This is a case of a 26-year-old woman with a six-year history of psoriasis vulgaris, who had been suffering from co-morbid PsA for four years. The case presented at our clinic six months ago with PsA in multiple interphalangeal joints. The skin lesions were distributed on her hands, elbows and knees, which were light red, raised from the surface and covered with fine scales, accounting for about 25% of the upper limbs and 8% of the lower limbs. The Psoriasis Area and Severity Index (PASI) was 2.4. On her nails, the main manifestations were pitting, onycholysis and splinter hemorrhages. The baseline Nail Psoriasis Severity Index (NAPSI) was 32. The scalp appeared unaffected. Laboratory investigations revealed negative results for rheumatoid factor and human leucocyte antigen B27.
Previous topical steroid treatments combined with nonsteroidal anti-inflammatory drugs and methotrexate had all failed to improve symptoms. The therapy with etanercept improved skin and joint lesions initially, but was not tolerated thereafter due to leukocytopenia. The case was administered tofacitinib, an oral Janus kinase inhibitor, at 5 mg, twice daily two years ago. This therapy improved skin symptoms and joint pain, but the joint redness and swelling lasted. The dose was reduced to 5 mg once daily a year ago due to concerns about potential infections. Consequent tofacitinib treatments stabilized joint symptoms with mild pain, but visible redness, swelling and malformation continued.
The patient was very concerned about the side effects of systemic medication, and her arthritis was mostly confined to a few small joints. The locally injected antibody may be more effective to the target site through direct diffusion or interstitial fluid movement, thus reducing costs and systemic side effects[2]. After full communication with the patient, we finally decided to combine local injections in the treatment.
After receiving the written informed consent from the patient, we began the treatment with low-dose ixekizumab (an IL-17 blockade) administered subcutaneously near the joint lesions to supplement the existing treatment, i.e., daily tofacitinib at a dose of 5 mg. The back of her left hand (Fig. 1A) received a subcutaneous injection of 0.1 mL diluted ixekizumab (8 mg/mL) every two weeks. Ixekizumab (80 mg/mL) was diluted with sterile water to 8 mg/mL in the pharmacy intravenous admixture service, and stored at 4 ℃.
Two weeks after the treatment, both joint symptoms and skin lesions on the fingers of her left hand had improved (Fig. 1B). By week eight, the redness and swelling on proximal interphalangeal joints of her forefinger, middle finger and ring finger had substantially improved. The hydrops articuli of proximal interphalangeal joints on her left hand had markedly reduced after the eight-week treatment (Fig. 1C and 1D). However, the hydrops articuli on her right fingers had not ameliorated. The only adverse event was transient but bearable pain, while injecting interventions. The patient reported a continued improvement in joint symptoms in her left hand at week 12.
The score of the visual analogue scale for the third and fourth left fingers decreased from three and two, respectively, to one and zero over the observation period. However, joint pain in her right hand was not ameliorated. The skin lesions of her left hand had improved; however, the lesions of other parts of the body remained the same and an overall PASI score stayed at 2.4. Her onycholysis and splinter hemorrhages had significantly improved, while nail pitting had not. The NAPSI score was 19 at week 12. The patient remains under a long-term monitoring.
Previously, we successfully used intramatrical injections with low-doses of secukinumab to treat nail psoriasis[3–4] and local low-dose ixekizumab to treat palmoplantar pustular psoriasis[5], which suggested the feasibility and efficacy of local low-dose biologics injection. The current case study also suggested that combining juxtra-articular low-dose ixekizumab injection with oral tofacitinib could benefit those with peripheral psoriatic arthritis. The subcutaneous injections administered near joints could well be absorbed by peripheral joint lesions, and just subcutaneous injections of ixekizumab, at a dilution of one-one hundredth of the systemic dose, could have a therapeutic effect. Evidence from this case suggests that subcutaneous injections near joint lesions may also benefit those with other forms of inflammatory arthritis.
As this was a case study, it is hard for us to compare the efficacy of systematic treatments, but the initial evidence was that local injections in combination with oral tofacitinib had a satisfactory effect in a relatively short period of time. For this patient, who had experienced clear systemic side effects and a limited improvement after several initial treatments, the targeted localized use of therapeutic antibodies was more acceptable and effective. Therefore, this report provides an initial evidence for further randomized controlled trials. However, protocols must intercalate quantitative assessments of chronic inflammation by monitoring changes in the spleen volume[6]. The long-term, large-scale studies warrant in the future.
Special thanks to our patient who agreed to participate and for consenting to publish this report. This work was supported by the National Natural Science Foundation of China (Grant No. 82073439).
Yours Sincerely,Ruiyuan Xia1,△, Weixin Zhang2,△, Jing Hang2,✉, Zhiqiang Yin1,✉ 1Department of Dermatology,the First Affiliated Hospital of Nanjing Medical University,Nanjing, Jiangsu 210029,China;2Department of Ultrasound,the First Affiliated Hospital of Nanjing Medical University,Nanjing, Jiangsu 210029,China.△These authors contributed equally to this work.✉Corresponding authors: Zhiqiang Yin and Jing Hang. E-mails: yinzhiqiang@njmu.edu.cn (Yin) and hangjing@jsph.org.cn (Hang).
None.
The study was supported by the Russian Science Foundation (Grant No. 23-25-00152).
CLC number: R741, Document code: A
The authors reported no conflict of interests.
