Citation: | Liming Gou, Gang Yang, Sujuan Ma, Tong Ding, Luan Sun, Fang Liu, Jin Huang, Wei Gao. Galectin-14 promotes hepatocellular carcinoma tumor growth via enhancing heparan sulfate proteoglycan modification[J]. The Journal of Biomedical Research, 2023, 37(6): 418-430. DOI: 10.7555/JBR.37.20230085 |
Hepatocellular carcinoma (HCC) is a highly heterogeneous malignancy and lacks effective treatment. Bulk-sequencing of different gene transcripts by comparing HCC tissues and adjacent normal tissues provides some clues for investigating the mechanisms or identifying potential targets for tumor progression. However, genes that are exclusively expressed in a subpopulation of HCC may not be enriched or detected through such a screening. In the current study, we performed a single cell-clone-based screening and identified galectin-14 as an essential molecule in the regulation of tumor growth. The aberrant expression of galectin-14 was significantly associated with a poor overall survival of liver cancer patients with database analysis. Knocking down galectin-14 inhibited the proliferation of tumor growth, whereas overexpressing galectin-14 promoted tumor growth in vivo. Non-targeted metabolomics analysis indicated that knocking down galectin-14 decreased glycometabolism; specifically that glycoside synthesis was significantly changed. Further study found that galectin-14 promoted the expression of cell surface heparan sulfate proteoglycans (HSPGs) that functioned as co-receptors, thereby increasing the responsiveness of HCC cells to growth factors, such as epidermal growth factor and transforming growth factor-alpha. In conclusion, the current study identifies a novel HCC-specific molecule galectin-14, which increases the expression of cell surface HSPGs and the uptake of growth factors to promote HCC cell proliferation.
The current study was supported by the National Natural Science Foundation of China (Grant Nos. 81972284 and 82273239), the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 22KJB310001), and Nanjing Medical University Science and Technology Development Foundation (Grant Nos. NMUB20220050 and NMUB20210006).
We thank our colleagues Dr. Yujie Sun for providing cell lines; Dr. Fan Lin and Dr. Bin Xue for helping with the reagents.
CLC number: R735.7, Document code: A
The authors reported no conflict of interests.
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209–249. doi: 10.3322/caac.21660
|
[2] |
Vogel A, Meyer T, Sapisochin G, et al. Hepatocellular carcinoma[J]. Lancet, 2022, 400(10360): 1345–1362. doi: 10.1016/S0140-6736(22)01200-4
|
[3] |
Fujiwara N, Friedman SL, Goossens N, et al. Risk factors and prevention of hepatocellular carcinoma in the era of precision medicine[J]. J Hepatol, 2018, 68(3): 526–549. doi: 10.1016/j.jhep.2017.09.016
|
[4] |
Huang A, Yang X, Chung W, et al. Targeted therapy for hepatocellular carcinoma[J]. Signal Transduct Target Ther, 2020, 5(1): 146. doi: 10.1038/s41392-020-00264-x
|
[5] |
Vibert E, Schwartz M, Olthoff KM. Advances in resection and transplantation for hepatocellular carcinoma[J]. J Hepatol, 2020, 72(2): 262–276. doi: 10.1016/j.jhep.2019.11.017
|
[6] |
Llovet JM, Pinyol R, Kelley RK, et al. Molecular pathogenesis and systemic therapies for hepatocellular carcinoma[J]. Nat Cancer, 2022, 3(4): 386–401. doi: 10.1038/s43018-022-00357-2
