Citation: | Liming Gou, Gang Yang, Sujuan Ma, Tong Ding, Luan Sun, Fang Liu, Jin Huang, Wei Gao. Galectin-14 promotes hepatocellular carcinoma tumor growth via enhancing heparan sulfate proteoglycan modification[J]. The Journal of Biomedical Research, 2023, 37(6): 418-430. DOI: 10.7555/JBR.37.20230085 |
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy and lacks effective treatment. Bulk-sequencing of different gene transcripts by comparing HCC tissues and adjacent normal tissues provides some clues for investigating the mechanisms or identifying potential targets for tumor progression. However, genes that are exclusively expressed in a subpopulation of HCC may not be enriched or detected through such a screening. In the current study, we performed a single cell-clone-based screening and identified galectin-14 as an essential molecule in the regulation of tumor growth. The aberrant expression of galectin-14 was significantly associated with a poor overall survival of liver cancer patients with database analysis. Knocking down galectin-14 inhibited the proliferation of tumor growth, whereas overexpressing galectin-14 promoted tumor growth in vivo. Non-targeted metabolomics analysis indicated that knocking down galectin-14 decreased glycometabolism; specifically that glycoside synthesis was significantly changed. Further study found that galectin-14 promoted the expression of cell surface heparan sulfate proteoglycans (HSPGs) that functioned as co-receptors, thereby increasing the responsiveness of HCC cells to growth factors, such as epidermal growth factor and transforming growth factor-alpha. In conclusion, the current study identifies a novel HCC-specific molecule galectin-14, which increases the expression of cell surface HSPGs and the uptake of growth factors to promote HCC cell proliferation.
The current study was supported by the National Natural Science Foundation of China (Grant Nos. 81972284 and 82273239), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 22KJB310001), and Nanjing Medical University Science and Technology Development Foundation (Grant Nos. NMUB20220050 and NMUB20210006).
We thank our colleagues Dr. Yujie Sun for providing cell lines; Dr. Fan Lin and Dr. Bin Xue for helping with the reagents.
CLC number: R735.7, Document code: A
The authors reported no conflict of interests.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209–249. doi: 10.3322/caac.21660
|
[2] |
Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400(10360): 1345–1362. doi: 10.1016/S0140-6736(22)01200-4
|
[3] |
Fujiwara N, Friedman SL, Goossens N, et al. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine[J]. J Hepatol, 2018, 68(3): 526–549. doi: 10.1016/j.jhep.2017.09.016
|
[4] |
Huang A, Yang X, Chung W, et al. Targeted therapy for hepatocellular carcinoma[J]. Signal Transduct Target Ther, 2020, 5(1): 146. doi: 10.1038/s41392-020-00264-x
|
[5] |
Vibert E, Schwartz M, Olthoff KM. Advances in resection and transplantation for hepatocellular carcinoma[J]. J Hepatol, 2020, 72(2): 262–276. doi: 10.1016/j.jhep.2019.11.017
|
[6] |
Llovet JM, Pinyol R, Kelley RK, et al. Molecular pathogenesis and systemic therapies for hepatocellular carcinoma[J]. Nat Cancer, 2022, 3(4): 386–401. doi: 10.1038/s43018-022-00357-2
|
[7] |
Xu L, He M, Dai Z, et al. Genomic and transcriptional heterogeneity of multifocal hepatocellular carcinoma[J]. Ann Oncol, 2019, 30(6): 990–997. doi: 10.1093/annonc/mdz103
|
[8] |
Wilson WR, Hay MP. Targeting hypoxia in cancer therapy[J]. Nat Rev Cancer, 2011, 11(6): 393–410. doi: 10.1038/nrc3064
|
[9] |
Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer?[J]. Nat Rev Cancer, 2012, 12(5): 323–334. doi: 10.1038/nrc3261
|
[10] |
Levitin HM, Yuan J, Sims PA. Single-cell transcriptomic analysis of tumor heterogeneity[J]. Trends Cancer, 2018, 4(4): 264–268. doi: 10.1016/j.trecan.2018.02.003
|
[11] |
Reily C, Stewart TJ, Renfrow MB, et al. Glycosylation in health and disease[J]. Nat Rev Nephrol, 2019, 15(6): 346–366. doi: 10.1038/s41581-019-0129-4