[1] |
Legård GE, Pedersen BK. Muscle as an endocrine organ[M]//Zoladz JA. Muscle and Exercise Physiology. London: Academic Press, 2019: 285–307.
|
[2] |
Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis[J]. Nature, 2012, 481(7382): 463–468. doi: 10.1038/nature10777
|
[3] |
Wu J, Boström P, Sparks LM, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human[J]. Cell, 2012, 150(2): 366–376. doi: 10.1016/j.cell.2012.05.016
|
[4] |
Wrann CD, White JP, Salogiannnis J, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway[J]. Cell Metab, 2013, 18(5): 649–659. doi: 10.1016/j.cmet.2013.09.008
|
[5] |
Wrann CD. FNDC5/Irisin - their role in the nervous system and as a mediator for beneficial effects of exercise on the brain[J]. Brain Plast, 2015, 1(1): 55–61. doi: 10.3233/BPL-150019
|
[6] |
Hastings MH, Maywood ES, Reddy AB. Two decades of circadian time[J]. J Neuroendocrinol, 2008, 20(6): 812–819. doi: 10.1111/j.1365-2826.2008.01715.x
|
[7] |
Zhang R, Lahens NF, Ballance HI, et al. A circadian gene expression atlas in mammals: implications for biology and medicine[J]. Proc Natl Acad Sci U S A, 2014, 111(45): 16219–16224. doi: 10.1073/pnas.1408886111
|
[8] |
Mure LS, Le HD, Benegiamo G, et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues[J]. Science, 2018, 359(6381): eaao0318. doi: 10.1126/science.aao0318
|
[9] |
Aton SJ, Herzog ED. Come together, right..now: synchronization of rhythms in a mammalian circadian clock[J]. Neuron, 2005, 48(4): 531–534. doi: 10.1016/j.neuron.2005.11.001
|
[10] |
Eastman CI, Suh C, Tomaka VA, et al. Circadian rhythm phase shifts and endogenous free-running circadian period differ between African-Americans and European-Americans[J]. Sci Rep, 2015, 5: 8381. doi: 10.1038/srep08381
|
[11] |
Tahara Y, Aoyama S, Shibata S. The mammalian circadian clock and its entrainment by stress and exercise[J]. J Physiol Sci, 2017, 67(1): 1–10. doi: 10.1007/s12576-016-0450-7
|
[12] |
Liu C, Li S, Liu T, et al. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism[J]. Nature, 2007, 447(7143): 477–481. doi: 10.1038/nature05767
|
[13] |
Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties[J]. Annu Rev Physiol, 2010, 72: 551–577. doi: 10.1146/annurev-physiol-021909-135919
|
[14] |
Harfmann BD, Schroder EA, Esser KA. Circadian rhythms, the molecular clock, and skeletal muscle[J]. J Biol Rhythms, 2015, 30(2): 84–94. doi: 10.1177/0748730414561638
|
[15] |
Tahara Y, Shibata S. Entrainment of the mouse circadian clock: effects of stress, exercise, and nutrition[J]. Free Radic Biol Med, 2018, 119: 129–138. doi: 10.1016/j.freeradbiomed.2017.12.026
|
[16] |
Miyazaki M, Schroder E, Edelmann SE, et al. Age-associated disruption of molecular clock expression in skeletal muscle of the spontaneously hypertensive rat[J]. PLoS One, 2011, 6(11): e27168. doi: 10.1371/journal.pone.0027168
|
[17] |
Higashida K, Kim SH, Jung SR, et al. Effects of resveratrol and SIRT1 on PGC-1α activity and mitochondrial biogenesis: a reevaluation[J]. PLoS Biol, 2013, 11(7): e1001603. doi: 10.1371/journal.pbio.1001603
|
[18] |
Puigserver P, Wu Z, Park CW, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis[J]. Cell, 1998, 92(6): 829–839. doi: 10.1016/S0092-8674(00)81410-5
|
[19] |
Ryan MT, Hoogenraad NJ. Mitochondrial-nuclear communications[J]. Annu Rev Biochem, 2007, 76: 701–722. doi: 10.1146/annurev.biochem.76.052305.091720
|
[20] |
Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control[J]. Cell, 2008, 134(2): 329–340. doi: 10.1016/j.cell.2008.07.002
|
[21] |
Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging[J]. Cell, 2013, 153(7): 1448–1460. doi: 10.1016/j.cell.2013.05.027
|
[22] |
Ashton A, Foster RG, Jagannath A. Photic entrainment of the circadian system[J]. Int J Mol Sci, 2022, 23(2): 729. doi: 10.3390/ijms23020729
|
[23] |
Hannibal J. Comparative neurology of circadian photoreception: the retinohypothalamic tract (RHT) in sighted and naturally blind mammals[J]. Front Neurosci, 2021, 15: 640113. doi: 10.3389/fnins.2021.640113
|
[24] |
Michel S, Colwell CS. Cellular communication and coupling within the suprachiasmatic nucleus[J]. Chronobiol Int, 2001, 18(4): 579–600. doi: 10.1081/CBI-100106074
|
[25] |
Grone BP, Chang D, Bourgin P, et al. Acute light exposure suppresses circadian rhythms in clock gene expression[J]. J Biol Rhythms, 2011, 26(1): 78–81. doi: 10.1177/0748730410388404
|
[26] |
Mendoza JY, Dardente H, Escobar C, et al. Dark pulse resetting of the suprachiasmatic clock in Syrian hamsters: behavioral phase-shifts and clock gene expression[J]. Neuroscience, 2004, 127(2): 529–537. doi: 10.1016/j.neuroscience.2004.05.026
|
[27] |
Richardson CE, Gradisar M, Short MA, et al. Can exercise regulate the circadian system of adolescents? Novel implications for the treatment of delayed sleep-wake phase disorder[J]. Sleep Med Rev, 2017, 34: 122–129. doi: 10.1016/j.smrv.2016.06.010
|
[28] |
Sen S, Raingard H, Dumont S, et al. Ultradian feeding in mice not only affects the peripheral clock in the liver, but also the master clock in the brain[J]. Chronobiol Int, 2017, 34(1): 17–36. doi: 10.1080/07420528.2016.1231689
|
[29] |
Wams EJ, Riede SJ, van der Laan I, et al. Mechanisms of non-photic entrainment[M]//Kumar V. Biological Timekeeping: Clocks, Rhythms and Behaviour. New Delhi: Springer, 2017: 395–404.