|
[7] |
Xu L, He M, Dai Z, et al. Genomic and transcriptional heterogeneity of multifocal hepatocellular carcinoma[J]. Ann Oncol, 2019, 30(6): 990–997. doi: 10.1093/annonc/mdz103
|
[8] |
Wilson WR, Hay MP. Targeting hypoxia in cancer therapy[J]. Nat Rev Cancer, 2011, 11(6): 393–410. doi: 10.1038/nrc3064
|
[9] |
Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: a looking glass for cancer?[J]. Nat Rev Cancer, 2012, 12(5): 323–334. doi: 10.1038/nrc3261
|
[10] |
Levitin HM, Yuan J, Sims PA. Single-cell transcriptomic analysis of tumor heterogeneity[J]. Trends Cancer, 2018, 4(4): 264–268. doi: 10.1016/j.trecan.2018.02.003
|
[11] |
Reily C, Stewart TJ, Renfrow MB, et al. Glycosylation in health and disease[J]. Nat Rev Nephrol, 2019, 15(6): 346–366. doi: 10.1038/s41581-019-0129-4
|
[12] |
Thiemann S, Baum LG. Galectins and immune responses-just how do they do those things they do?[J]. Annu Rev Immunol, 2016, 34: 243–264. doi: 10.1146/annurev-immunol-041015-055402
|
[13] |
Gordon-Alonso M, Bruger AM, Van Der Bruggen P. Extracellular galectins as controllers of cytokines in hematological cancer[J]. Blood, 2018, 132(5): 484–491. doi: 10.1182/blood-2018-04-846014
|
[14] |
Xu W, Huang Q, Huang A. Emerging role of galectin family in inflammatory autoimmune diseases[J]. Autoimmun Rev, 2021, 20(7): 102847. doi: 10.1016/j.autrev.2021.102847
|
[15] |
An Y, Xu S, Liu Y, et al. Role of galectins in the liver diseases: a systematic review and meta-analysis[J]. Front Med, 2021, 8: 744518. doi: 10.3389/fmed.2021.744518
|
[16] |
Leung Z, Ko FCF, Tey SK, et al. Galectin-1 promotes hepatocellular carcinoma and the combined therapeutic effect of OTX008 galectin-1 inhibitor and sorafenib in tumor cells[J]. J Exp Clin Cancer Res, 2019, 38(1): 423. doi: 10.1186/s13046-019-1402-x
|
[17] |
Setayesh T, Colquhoun SD, Wan YJY. Overexpression of Galectin-1 and Galectin-3 in hepatocellular carcinoma[J]. Liver Res, 2020, 4(4): 173–179. doi: 10.1016/j.livres.2020.11.001
|
[18] |
Serizawa N, Tian J, Fukada H, et al. Galectin 3 regulates HCC cell invasion by RhoA and MLCK activation[J]. Lab Invest, 2015, 95(10): 1145–1156. doi: 10.1038/labinvest.2015.77
|
[19] |
Jiao J, Jiao D, Yang F, et al. Galectin-9 expression predicts poor prognosis in hepatitis B virus-associated hepatocellular carcinoma[J]. Aging, 2022, 14(4): 1879–1890. doi: 10.18632/aging.203909
|
[20] |
Sideras K, De Man RA, Harrington SM, et al. Circulating levels of PD-L1 and Galectin-9 are associated with patient survival in surgically treated Hepatocellular Carcinoma independent of their intra-tumoral expression levels[J]. Sci Rep, 2019, 9(1): 10677. doi: 10.1038/s41598-019-47235-z
|
[21] |
Noborn F, Nilsson J, Larson G. Site-specific glycosylation of proteoglycans: A revisited frontier in proteoglycan research[J]. Matrix Biol, 2022, 111: 289–306. doi: 10.1016/j.matbio.2022.07.002
|
[22] |
Fawcett JW, Fyhn M, Jendelova P, et al. The extracellular matrix and perineuronal nets in memory[J]. Mol Psychiatry, 2022, 27(8): 3192–3203. doi: 10.1038/s41380-022-01634-3
|
[23] |
Li N, Wei L, Liu X, et al. A frizzled-like cysteine-rich domain in glypican-3 mediates wnt binding and regulates hepatocellular carcinoma tumor growth in mice[J]. Hepatology, 2019, 70(4): 1231–1245. doi: 10.1002/hep.30646
