4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Liming Gou, Gang Yang, Sujuan Ma, Tong Ding, Luan Sun, Fang Liu, Jin Huang, Wei Gao. Galectin-14 promotes hepatocellular carcinoma tumor growth via enhancing heparan sulfate proteoglycan modification[J]. The Journal of Biomedical Research, 2023, 37(6): 418-430. DOI: 10.7555/JBR.37.20230085
Citation: Liming Gou, Gang Yang, Sujuan Ma, Tong Ding, Luan Sun, Fang Liu, Jin Huang, Wei Gao. Galectin-14 promotes hepatocellular carcinoma tumor growth via enhancing heparan sulfate proteoglycan modification[J]. The Journal of Biomedical Research, 2023, 37(6): 418-430. DOI: 10.7555/JBR.37.20230085

Galectin-14 promotes hepatocellular carcinoma tumor growth via enhancing heparan sulfate proteoglycan modification

More Information
  • Corresponding author:

    Jin Huang, Department of Gastroenterology, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou Medical Center of Nanjing Medical University, 68 Gehu Road, Changzhou, Jiangsu 213000, China. Tel/Fax: +86-519-81087722/+86-519-81087711, E-mail: hj042153@hotmail.com

    Wei Gao, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China. Tel/Fax: +86-25-86869471/+86-25-86869471, E-mail: gao@njmu.edu.cn

  • △These authors contributed equally to this work.

  • Received Date: April 10, 2023
  • Revised Date: May 25, 2023
  • Accepted Date: May 29, 2023
  • Available Online: November 14, 2023
  • Published Date: November 14, 2023
  • Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy and lacks effective treatment. Bulk-sequencing of different gene transcripts by comparing HCC tissues and adjacent normal tissues provides some clues for investigating the mechanisms or identifying potential targets for tumor progression. However, genes that are exclusively expressed in a subpopulation of HCC may not be enriched or detected through such a screening. In the current study, we performed a single cell-clone-based screening and identified galectin-14 as an essential molecule in the regulation of tumor growth. The aberrant expression of galectin-14 was significantly associated with a poor overall survival of liver cancer patients with database analysis. Knocking down galectin-14 inhibited the proliferation of tumor growth, whereas overexpressing galectin-14 promoted tumor growth in vivo. Non-targeted metabolomics analysis indicated that knocking down galectin-14 decreased glycometabolism; specifically that glycoside synthesis was significantly changed. Further study found that galectin-14 promoted the expression of cell surface heparan sulfate proteoglycans (HSPGs) that functioned as co-receptors, thereby increasing the responsiveness of HCC cells to growth factors, such as epidermal growth factor and transforming growth factor-alpha. In conclusion, the current study identifies a novel HCC-specific molecule galectin-14, which increases the expression of cell surface HSPGs and the uptake of growth factors to promote HCC cell proliferation.

  • The current study was supported by the National Natural Science Foundation of China (Grant Nos. 81972284 and 82273239), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 22KJB310001), and Nanjing Medical University Science and Technology Development Foundation (Grant Nos. NMUB20220050 and NMUB20210006).

    We thank our colleagues Dr. Yujie Sun for providing cell lines; Dr. Fan Lin and Dr. Bin Xue for helping with the reagents.

    CLC number: R735.7, Document code: A

    The authors reported no conflict of interests.