|
[30] |
Reebs SG, Mrosovsky N. Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve[J]. J Biol Rhythms, 1989, 4(1): 39–48. doi: 10.1177/074873048900400103
|
[31] |
van Oosterhout F, Lucassen EA, Houben T, et al. Amplitude of the SCN clock enhanced by the behavioral activity rhythm[J]. PLoS One, 2012, 7(6): e39693. doi: 10.1371/journal.pone.0039693
|
[32] |
Saderi N, Cazarez-Márquez F, Buijs FN, et al. The NPY intergeniculate leaflet projections to the suprachiasmatic nucleus transmit metabolic conditions[J]. Neuroscience, 2013, 246: 291–300. doi: 10.1016/j.neuroscience.2013.05.004
|
[33] |
Inyushkin AN, Petrova AA, Tkacheva MA, et al. Effects of neuropeptide Y on neuron spike activity in the rat suprachiasmatic nucleus in vitro[J]. Neurosci Behav Physiol, 2017, 47(3): 337–344. doi: 10.1007/s11055-017-0402-6
|
[34] |
Melancon MO, Lorrain D, Dionne IJ. Exercise and sleep in aging: emphasis on serotonin[J]. Pathol Biol, 2014, 62(5): 276–283. doi: 10.1016/j.patbio.2014.07.004
|
[35] |
Richards J, Gumz ML. Advances in understanding the peripheral circadian clocks[J]. FASEB J, 2012, 26(9): 3602–3613. doi: 10.1096/fj.12-203554
|
[36] |
Yamazaki S, Numano R, Abe M, et al. Resetting central and peripheral circadian oscillators in transgenic rats[J]. Science, 2000, 288(5466): 682–685. doi: 10.1126/science.288.5466.682
|
[37] |
Schiaffino S, Blaauw B, Dyar KA. The functional significance of the skeletal muscle clock: lessons from Bmal1 knockout models[J]. Skelet Muscle, 2016, 6: 33. doi: 10.1186/s13395-016-0107-5
|
[38] |
Schroder EA, Esser KA. Circadian rhythms, skeletal muscle molecular clocks, and exercise[J]. Exerc Sport Sci Rev, 2013, 41(4): 224–229. doi: 10.1097/JES.0b013e3182a58a70
|
[39] |
Hodge BA, Wen Y, Riley LA, et al. The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle[J]. Skelet Muscle, 2015, 5: 17. doi: 10.1186/s13395-015-0039-5
|
[40] |
Pizarro A, Hayer K, Lahens NF, et al. CircaDB: a database of mammalian circadian gene expression profiles[J]. Nucleic Acids Res, 2013, 41(D1): D1009–D1013. doi: 10.1093/nar/gks1161
|
[41] |
Riley LA, Esser KA. The role of the molecular clock in skeletal muscle and what it is teaching us about muscle-bone crosstalk[J]. Curr Osteoporos Rep, 2017, 15(3): 222–230. doi: 10.1007/s11914-017-0363-2
|
[42] |
Maak S, Norheim F, Drevon CA, et al. Progress and challenges in the biology of FNDC5 and irisin[J]. Endocr Rev, 2021, 42(4): 436–456. doi: 10.1210/endrev/bnab003
|
[43] |
Roca-Rivada A, Castelao C, Senin LL, et al. FNDC5/irisin is not only a myokine but also an adipokine[J]. PLoS One, 2013, 8(4): e60563. doi: 10.1371/journal.pone.0060563
|
[44] |
Huh JY. The role of exercise-induced myokines in regulating metabolism[J]. Arch Pharm Res, 2018, 41(1): 14–29. doi: 10.1007/s12272-017-0994-y
|
[45] |
Mattson MP, Moehl K, Ghena N, et al. Intermittent metabolic switching, neuroplasticity and brain health[J]. Nat Rev Neurosci, 2018, 19(2): 63–80. https://www.nstl.gov.cn/paper_detail.html?id=ef87d2288e906ac1a09d969b0229074f
|
[46] |
Handschin C, Spiegelman BM. The role of exercise and PGC1α in inflammation and chronic disease[J]. Nature, 2008, 454(7203): 463–469. doi: 10.1038/nature07206
|
[47] |
Lecker SH, Zavin A, Cao P, et al. Expression of the irisin precursor FNDC5 in skeletal muscle correlates with aerobic exercise performance in patients with heart failure[J]. Circ Heart Fail, 2012, 5(6): 812–818. doi: 10.1161/CIRCHEARTFAILURE.112.969543
|
[48] |
Zhang W, Chang L, Zhang C, et al. Irisin: a myokine with locomotor activity[J]. Neurosci Lett, 2015, 595: 7–11. doi: 10.1016/j.neulet.2015.03.069
|
[49] |
Zhang Y, Li R, Meng Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling[J]. Diabetes, 2014, 63(2): 514–525. doi: 10.2337/db13-1106
|
[50] |
Phillips C, Baktir MA, Srivatsan M, et al. Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling[J]. Front Cell Neurosci, 2014, 8: 170. doi: 10.3389/fncel.2014.00170
|
[51] |
Jodeiri Farshbaf M, Alviña K. Multiple roles in neuroprotection for the exercise derived myokine Irisin[J]. Front Aging Neurosci, 2021, 13: 649929. doi: 10.3389/fnagi.2021.649929