|
[24] |
Ren Z, Spaargaren M, Pals ST. Syndecan-1 and stromal heparan sulfate proteoglycans: key moderators of plasma cell biology and myeloma pathogenesis[J]. Blood, 2021, 137(13): 1713–1718. doi: 10.1182/blood.2020008188
|
[25] |
Ndlovu R, Deng LC, Wu J, et al. Fibroblast growth factor 10 in pancreas development and pancreatic cancer[J]. Front Genet, 2018, 9: 482. doi: 10.3389/fgene.2018.00482
|
[26] |
Rushton E, Kopke DL, Broadie K. Extracellular heparan sulfate proteoglycans and glycan-binding lectins orchestrate trans-synaptic signaling[J]. J Cell Sci, 2020, 133(15): jcs244186. doi: 10.1242/jcs.244186
|
[27] |
Pe'er D, Ogawa S, Elhanani O, et al. Tumor heterogeneity[J]. Cancer Cell, 2021, 39(8): 1015–1017. doi: 10.1016/j.ccell.2021.07.009
|
[28] |
Singh S, Pandey S, Chawla AS, et al. Dietary 2-deoxy-D-glucose impairs tumour growth and metastasis by inhibiting angiogenesis[J]. Eur J Cancer, 2019, 123: 11–24. doi: 10.1016/j.ejca.2019.09.005
|
[29] |
Pacifici M. Hereditary multiple exostoses: new insights into pathogenesis, clinical complications, and potential treatments[J]. Curr Osteoporos Rep, 2017, 15(3): 142–152. doi: 10.1007/s11914-017-0355-2
|
[30] |
Knelson EH, Nee JC, Blobe GC. Heparan sulfate signaling in cancer[J]. Trends Biochem Sci, 2014, 39(6): 277–288. doi: 10.1016/j.tibs.2014.03.001
|
[31] |
Losic B, Craig AJ, Villacorta-Martin C, et al. Intratumoral heterogeneity and clonal evolution in liver cancer[J]. Nat Commun, 2020, 11(1): 291. doi: 10.1038/s41467-019-14050-z
|
[32] |
Misevic G. Single-cell omics analyses with single molecular detection: challenges and perspectives[J]. J Biomed Res, 2021, 35(4): 264–276. doi: 10.7555/JBR.35.20210026
|
[33] |
Rodriguez-Meira A, Buck G, Clark SA, et al. Unravelling intratumoral heterogeneity through high-sensitivity single-cell mutational analysis and parallel RNA sequencing[J]. Mol Cell, 2019, 73(6): 1292–1305.e8. doi: 10.1016/j.molcel.2019.01.009
|
[34] |
Vitale I, Shema E, Loi S, et al. Intratumoral heterogeneity in cancer progression and response to immunotherapy[J]. Nat Med, 2021, 27(2): 212–224. doi: 10.1038/s41591-021-01233-9
|
[35] |
Zhou Y, Yang D, Yang QC, et al. Single-cell RNA landscape of intratumoral heterogeneity and immunosuppressive microenvironment in advanced osteosarcoma[J]. Nat Commun, 2020, 11(1): 6322. doi: 10.1038/s41467-020-20059-6
|
[36] |
Yang R, Rabinovich GA, Liu F. Galectins: structure, function and therapeutic potential[J]. Expert Rev Mol Med, 2008, 10: e17. doi: 10.1017/S1462399408000719
|
[37] |
Martin-Saldaña S, Chevalier MT, Pandit A. Therapeutic potential of targeting galectins–A biomaterials-focused perspective[J]. Biomaterials, 2022, 286: 121585. doi: 10.1016/j.biomaterials.2022.121585
|
[38] |
Si Y, Li Y, Yang T, et al. Structure–function studies of galectin-14, an important effector molecule in embryology[J]. FEBS J, 2021, 288(3): 1041–1055. doi: 10.1111/febs.15441
|
[1] | Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387 |
[2] | Zhang Lei, McLeod Stephanie T., Vargas Rodolfo, Liu Xiaojian, Young Dorthy K., Dobbs Thomas E.. Subgroup comparison of COVID-19 case and mortality with associated factors in Mississippi: findings from analysis of the first four months of public data[J]. The Journal of Biomedical Research, 2020, 34(6): 446-457. DOI: 10.7555/JBR.34.20200135 |