  • [1]
    Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209–249. doi: 10.3322/caac.21660
    [2]
    Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400(10360): 1345–1362. doi: 10.1016/S0140-6736(22)01200-4
    [3]
    Fujiwara N, Friedman SL, Goossens N, et al. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine[J]. J Hepatol, 2018, 68(3): 526–549. doi: 10.1016/j.jhep.2017.09.016
    [4]
    Huang A, Yang X, Chung W, et al. Targeted therapy for hepatocellular carcinoma[J]. Signal Transduct Target Ther, 2020, 5(1): 146. doi: 10.1038/s41392-020-00264-x
    [5]
    Vibert E, Schwartz M, Olthoff KM. Advances in resection and transplantation for hepatocellular carcinoma[J]. J Hepatol, 2020, 72(2): 262–276. doi: 10.1016/j.jhep.2019.11.017
    [6]
    Llovet JM, Pinyol R, Kelley RK, et al. Molecular pathogenesis and systemic therapies for hepatocellular carcinoma[J]. Nat Cancer, 2022, 3(4): 386–401. doi: 10.1038/s43018-022-00357-2
    [7]
    Xu L, He M, Dai Z, et al. Genomic and transcriptional heterogeneity of multifocal hepatocellular carcinoma[J]. Ann Oncol, 2019, 30(6): 990–997. doi: 10.1093/annonc/mdz103
    [8]
    Wilson WR, Hay MP. Targeting hypoxia in cancer therapy[J]. Nat Rev Cancer, 2011, 11(6): 393–410. doi: 10.1038/nrc3064
    [9]
    Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer?[J]. Nat Rev Cancer, 2012, 12(5): 323–334. doi: 10.1038/nrc3261
    [10]
    Levitin HM, Yuan J, Sims PA. Single-cell transcriptomic analysis of tumor heterogeneity[J]. Trends Cancer, 2018, 4(4): 264–268. doi: 10.1016/j.trecan.2018.02.003
    [11]
    Reily C, Stewart TJ, Renfrow MB, et al. Glycosylation in health and disease[J]. Nat Rev Nephrol, 2019, 15(6): 346–366. doi: 10.1038/s41581-019-0129-4
    [12]
    Thiemann S, Baum LG. Galectins and immune responses-just how do they do those things they do?[J]. Annu Rev Immunol, 2016, 34: 243–264. doi: 10.1146/annurev-immunol-041015-055402
    [13]
    Gordon-Alonso M, Bruger AM, Van Der Bruggen P. Extracellular galectins as controllers of cytokines in hematological cancer[J]. Blood, 2018, 132(5): 484–491. doi: 10.1182/blood-2018-04-846014
    [14]
    Xu W, Huang Q, Huang A. Emerging role of galectin family in inflammatory autoimmune diseases[J]. Autoimmun Rev, 2021, 20(7): 102847. doi: 10.1016/j.autrev.2021.102847
    [15]
    An Y, Xu S, Liu Y, et al. Role of galectins in the liver diseases: a systematic review and meta-analysis[J]. Front Med, 2021, 8: 744518. doi: 10.3389/fmed.2021.744518
    [16]
    Leung Z, Ko FCF, Tey SK, et al. Galectin-1 promotes hepatocellular carcinoma and the combined therapeutic effect of OTX008 galectin-1 inhibitor and sorafenib in tumor cells[J]. J Exp Clin Cancer Res, 2019, 38(1): 423. doi: 10.1186/s13046-019-1402-x
    [17]
    Setayesh T, Colquhoun SD, Wan YJY. Overexpression of Galectin-1 and Galectin-3 in hepatocellular carcinoma[J]. Liver Res, 2020, 4(4): 173–179. doi: 10.1016/j.livres.2020.11.001
    [18]
    Serizawa N, Tian J, Fukada H, et al. Galectin 3 regulates HCC cell invasion by RhoA and MLCK activation[J]. Lab Invest, 2015, 95(10): 1145–1156. doi: 10.1038/labinvest.2015.77
    [19]
    Jiao J, Jiao D, Yang F, et al. Galectin-9 expression predicts poor prognosis in hepatitis B virus-associated hepatocellular carcinoma[J]. Aging, 2022, 14(4): 1879–1890. doi: 10.18632/aging.203909
    [20]
    Sideras K, De Man RA, Harrington SM, et al. Circulating levels of PD-L1 and Galectin-9 are associated with patient survival in surgically treated Hepatocellular Carcinoma independent of their intra-tumoral expression levels[J]. Sci Rep, 2019, 9(1): 10677. doi: 10.1038/s41598-019-47235-z