|
[52] |
Piya MK, Harte AL, Sivakumar K, et al. The identification of irisin in human cerebrospinal fluid: influence of adiposity, metabolic markers, and gestational diabetes[J]. Am J Physiol Endocrinol Metab, 2014, 306(5): E512–E518. doi: 10.1152/ajpendo.00308.2013
|
[53] |
Jodeiri Farshbaf M, Ghaedi K, Megraw TL, et al. Does PGC1α/FNDC5/BDNF elicit the beneficial effects of exercise on neurodegenerative disorders?[J]. Neuromolecular Med, 2016, 18(1): 1–15. doi: 10.1007/s12017-015-8370-x
|
[54] |
Steiner JL, Murphy EA, McClellan JL, et al. Exercise training increases mitochondrial biogenesis in the brain[J]. J Appl Physiol, 2011, 111(4): 1066–1071. doi: 10.1152/japplphysiol.00343.2011
|
[55] |
Cheng A, Wan R, Yang JL, et al. Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines[J]. Nat Commun, 2012, 3: 1250. doi: 10.1038/ncomms2238
|
[56] |
Zsuga J, More CE, Erdei T, et al. Blind spot for sedentarism: redefining the diseasome of physical inactivity in view of circadian system and the irisin/BDNF axis[J]. Front Neurol, 2018, 9: 818. doi: 10.3389/fneur.2018.00818
|
[57] |
Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks[J]. Annu Rev Physiol, 2010, 72: 517–549. doi: 10.1146/annurev-physiol-021909-135821
|
[58] |
Marchant EG, Mistlberger RE. Entrainment and phase shifting of circadian rhythms in mice by forced treadmill running[J]. Physiol Behav, 1996, 60(2): 657–663. doi: 10.1016/S0031-9384(96)80045-X
|
[59] |
Schroeder AM, Truong D, Loh DH, et al. Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild-type and vasoactive intestinal peptide-deficient mice[J]. J Physiol, 2012, 590(23): 6213–6226. doi: 10.1113/jphysiol.2012.233676
|
[60] |
Hughes ATL, Samuels RE, Baño-Otálora B, et al. Timed daily exercise remodels circadian rhythms in mice[J]. Commun Biol, 2021, 4(1): 761. doi: 10.1038/s42003-021-02239-2
|
[61] |
Ehlen JC, Brager AJ, Baggs J, et al. Bmal1 function in skeletal muscle regulates sleep[J]. eLife, 2017, 6: e26557. doi: 10.7554/eLife.26557
|
[62] |
Weinert D, Weiß T. A nonlinear interrelationship between period length and the amount of activity—Age-dependent changes[J]. Biol Rhythm Res, 1997, 28(1): 105–120. doi: 10.1076/brhm.28.1.105.12983
|
[63] |
Weinert D, Schottner K. An inbred lineage of Djungarian hamsters with a strongly attenuated ability to synchronize[J]. Chronobiol Int, 2007, 24(6): 1065–1079. doi: 10.1080/07420520701791588
|
[64] |
Antle MC, Sterniczuk R, Smith VM, et al. Non-photic modulation of phase shifts to long light pulses[J]. J Biol Rhythms, 2007, 22(6): 524–533. doi: 10.1177/0748730407306882
|
[65] |
Steinlechner S, Stieglitz A, Ruf T. Djungarian hamsters: a species with a labile circadian pacemaker? Arrhythmicity under a light-dark cycle induced by short light pulses[J]. J Biol Rhythms, 2002, 17(3): 248–258. doi: 10.1177/074873040201700308
|
[66] |
Mrosovsky N. Locomotor activity and non-photic influences on circadian clocks[J]. Biol Rev, 1996, 71(3): 343–372. doi: 10.1111/j.1469-185X.1996.tb01278.x
|
[67] |
Youngstedt SD, Elliott JA, Kripke DF. Human circadian phase-response curves for exercise[J]. J Physiol, 2019, 597(8): 2253–2268. doi: 10.1113/JP276943
|
[68] |
Buxton OM, Lee CW, L'Hermite-Balériaux M, et al. Exercise elicits phase shifts and acute alterations of melatonin that vary with circadian phase[J]. Am J Physiol Regul Integr Comp Physiol, 2003, 284(3): R714–R724. doi: 10.1152/ajpregu.00355.2002
|
[69] |
Buxton OM, Frank SA, L'Hermite-Balériaux M, et al. Roles of intensity and duration of nocturnal exercise in causing phase delays of human circadian rhythms[J]. Am J Physiol, 1997, 273(3): E536–E542. doi: 10.1152/ajpendo.1997.273.3.E536
|
[70] |
Yamanaka Y, Hashimoto S, Tanahashi Y, et al. Physical exercise accelerates reentrainment of human sleep-wake cycle but not of plasma melatonin rhythm to 8-h phase-advanced sleep schedule[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298(3): R681–R691. doi: 10.1152/ajpregu.00345.2009
|
[71] |