|
[12] |
Thiemann S, Baum LG. Galectins and immune responses-just how do they do those things they do?[J]. Annu Rev Immunol, 2016, 34: 243–264. doi: 10.1146/annurev-immunol-041015-055402
|
[13] |
Gordon-Alonso M, Bruger AM, Van Der Bruggen P. Extracellular galectins as controllers of cytokines in hematological cancer[J]. Blood, 2018, 132(5): 484–491. doi: 10.1182/blood-2018-04-846014
|
[14] |
Xu W, Huang Q, Huang A. Emerging role of galectin family in inflammatory autoimmune diseases[J]. Autoimmun Rev, 2021, 20(7): 102847. doi: 10.1016/j.autrev.2021.102847
|
[15] |
An Y, Xu S, Liu Y, et al. Role of galectins in the liver diseases: a systematic review and meta-analysis[J]. Front Med, 2021, 8: 744518. doi: 10.3389/fmed.2021.744518
|
[16] |
Leung Z, Ko FCF, Tey SK, et al. Galectin-1 promotes hepatocellular carcinoma and the combined therapeutic effect of OTX008 galectin-1 inhibitor and sorafenib in tumor cells[J]. J Exp Clin Cancer Res, 2019, 38(1): 423. doi: 10.1186/s13046-019-1402-x
|
[17] |
Setayesh T, Colquhoun SD, Wan YJY. Overexpression of Galectin-1 and Galectin-3 in hepatocellular carcinoma[J]. Liver Res, 2020, 4(4): 173–179. doi: 10.1016/j.livres.2020.11.001
|
[18] |
Serizawa N, Tian J, Fukada H, et al. Galectin 3 regulates HCC cell invasion by RhoA and MLCK activation[J]. Lab Invest, 2015, 95(10): 1145–1156. doi: 10.1038/labinvest.2015.77
|
[19] |
Jiao J, Jiao D, Yang F, et al. Galectin-9 expression predicts poor prognosis in hepatitis B virus-associated hepatocellular carcinoma[J]. Aging, 2022, 14(4): 1879–1890. doi: 10.18632/aging.203909
|
[20] |
Sideras K, De Man RA, Harrington SM, et al. Circulating levels of PD-L1 and Galectin-9 are associated with patient survival in surgically treated Hepatocellular Carcinoma independent of their intra-tumoral expression levels[J]. Sci Rep, 2019, 9(1): 10677. doi: 10.1038/s41598-019-47235-z
|
[21] |
Noborn F, Nilsson J, Larson G. Site-specific glycosylation of proteoglycans: A revisited frontier in proteoglycan research[J]. Matrix Biol, 2022, 111: 289–306. doi: 10.1016/j.matbio.2022.07.002
|
[22] |
Fawcett JW, Fyhn M, Jendelova P, et al. The extracellular matrix and perineuronal nets in memory[J]. Mol Psychiatry, 2022, 27(8): 3192–3203. doi: 10.1038/s41380-022-01634-3
|
[23] |
Li N, Wei L, Liu X, et al. A frizzled-like cysteine-rich domain in glypican-3 mediates wnt binding and regulates hepatocellular carcinoma tumor growth in mice[J]. Hepatology, 2019, 70(4): 1231–1245. doi: 10.1002/hep.30646
|
[24] |
Ren Z, Spaargaren M, Pals ST. Syndecan-1 and stromal heparan sulfate proteoglycans: key moderators of plasma cell biology and myeloma pathogenesis[J]. Blood, 2021, 137(13): 1713–1718. doi: 10.1182/blood.2020008188
|
[25] |
Ndlovu R, Deng LC, Wu J, et al. Fibroblast growth factor 10 in pancreas development and pancreatic cancer[J]. Front Genet, 2018, 9: 482. doi: 10.3389/fgene.2018.00482
|
[26] |
Rushton E, Kopke DL, Broadie K. Extracellular heparan sulfate proteoglycans and glycan-binding lectins orchestrate trans-synaptic signaling[J]. J Cell Sci, 2020, 133(15): jcs244186. doi: 10.1242/jcs.244186
|
[27] |
Pe'er D, Ogawa S, Elhanani O, et al. Tumor heterogeneity[J]. Cancer Cell, 2021, 39(8): 1015–1017. doi: 10.1016/j.ccell.2021.07.009
|
[28] |
Singh S, Pandey S, Chawla AS, et al. Dietary 2-deoxy-D-glucose impairs tumour growth and metastasis by inhibiting angiogenesis[J]. Eur J Cancer, 2019, 123: 11–24. doi: 10.1016/j.ejca.2019.09.005
|
[29] |
Pacifici M. Hereditary multiple exostoses: new insights into pathogenesis, clinical complications, and potential treatments[J]. Curr Osteoporos Rep, 2017, 15(3): 142–152. doi: 10.1007/s11914-017-0355-2
|
[30] |
Knelson EH, Nee JC, Blobe GC. Heparan sulfate signaling in cancer[J]. Trends Biochem Sci, 2014, 39(6): 277–288. doi: 10.1016/j.tibs.2014.03.001
|
[31] |
Losic B, Craig AJ, Villacorta-Martin C, et al. Intratumoral heterogeneity and clonal evolution in liver cancer[J]. Nat Commun, 2020, 11(1): 291. doi: 10.1038/s41467-019-14050-z