    [21]
    Noborn F, Nilsson J, Larson G. Site-specific glycosylation of proteoglycans: A revisited frontier in proteoglycan research[J]. Matrix Biol, 2022, 111: 289–306. doi: 10.1016/j.matbio.2022.07.002
    [22]
    Fawcett JW, Fyhn M, Jendelova P, et al. The extracellular matrix and perineuronal nets in memory[J]. Mol Psychiatry, 2022, 27(8): 3192–3203. doi: 10.1038/s41380-022-01634-3
    [23]
    Li N, Wei L, Liu X, et al. A frizzled-like cysteine-rich domain in glypican-3 mediates wnt binding and regulates hepatocellular carcinoma tumor growth in mice[J]. Hepatology, 2019, 70(4): 1231–1245. doi: 10.1002/hep.30646
    [24]
    Ren Z, Spaargaren M, Pals ST. Syndecan-1 and stromal heparan sulfate proteoglycans: key moderators of plasma cell biology and myeloma pathogenesis[J]. Blood, 2021, 137(13): 1713–1718. doi: 10.1182/blood.2020008188
    [25]
    Ndlovu R, Deng LC, Wu J, et al. Fibroblast growth factor 10 in pancreas development and pancreatic cancer[J]. Front Genet, 2018, 9: 482. doi: 10.3389/fgene.2018.00482
    [26]
    Rushton E, Kopke DL, Broadie K. Extracellular heparan sulfate proteoglycans and glycan-binding lectins orchestrate trans-synaptic signaling[J]. J Cell Sci, 2020, 133(15): jcs244186. doi: 10.1242/jcs.244186
    [27]
    Pe'er D, Ogawa S, Elhanani O, et al. Tumor heterogeneity[J]. Cancer Cell, 2021, 39(8): 1015–1017. doi: 10.1016/j.ccell.2021.07.009
    [28]
    Singh S, Pandey S, Chawla AS, et al. Dietary 2-deoxy-D-glucose impairs tumour growth and metastasis by inhibiting angiogenesis[J]. Eur J Cancer, 2019, 123: 11–24. doi: 10.1016/j.ejca.2019.09.005
    [29]
    Pacifici M. Hereditary multiple exostoses: new insights into pathogenesis, clinical complications, and potential treatments[J]. Curr Osteoporos Rep, 2017, 15(3): 142–152. doi: 10.1007/s11914-017-0355-2
    [30]
    Knelson EH, Nee JC, Blobe GC. Heparan sulfate signaling in cancer[J]. Trends Biochem Sci, 2014, 39(6): 277–288. doi: 10.1016/j.tibs.2014.03.001
    [31]
    Losic B, Craig AJ, Villacorta-Martin C, et al. Intratumoral heterogeneity and clonal evolution in liver cancer[J]. Nat Commun, 2020, 11(1): 291. doi: 10.1038/s41467-019-14050-z
    [32]
    Misevic G. Single-cell omics analyses with single molecular detection: challenges and perspectives[J]. J Biomed Res, 2021, 35(4): 264–276. doi: 10.7555/JBR.35.20210026
    [33]
    Rodriguez-Meira A, Buck G, Clark SA, et al. Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing[J]. Mol Cell, 2019, 73(6): 1292–1305.e8. doi: 10.1016/j.molcel.2019.01.009
    [34]
    Vitale I, Shema E, Loi S, et al. Intratumoral heterogeneity in cancer progression and response to immunotherapy[J]. Nat Med, 2021, 27(2): 212–224. doi: 10.1038/s41591-021-01233-9
    [35]
    Zhou Y, Yang D, Yang QC, et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma[J]. Nat Commun, 2020, 11(1): 6322. doi: 10.1038/s41467-020-20059-6
    [36]
    Yang R, Rabinovich GA, Liu F. Galectins: structure, function and therapeutic potential[J]. Expert Rev Mol Med, 2008, 10: e17. doi: 10.1017/S1462399408000719
    [37]
    Martin-Saldaña S, Chevalier MT, Pandit A. Therapeutic potential of targeting galectins–A biomaterials-focused perspective[J]. Biomaterials, 2022, 286: 121585. doi: 10.1016/j.biomaterials.2022.121585
    [38]
    Si Y, Li Y, Yang T, et al. Structure–function studies of galectin-14, an important effector molecule in embryology[J]. FEBS J, 2021, 288(3): 1041–1055. doi: 10.1111/febs.15441
  • Related Articles