Lang C, Richardson C, Short MA, et al. Low-intensity scheduled morning exercise for adolescents with a late chronotype: a novel treatment to advance circadian phase?[J]. Sleep Adv, 2022, 3(1): zpac021. doi: 10.1093/sleepadvances/zpac021
|
[72] |
Kalak N, Gerber M, Kirov R, et al. Daily morning running for 3 weeks improved sleep and psychological functioning in healthy adolescents compared with controls[J]. J Adolesc Health, 2012, 51(6): 615–622. doi: 10.1016/j.jadohealth.2012.02.020
|
[73] |
Tilp M, Scharf C, Payer G, et al. Physical exercise during the morning school-break improves basic cognitive functions[J]. Mind Brain Educ, 2020, 14(1): 24–31. doi: 10.1111/mbe.12228
|
[74] |
Zhai Q, Zeng Y, Gu Y, et al. Time-restricted feeding entrains long-term behavioral changes through the IGF2-KCC2 pathway[J]. iScience, 2022, 25(5): 104267. doi: 10.1016/j.isci.2022.104267
|
[75] |
de Goede P, Wefers J, Brombacher EC, et al. Circadian rhythms in mitochondrial respiration[J]. J Mol Endocrinol, 2018, 60(3): R115–R130. doi: 10.1530/JME-17-0196
|
[76] |
Yamanaka Y, Honma S, Honma KI. Two coupled circadian oscillators are involved in nonphotic acceleration of reentrainment to shifted light cycles in mice[J]. J Biol Rhythms, 2018, 33(6): 614–625. doi: 10.1177/0748730418796300
|
[77] |
Ortega GJ, Romanelli L, Golombek DA. Statistical and dynamical analysis of circadian rhythms[J]. J Theor Biol, 1994, 169(1): 15–21. doi: 10.1006/jtbi.1994.1126
|
[78] |
Leise TL, Harrington ME, Molyneux PC, et al. Voluntary exercise can strengthen the circadian system in aged mice[J]. Age, 2013, 35(6): 2137–2152. doi: 10.1007/s11357-012-9502-y
|
[79] |
Weinert D. Age-dependent changes of the circadian system[J]. Chronobiol Int, 2000, 17(3): 261–283. doi: 10.1081/CBI-100101048
|
[80] |
Weinert D, Schöttner K, Meinecke AC, et al. Voluntary exercise stabilizes photic entrainment of djungarian hamsters (Phodopus sungorus) with a delayed activity onset[J]. Chronobiol Int, 2018, 35(10): 1435–1444. doi: 10.1080/07420528.2018.1490313
|
[81] |
Park TH, Lee HJ, Lee JB. Effect of heat stimulation on circulating irisin in humans[J]. Front Physiol, 2021, 12: 675377. doi: 10.3389/fphys.2021.675377
|
[82] |
Herzog ED, Huckfeldt RM. Circadian entrainment to temperature, but not light, in the isolated suprachiasmatic nucleus[J]. J Neurophysiol, 2003, 90(2): 763–770. doi: 10.1152/jn.00129.2003
|
[83] |
Saini C, Morf J, Stratmann M, et al. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators[J]. Genes Dev, 2012, 26(6): 567–580. doi: 10.1101/gad.183251.111
|
[84] |
A M, Wales TE, Zhou H, et al. Irisin acts through its integrin receptor in a two-step process involving extracellular Hsp90α[J]. Mol Cell, 2023, 83(11): 1903–1920.e12. doi: 10.1016/j.molcel.2023.05.008
|
[85] |
Franco OH, de Laet C, Peeters A, et al. Effects of physical activity on life expectancy with cardiovascular disease[J]. Arch Intern Med, 2005, 165(20): 2355–2360. doi: 10.1001/archinte.165.20.2355
|
[86] |
Görgens SW, Eckardt K, Jensen J, et al. Exercise and regulation of adipokine and myokine production[J]. Prog Mol Biol Transl Sci, 2015, 135: 313–336. https://www.sciencedirect.com/science/article/abs/pii/S1877117315001349
|
[87] |
Pérez-Martínez P, Mikhailidis DP, Athyros VG, et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: an international panel recommendation[J]. Nutr Rev, 2017, 75(5): 307–326. doi: 10.1093/nutrit/nux014
|
[88] |
Ozemek C, Laddu DR, Lavie CJ, et al. An update on the role of cardiorespiratory fitness, structured exercise and lifestyle physical activity in preventing cardiovascular disease and health risk[J]. Prog Cardiovasc Dis, 2018, 61(5-6): 484–490. doi: 10.1016/j.pcad.2018.11.005
|
[89] |
Smith PJ, Blumenthal JA, Hoffman BM, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials[J]. Psychosom Med, 2010, 72(3): 239–252. doi: 10.1097/PSY.0b013e3181d14633
|
[90] |
Pascoe MC, Parker AG. Physical activity and exercise as a universal depression prevention in young people: a narrative review[J]. Early Interv Psychiatry, 2019, 13(4): 733–739. doi: 10.1111/eip.12737
|
[91] |