|
[32] |
Misevic G. Single-cell omics analyses with single molecular detection: challenges and perspectives[J]. J Biomed Res, 2021, 35(4): 264–276. doi: 10.7555/JBR.35.20210026
|
[33] |
Rodriguez-Meira A, Buck G, Clark SA, et al. Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing[J]. Mol Cell, 2019, 73(6): 1292–1305.e8. doi: 10.1016/j.molcel.2019.01.009
|
[34] |
Vitale I, Shema E, Loi S, et al. Intratumoral heterogeneity in cancer progression and response to immunotherapy[J]. Nat Med, 2021, 27(2): 212–224. doi: 10.1038/s41591-021-01233-9
|
[35] |
Zhou Y, Yang D, Yang QC, et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma[J]. Nat Commun, 2020, 11(1): 6322. doi: 10.1038/s41467-020-20059-6
|
[36] |
Yang R, Rabinovich GA, Liu F. Galectins: structure, function and therapeutic potential[J]. Expert Rev Mol Med, 2008, 10: e17. doi: 10.1017/S1462399408000719
|
[37] |
Martin-Saldaña S, Chevalier MT, Pandit A. Therapeutic potential of targeting galectins–A biomaterials-focused perspective[J]. Biomaterials, 2022, 286: 121585. doi: 10.1016/j.biomaterials.2022.121585
|
[38] |
Si Y, Li Y, Yang T, et al. Structure–function studies of galectin-14, an important effector molecule in embryology[J]. FEBS J, 2021, 288(3): 1041–1055. doi: 10.1111/febs.15441
|
[1] | Siying Wang, Saiya Wang, Wenhan Cai, Jie Wang, Jianan Huang, Qing Yang, Hui Bai, Bin Jiang, Jingjing Ben, Hanwen Zhang, Xudong Zhu, Xiaoyu Li, Qi Chen. Macrophage scavenger receptor A1 promotes skeletal muscle regeneration after hindlimb ischemia[J]. The Journal of Biomedical Research, 2025, 39(1): 23-35. DOI: 10.7555/JBR.38.20240117 |
[2] | Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387 |
[3] | Xiaochen Huang, Jiaojiao Guo, Tao Li, Lizhou Jia, Xiaojun Tang, Jin Zhu, Qi Tang, Zhenqing Feng. c-Met-targeted chimeric antigen receptor T cells inhibit hepatocellular carcinoma cells in vitro and in vivo[J]. The Journal of Biomedical Research, 2022, 36(1): 10-21. DOI: 10.7555/JBR.35.20200207 |
[4] | Xiaozhi Wang, Liang Wang, Liping Miao, Rong Zhao, Yanhu Wu, Xiangqing Kong. CC-chemokine receptor 7 and its ligand CCL19 promote mitral valve interstitial cell migration and repair[J]. The Journal of Biomedical Research, 2015, 29(6): 456-464. DOI: 10.7555/JBR.29.20150031 |
[5] | Nan Cheng, Xiaoqiao Hu, Tian Tian, Wei Lu. PKMf knockdown disrupts post-ischemic long-term potentiation via inhibiting postsynaptic expression of aminomethyl phosphonic acid receptors[J]. The Journal of Biomedical Research, 2015, 29(3): 241-249. DOI: 10.7555/JBR.28.20140033 |
[6] | Xiaojun Tang, Yan Zhou, Wenjie Li, Qi Tang, Renjie Chen, Jin Zhu, Zhenqing Feng. T cells expressing a LMP1-specific chimeric antigen receptor mediate antitumor effects against LMP1-positive nasopharyngeal carcinoma cells in vitro and in vivo[J]. The Journal of Biomedical Research, 2014, 28(6): 468-475. DOI: 10.7555/JBR.28.20140066 |
[7] | Michelle Bamji-Mirza, Wandong Zhang, Zemin Yao. Expression of human hepatic lipase negatively impacts apolipoprotein A-I production in primary hepatocytes from Lipc-null mice[J]. The Journal of Biomedical Research, 2014, 28(3): 201-212. DOI: 10.7555/JBR.28.20130184 |
[8] | Yun Pan, Chongqi Sun, Mingde Huang, Yao Liu, Fuzhen Qi, Li Liu, Juan Wen, Jibin Liu, Kaipeng Xie, Hongxia Ma, Zhibin Hu, Hongbing Shen. A genetic variant in pseudogene E2F3P1 contributes to prognosis of hepatocellular carcinoma[J]. The Journal of Biomedical Research, 2014, 28(3): 194-200. DOI: 10.7555/JBR.28.20140052 |
[9] | Xiaodong Yang, Ping Huang, Feng Wang, Zekuan Xu, Xiaonin Wang. Growth hormone receptor expression in human primary gastric adenocarcinoma[J]. The Journal of Biomedical Research, 2012, 26(5): 307-314. DOI: 10.7555/JBR.26.20110133 |
[10] | Chen Tao, Li Dan, Fuya ling, Gongzi Peng. In vivo and in vitro effects of QHF combined with chemotherapy on hepatocellular carcinoma[J]. The Journal of Biomedical Research, 2010, 24(2): 161-168. |