    [1]Yuetong Chen, Chen Li, Yi Shi, Jiali Dai, Yixuan Meng, Shuwei Li, Cuiju Tang, Dongying Gu, Jinfei Chen. Identification of common genetic variants in KCNQ family genes associated with gastric cancer survival in a Chinese population[J]. The Journal of Biomedical Research, 2025, 39(1): 76-86. DOI: 10.7555/JBR.38.20240040
    [2]Yujuan Zhang, Kai Lu, Xu Wu, Hanting Liu, Junyi Xin, Xiaowei Wang, Weida Gong, Qinghong Zhao, Meilin Wang, Haiyan Chu, Mulong Du, Guoquan Tao, Zhengdong Zhang. Genetic variants in the Hedgehog signaling pathway genes are associated with gastric cancer risk in a Chinese Han population[J]. The Journal of Biomedical Research, 2022, 36(1): 22-31. DOI: 10.7555/JBR.35.20210091
    [3]Qiu Jinchun, Guo Hongli, Li Ling, Xu Zeyue, Xu Zejun, Jing Xia, Hu Yahui, Wen Xiaoyi, Chen Feng, Lu Xiaopeng. Valproic acid therapy decreases serum 25-hydroxyvitamin D level in female infants and toddlers with epilepsy— a pilot longitudinal study[J]. The Journal of Biomedical Research, 2021, 35(1): 61-67. DOI: 10.7555/JBR.34.20200057
    [4]Ma Hongxia, Shen Hongbing. From human genome epidemiology to systems epidemiology: current progress and future perspective[J]. The Journal of Biomedical Research, 2020, 34(5): 323-327. DOI: 10.7555/JBR.34.20200027
    [5]Naureen Javeed, Debabrata Mukhopadhyay. Exosomes and their role in the micro-/macro-environment: a comprehensive review[J]. The Journal of Biomedical Research, 2017, 31(5): 386-394. DOI: 10.7555/JBR.30.20150162
    [6]So-Hye Hong, Jae-Eon Lee, Hong Sung Kim, Young-Jin Jung, DaeYoun Hwang, Jae Ho Lee, Seung Yun Yang, Seung-Chul Kim, Seong-Keun Cho, Beum-Soo An. Effect of vitamin D3 on production of progesterone in porcine granulosa cells by regulation of steroidogenic enzymes[J]. The Journal of Biomedical Research, 2016, 30(3): 203-208. DOI: 10.7555/JBR.30.2016K0012
    [7]Rezvan Hashemi, Sakineh Shab Bidar, Moloud Payab, Ramin Heshmat, Ahmad Reza Dorosti-Motlagh. Urgent need of vitamin D supplementation among Iranian elderly: a cross-sectional study[J]. The Journal of Biomedical Research, 2014, 28(6): 509-512. DOI: 10.7555/JBR.28.20140089
    [8]Nuan Wang, Xianming Chen, Deqin Geng, Hongli Huang, Hao Zhou. Ginkgo biloba leaf extract improves the cognitive abilities of rats with D-galactose induced dementia[J]. The Journal of Biomedical Research, 2013, 27(1): 29-36. DOI: 10.7555/JBR.27.20120047
    [9]Min Zhang, Yan Zhang, Shuaishuai Zhu, Xiaoyu Li, Qing Yang, Hui Bai, Qi Chen. Genetic variants of the class A scavenger receptor gene are associated with coronary artery disease in Chinese[J]. The Journal of Biomedical Research, 2012, 26(6): 418-424. DOI: 10.7555/JBR.26.20110116
    [10]Hua Huang, Juan Wu, Guangfu Jin, Hanze Zhang, Yanbing Ding, Zhaolai Hua, Yan Zhou, Yan Xue, Yan Lu, Zhibin Hu, Yaochu Xu, Hongbing Shen. A 5'-flanking region polymorphism in toll-like receptor 4 is associated with gastric cancer in a Chinese population[J]. The Journal of Biomedical Research, 2010, 24(2): 100-106.
  • Other Related Supplements