Pedersen BK. Physical activity and muscle-brain crosstalk[J]. Nat Rev Endocrinol, 2019, 15(7): 383–392. doi: 10.1038/s41574-019-0174-x
|
[92] |
Vanderlinden J, Boen F, van Uffelen JGZ. Effects of physical activity programs on sleep outcomes in older adults: a systematic review[J]. Int J Behav Nutr Phys Act, 2020, 17(1): 11. doi: 10.1186/s12966-020-0913-3
|
[93] |
Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation[J]. Trends Neurosci, 2007, 30(9): 464–472. doi: 10.1016/j.tins.2007.06.011
|
[94] |
Norheim F, Raastad T, Thiede B, et al. Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training[J]. Am J Physiol Endocrinol Metab, 2011, 301(5): E1013–E1021. doi: 10.1152/ajpendo.00326.2011
|
[95] |
Moon HY, Becke A, Berron D, et al. Running-induced systemic cathepsin B secretion is associated with memory function[J]. Cell Metab, 2016, 24(2): 332–340. doi: 10.1016/j.cmet.2016.05.025
|
[96] |
De la Rosa A, Solana E, Corpas R, et al. Long-term exercise training improves memory in middle-aged men and modulates peripheral levels of BDNF and Cathepsin B[J]. Sci Rep, 2019, 9(1): 3337. doi: 10.1038/s41598-019-40040-8
|
[97] |
Ma C, Ding H, Deng Y, et al. Irisin: a new code uncover the relationship of skeletal muscle and cardiovascular health during exercise[J]. Front Physiol, 2021, 12: 620608. doi: 10.3389/fphys.2021.620608
|
[98] |
Lourenco MV, Frozza RL, de Freitas GB, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models[J]. Nat Med, 2019, 25(1): 165–175. doi: 10.1038/s41591-018-0275-4
|
[99] |
Ruan Q, Zhang L, Ruan J, et al. Detection and quantitation of irisin in human cerebrospinal fluid by tandem mass spectrometry[J]. Peptides, 2018, 103: 60–64. doi: 10.1016/j.peptides.2018.03.013
|
[100] |
EI Hayek L, Khalifeh M, Zibara V, et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF)[J]. J Neurosci, 2019, 39(13): 2369–2382. doi: 10.1523/jneurosci.1661-18.2019
|
[101] |
Kim H, Wrann CD, Jedrychowski M, et al. Irisin mediates effects on bone and fat via αV integrin receptors[J]. Cell, 2018, 175(7): 1756–1768.e17. doi: 10.1016/j.cell.2018.10.025
|
[102] |
Bi J, Zhang J, Ren Y, et al. Irisin reverses intestinal epithelial barrier dysfunction during intestinal injury via binding to the integrin αVβ5 receptor[J]. J Cell Mol Med, 2020, 24(1): 996–1009. doi: 10.1111/jcmm.14811
|
[103] |
Oguri Y, Shinoda K, Kim H, et al. CD81 controls beige fat progenitor cell growth and energy balance via FAK signaling[J]. Cell, 2020, 182(3): 563–577.e20. doi: 10.1016/j.cell.2020.06.021
|
[104] |
Estell EG, Le PT, Vegting Y, et al. Irisin directly stimulates osteoclastogenesis and bone resorption in vitro and in vivo[J]. eLife, 2020, 9: e58172. doi: 10.7554/eLife.58172
|
[105] |
Waseem R, Shamsi A, Mohammad T, et al. FNDC5/Irisin: physiology and pathophysiology[J]. Molecules, 2022, 27(3): 1118. doi: 10.3390/molecules27031118
|
[106] |
Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges[J]. Trends Endocrinol Metab, 2014, 25(2): 89–98. doi: 10.1016/j.tem.2013.10.006
|
[107] |
Chao MV, Rajagopal R, Lee FS. Neurotrophin signalling in health and disease[J]. Clin Sci (Lond), 2006, 110(2): 167–173. doi: 10.1042/CS20050163
|
[108] |
Huang TL, Lee CT, Liu YL. Serum brain-derived neurotrophic factor levels in patients with major depression: effects of antidepressants[J]. J Psychiatr Res, 2008, 42(7): 521–525. doi: 10.1016/j.jpsychires.2007.05.007
|
[109] |
Dean C, Liu H, Staudt T, et al. Distinct subsets of Syt-IV/BDNF vesicles are sorted to axons versus dendrites and recruited to synapses by activity[J]. J Neurosci, 2012, 32(16): 5398–5413. doi: 10.1523/JNEUROSCI.4515-11.2012
|
[110] |
Yang JL, Lin YT, Chuang PC, et al. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1[J]. Neuromol Med, 2014, 16(1): 161–174. doi: 10.1007/s12017-013-8270-x
|
[111] |
Autry AE, Bambah-Mukku D. The role of brain-derived neurotrophic factor in neural circuit development and function[M]//Rubenstein J, Rakic P, Chen B, et al. Synapse Development and Maturation: Comprehensive Developmental Neuroscience. 2nd ed. London: Academic Press, 2020: 443–466.
|
[112] |
Fargali S, Sadahiro M, Jiang C, et al. Role of neurotrophins in the development and function of neural circuits that regulate energy homeostasis[J]. J Mol Neurosci, 2012, 48(3): 654–659. doi: 10.1007/s12031-012-9790-9
|
[113] |
Ishikawa C, Li H, Ogura R, et al. Effects of gravity changes on gene expression of BDNF and serotonin receptors in the mouse brain[J]. PLoS One, 2017, 12(6): e0177833. doi: 10.1371/journal.pone.0177833
|
[114] |
Zsuga J, Biro K, Papp C, et al. The "proactive" model of learning: integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept[J]. Behav Neurosci, 2016, 130(1): 6–18. doi: 10.1037/bne0000116
|
[115] |
Autry AE. Function of brain-derived neurotrophic factor in the hypothalamus: implications for depression pathology[J]. Front Mol Neurosci, 2022, 15: 1028223. doi: 10.3389/fnmol.2022.1028223
|
[116] |
Liang FQ, Sohrabji F, Miranda R, et al. Expression of brain-derived neurotrophic factor and its cognate receptor, TrkB, in the rat suprachiasmatic nucleus[J]. Exp Neurol, 1998, 151(2): 184–193. doi: 10.1006/exnr.1998.6804
|
[117] |
Griffin ÉW, Mullally S, Foley C, et al. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males[J]. Physiol Behav, 2011, 104(5): 934–941. doi: 10.1016/j.physbeh.2011.06.005
|
[118] |
Kobilo T, Liu QR, Gandhi K, et al. Running is the neurogenic and neurotrophic stimulus in environmental enrichment[J]. Learn Mem, 2011, 18(9): 605–609. doi: 10.1101/lm.2283011
|
[119] |
Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition[J]. Eur J Neurosci, 2004, 20(10): 2580–2590. doi: 10.1111/j.1460-9568.2004.03720.x
|
[120] |
Zsuga J, Tajti G, Papp C, et al. FNDC5/irisin, a molecular target for boosting reward-related learning and motivation[J]. Med Hypotheses, 2016, 90: 23–28. doi: 10.1016/j.mehy.2016.02.020
|
[121] |
Liang FQ, Walline R, Earnest DJ. Circadian rhythm of brain-derived neurotrophic factor in the rat suprachiasmatic nucleus[J]. Neurosci Lett, 1998, 242(2): 89–92. doi: 10.1016/S0304-3940(98)00062-7
|
[122] |
Liang FQ, Allen G, Earnest D. Role of brain-derived neurotrophic factor in the circadian regulation of the suprachiasmatic pacemaker by light[J]. J Neurosci, 2000, 20(8): 2978–2987. doi: 10.1523/JNEUROSCI.20-08-02978.2000
|
[123] |
Allen GC, Earnest DJ. Overlap in the distribution of TrkB immunoreactivity and retinohypothalamic tract innervation of the rat suprachiasmatic nucleus[J]. Neurosci Lett, 2005, 376(3): 200–204. doi: 10.1016/j.neulet.2004.11.076
|
[124] |
Michel S, Clark JP, Ding JM, et al. Brain-derived neurotrophic factor and neurotrophin receptors modulate glutamate-induced phase shifts of the suprachiasmatic nucleus[J]. Eur J Neurosci, 2006, 24(4): 1109–1116. doi: 10.1111/j.1460-9568.2006.04972.x
|
[125] |
Serchov T, Heumann R. Constitutive activation of ras in neurons: implications for the regulation of the mammalian circadian clock[J]. Chronobiol Int, 2006, 23(1-2): 191–200. doi: 10.1080/07420520500521970
|
[126] |
Serchov T, Heumann R. Ras activity tunes the period and modulates the entrainment of the suprachiasmatic clock[J]. Front Neurol, 2017, 8: 264. doi: 10.3389/fneur.2017.00264
|
[127] |
Girardet C, Lebrun B, Cabirol-Pol MJ, et al. Brain-derived neurotrophic factor/TrkB signaling regulates daily astroglial plasticity in the suprachiasmatic nucleus: electron-microscopic evidence in mouse[J]. Glia, 2013, 61(7): 1172–1177. doi: 10.1002/glia.22509
|
[128] |
Kim YI, Choi HJ, Colwell CS. Brain-derived neurotrophic factor regulation of N-methyl-D-aspartate receptor-mediated synaptic currents in suprachiasmatic nucleus neurons[J]. J Neurosci Res, 2006, 84(7): 1512–1520. doi: 10.1002/jnr.21063
|
[129] |
Lin SY, Wu K, Levine ES, et al. BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities[J]. Mol Brain Res, 1998, 55(1): 20–27. doi: 10.1016/S0169-328X(97)00349-5
|
[130] |
Carmignoto G, Pizzorusso T, Tia S, et al. Brain-derived neurotrophic factor and nerve growth factor potentiate excitatory synaptic transmission in the rat visual cortex[J]. J Physiol, 1997, 498(1): 153–164. doi: 10.1113/jphysiol.1997.sp021848
|
[131] |
Vanevski F, Xu B. Molecular and neural bases underlying roles of BDNF in the control of body weight[J]. Front Neurosci, 2013, 7: 37. doi: 10.3389/fnins.2013.00037
|
[132] |