  • Cited by

    Periodical cited type(27)

    1. Boda VK, Yasmen N, Jiang J, et al. Pathophysiological significance and modulation of the transient receptor potential canonical 3 ion channel. Med Res Rev, 2024, 44(6): 2510-2544. DOI:10.1002/med.22048
    2. Agrawal K, Asthana S, Kumar D. Role of Oxidative Stress in Metabolic Reprogramming of Brain Cancer. Cancers (Basel), 2023, 15(20): 4920. DOI:10.3390/cancers15204920
    3. Zhou Y, Pereira G, Tang Y, et al. 3D Porous Scaffold-Based High-Throughput Platform for Cancer Drug Screening. Pharmaceutics, 2023, 15(6): 1691. DOI:10.3390/pharmaceutics15061691
    4. Safa AR. Drug and apoptosis resistance in cancer stem cells: a puzzle with many pieces. Cancer Drug Resist, 2022, 5(4): 850-872. DOI:10.20517/cdr.2022.20
    5. Gal O, Betzer O, Rousso-Noori L, et al. Antibody Delivery into the Brain by Radiosensitizer Nanoparticles for Targeted Glioblastoma Therapy. J Nanotheranostics, 2022, 3(4): 177-188. DOI:10.3390/jnt3040012
    6. Scioli MG, Terriaca S, Fiorelli E, et al. Extracellular Vesicles and Cancer Stem Cells in Tumor Progression: New Therapeutic Perspectives. Int J Mol Sci, 2021, 22(19): 10572. DOI:10.3390/ijms221910572
    7. Keyvani-Ghamsari S, Khorsandi K, Rasul A, et al. Current understanding of epigenetics mechanism as a novel target in reducing cancer stem cells resistance. Clin Epigenetics, 2021, 13(1): 120. DOI:10.1186/s13148-021-01107-4
    8. Safa AR. Resistance to drugs and cell death in cancer stem cells (CSCs). J Transl Sci, 2020, 6(3): 341. DOI:10.15761/jts.1000341
    9. Chandimali N, Koh H, Kim J, et al. BRM270 targets cancer stem cells and augments chemo-sensitivity in cancer. Oncol Lett, 2020, 20(4): 103. DOI:10.3892/ol.2020.11964
    10. Mukherjee S. Quiescent stem cell marker genes in glioma gene networks are sufficient to distinguish between normal and glioblastoma (GBM) samples. Sci Rep, 2020, 10(1): 10937. DOI:10.1038/s41598-020-67753-5
    11. Zhou JJ, Xiao Y, Li H, et al. Overexpression of Malic Enzyme 2 Indicates Pathological and Clinical Significance in Oral Squamous Cell Carcinoma. Int J Med Sci, 2020, 17(6): 799-806. DOI:10.7150/ijms.43832
    12. Sun Z, Wang L, Zhou Y, et al. Glioblastoma Stem Cell-Derived Exosomes Enhance Stemness and Tumorigenicity of Glioma Cells by Transferring Notch1 Protein. Cell Mol Neurobiol, 2020, 40(5): 767-784. DOI:10.1007/s10571-019-00771-8
    13. Zhang Q, Xu B, Chen J, et al. Clinical significance of CD133 and Nestin in astrocytic tumor: The correlation with pathological grade and survival. J Clin Lab Anal, 2020, 34(3): e23082. DOI:10.1002/jcla.23082
    14. Megías J, Martínez A, San-Miguel T, et al. Pam3CSK4, a TLR2 ligand, induces differentiation of glioblastoma stem cells and confers susceptibility to temozolomide. Invest New Drugs, 2020, 38(2): 299-310. DOI:10.1007/s10637-019-00788-2
    15. Li Z, Chen Y, An T, et al. Nuciferine inhibits the progression of glioblastoma by suppressing the SOX2-AKT/STAT3-Slug signaling pathway. J Exp Clin Cancer Res, 2019, 38(1): 139. DOI:10.1186/s13046-019-1134-y
    16. Ghosh D, Nandi S, Bhattacharjee S. Combination therapy to checkmate Glioblastoma: clinical challenges and advances. Clin Transl Med, 2018, 7(1): 33. DOI:10.1186/s40169-018-0211-8
    17. Grande S, Palma A, Ricci-Vitiani L, et al. Metabolic Heterogeneity Evidenced by MRS among Patient-Derived Glioblastoma Multiforme Stem-Like Cells Accounts for Cell Clustering and Different Responses to Drugs. Stem Cells Int, 2018, 2018: 3292704. DOI:10.1155/2018/3292704
    18. Zuccarini M, Giuliani P, Ziberi S, et al. The Role of Wnt Signal in Glioblastoma Development and Progression: A Possible New Pharmacological Target for the Therapy of This Tumor. Genes (Basel), 2018, 9(2): 105. DOI:10.3390/genes9020105
    19. Bhere D, Tamura K, Wakimoto H, et al. microRNA-7 upregulates death receptor 5 and primes resistant brain tumors to caspase-mediated apoptosis. Neuro Oncol, 2018, 20(2): 215-224. DOI:10.1093/neuonc/nox138
    20. Lee S, Kwon MC, Jang JP, et al. The ginsenoside metabolite compound K inhibits growth, migration and stemness of glioblastoma cells. Int J Oncol, 2017, 51(2): 414-424. DOI:10.3892/ijo.2017.4054
    21. Jovčevska I, Zupanec N, Urlep Ž, et al. Differentially expressed proteins in glioblastoma multiforme identified with a nanobody-based anti-proteome approach and confirmed by OncoFinder as possible tumor-class predictive biomarker candidates. Oncotarget, 2017, 8(27): 44141-44158. DOI:10.18632/oncotarget.17390
    22. Hiramatsu H, Kobayashi K, Kobayashi K, et al. The role of the SWI/SNF chromatin remodeling complex in maintaining the stemness of glioma initiating cells. Sci Rep, 2017, 7(1): 889. DOI:10.1038/s41598-017-00982-3
    23. Zheng X, Pang B, Gu G, et al. Melatonin Inhibits Glioblastoma Stem-like cells through Suppression of EZH2-NOTCH1 Signaling Axis. Int J Biol Sci, 2017, 13(2): 245-253. DOI:10.7150/ijbs.16818
    24. Bijangi-Vishehsaraei K, Reza Saadatzadeh M, Wang H, et al. Sulforaphane suppresses the growth of glioblastoma cells, glioblastoma stem cell-like spheroids, and tumor xenografts through multiple cell signaling pathways. J Neurosurg, 2017, 127(6): 1219-1230. DOI:10.3171/2016.8.JNS161197
    25. Majewska E, Szeliga M. AKT/GSK3β Signaling in Glioblastoma. Neurochem Res, 2017, 42(3): 918-924. DOI:10.1007/s11064-016-2044-4
    26. Kanabur P, Guo S, Simonds GR, et al. Patient-derived glioblastoma stem cells respond differentially to targeted therapies. Oncotarget, 2016, 7(52): 86406-86419. DOI:10.18632/oncotarget.13415
    27. Wang K, Kievit FM, Erickson AE, et al. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells. Adv Healthc Mater, 2016, 5(24): 3173-3181. DOI:10.1002/adhm.201600684

    Other cited types(0)

Catalog

    Figures(6)

    Article Metrics

    Article views (1509) PDF downloads (160) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return