Lemarchand E, Maubert E, Haelewyn B, et al. Stressed neurons protect themselves by a tissue-type plasminogen activator-mediated EGFR-dependent mechanism[J]. Cell Death Differ, 2016, 23(1): 123–131. doi: 10.1038/cdd.2015.76
|
[133] |
Zhang W, Shi Y, Peng Y, et al. Neuron activity–induced Wnt signaling up-regulates expression of brain-derived neurotrophic factor in the pain neural circuit[J]. J Biol Chem, 2018, 293(40): 15641–15651. doi: 10.1074/jbc.RA118.002840
|
[134] |
von Gall C, Duffield GE, Hastings MH, et al. CREB in the mouse SCN: a molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access[J]. J Neurosci, 1998, 18(24): 10389–10397. doi: 10.1523/JNEUROSCI.18-24-10389.1998
|
[135] |
Gau D, Lemberger T, von Gall C, et al. Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock[J]. Neuron, 2002, 34(2): 245–253. doi: 10.1016/S0896-6273(02)00656-6
|
[136] |
Badura L, Swanson T, Adamowicz W, et al. An inhibitor of casein kinase Iϵ induces phase delays in circadian rhythms under free-running and entrained conditions[J]. J Pharmacol Exp Ther, 2007, 322(2): 730–738. doi: 10.1124/jpet.107.122846
|
[137] |
Lee B, Almad A, Butcher GQ, et al. Protein kinase C modulates the phase-delaying effects of light in the mammalian circadian clock[J]. Eur J Neurosci, 2007, 26(2): 451–462. doi: 10.1111/j.1460-9568.2007.05664.x
|
[138] |
Bonsall DR, Lall GS. Protein kinase C differentially regulates entrainment of the mammalian circadian clock[J]. Chronobiol Int, 2013, 30(4): 460–469. doi: 10.3109/07420528.2012.741170
|
[1] | Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387 |
[2] | Tiwari-Heckler Shilpa, Jiang Z. Gordon, Popov Yury, J. Mukamal Kenneth. Daily high-dose aspirin does not lower APRI in the Aspirin-Myocardial Infarction Study[J]. The Journal of Biomedical Research, 2020, 34(2): 139-142. DOI: 10.7555/JBR.33.20190041 |
[3] | Wu Fang, Liu Feng, Guan Yichun, Du Jiangbo, Tan Jichun, Lv Hong, Lu Qun, Tao Shiyao, Huang Lei, Zhou Kun, Xia Yankai, Wang Xinru, Shen Hongbing, Ling Xiufeng, Diao Feiyang, Hu Zhibin, Jin Guangfu. A nomogram predicting clinical pregnancy in the first fresh embryo transfer for women undergoing in vitro fertilization and intracytoplasmic sperm injection (IVF/ICSI) treatments[J]. The Journal of Biomedical Research, 2019, 33(6): 422-429. DOI: 10.7555/JBR.33.20190065 |
[4] | Yao Daokuo, Gao Xiangyu, Zhao Huiqiang, Chen Hui, Wang Lexin. Multivessel coronary artery ectasia and severe calcification in a patient with pheochromocytoma: a case report[J]. The Journal of Biomedical Research, 2019, 33(1): 69-72. DOI: 10.7555/JBR.32.20170047 |
[5] | Guo Chen, Yunxia Zuo, Lei Yang, Elena Chung, Maxime Cannesson. Hemodynamic monitoring and management of patients undergoing high-risk surgery: a survey among Chinese anesthesiologists[J]. The Journal of Biomedical Research, 2014, 28(5): 376-382. DOI: 10.7555/JBR.28.20130197 |
[6] | Jianjin Tang, Zemu Wang, Dingguo Zhang, Liansheng Wang. Rapid progression of nonculprit coronary lesions six weeks after successful primary PCI in culprit artery: a case report[J]. The Journal of Biomedical Research, 2014, 28(2): 146-150. DOI: 10.7555/JBR.28.20130155 |
[7] | Xuezhong Wang, Xiaoxuan Gong, Tiantian Zhu, Qiu Zhang, Yangyang Zhang, Xiaowei Wang, Zhijian Yang, Chunjian Li. Clopidogrel improves aspirin response after off-pump coronary artery bypass surgery[J]. The Journal of Biomedical Research, 2014, 28(2): 108-113. DOI: 10.7555/JBR.28.20120139 |
[8] | Min Zhang, Huiwei He, Ze-Mu Wang, Zhihui Xu, Ningtian Zhou, Zhengxian Tao, Bo Chen, Chunjian Li, Tiebing Zhu, Di Yang, Liansheng Wang, Zhijian Yang. Diagnostic and prognostic value of minor elevated cardiac troponin levels for percutaneous coronary intervention-related myocardial injury: a prospective, single-center and double-blind study[J]. The Journal of Biomedical Research, 2014, 28(2): 98-107. DOI: 10.7555/JBR.28.20130124 |
[9] | Fang Cui, Yusheng Ren, Heng Jin, Bo Cui. Rehabilitation training improves exercise tolerance after percutaneous coronary intervention[J]. The Journal of Biomedical Research, 2012, 26(4): 248-252. DOI: 10.7555/JBR.26.20110119 |
[10] | Chunjian Li, Zhijian Yang, Kejiang Cao. Retrieval of dislodged coronary stent from left renal artery by gooseneck snare[J]. The Journal of Biomedical Research, 2010, 24(6): 479-482. DOI: 10.1016/S1674-8301(10)60064-4 |