[3] | Pan Wei, Miyazaki Yasuo, Tsumura Hideyo, Miyazaki Emi, Yang Wei. Identification of county-level health factors associated with COVID-19 mortality in the United States[J]. The Journal of Biomedical Research, 2020, 34(6): 437-445. DOI: 10.7555/JBR.34.20200129 |
[4] | Alexander E. Berezin, Alexander A. Kremzer, Tatayna A. Samura. Circulating thrombospondin-2 in patients with moderate-to-severe chronic heart failure due to coronary artery disease[J]. The Journal of Biomedical Research, 2016, 30(1): 32-39. DOI: 10.7555/JBR.30.20140025 |
[5] | Augustine N Odili, John O Ogedengbe, Maxwell Nwegbu, Felicia O Anumah, Samuel Asala, Jan A Staessen. Nigerian Population Research on Environment, Gene and Health (NIPREGH) - objectives and protocol[J]. The Journal of Biomedical Research, 2014, 28(5): 360-367. DOI: 10.7555/JBR.28.20130199 |
[6] | Samuel Tate, Andrea Griem, Blythe Durbin-Johnson, Clifton Watt, Saul Schaefer. Marked elevation of B-type natriuretic peptide in patients with heart failure and preserved ejection fraction[J]. The Journal of Biomedical Research, 2014, 28(4): 255-261. DOI: 10.7555/JBR.28.20140021 |
[7] | Weihua Zhou, Ji Chen. I -123 metaiodobenzylguanidine imaging for predicting ventricular arrhythmia in heart failure patients[J]. The Journal of Biomedical Research, 2013, 27(6): 460-466. DOI: 10.7555/JBR.27.20130137 |
[8] | Shujuan Zhang, Feng Zhang, Haijian Sun, Yebo Zhou, Ying Han. Enhanced sympathetic activity and cardiac sympathetic afferent reflex in rats with heart failure induced by adriamycin[J]. The Journal of Biomedical Research, 2012, 26(6): 425-431. DOI: 10.7555/JBR.26.20120035 |
[9] | Xi Li, Tingzhong Wang, Ke Han, Xiaozhen Zhuo, Qun Lu, Aiqun Ma. Bisoprolol reverses down-regulation of potassium channel proteins in ventricular tissues of rabbits with heart failure[J]. The Journal of Biomedical Research, 2011, 25(4): 274-279. DOI: 10.1016/S1674-8301(11)60037-7 |
[10] | Sundeep?S.?Tumber, Hong?Liu. Epidural abscess after multiple lumbar punctures for labour epidural catheter placement[J]. The Journal of Biomedical Research, 2010, 24(4): 332-335. DOI: 10.1016/S1674-8301(10)60046-2 |
1. | Guan M, Wang Y. Common variants of vitamin D receptor gene polymorphisms and risk of gastric cancer: A meta-analysis. Medicine (Baltimore), 2024, 103(35): e39527. DOI:10.1097/MD.0000000000039527 |
2. | Abo-Amer YE, Mohamed AA, Elhoseeny MM, et al. Association Between Vitamin D Receptor Polymorphism and the Response to Helicobacter Pylori Treatment. Infect Drug Resist, 2023, 16: 4463-4469. DOI:10.2147/IDR.S414186 |
3. | Liu X, Zhou Y, Zou X. Correlation between Serum 25-Hydroxyvitamin D Levels and Gastric Cancer: A Systematic Review and Meta-Analysis. Curr Oncol, 2022, 29(11): 8390-8400. DOI:10.3390/curroncol29110661 |
4. | Nguyen MT, Huynh NNY, Nguyen DD, et al. Vitamin D intake and gastric cancer in Viet Nam: a case-control study. BMC Cancer, 2022, 22(1): 838. DOI:10.1186/s12885-022-09933-2 |
5. | Kwak JH, Paik JK. Vitamin D Status and Gastric Cancer: A Cross-Sectional Study in Koreans. Nutrients, 2020, 12(7): 2004. DOI:10.3390/nu12072004 |
6. | Durak Ş, Gheybi A, Demirkol Ş, et al. The effects of serum levels, and alterations in the genes of binding protein and receptor of vitamin D on gastric cancer. Mol Biol Rep, 2019, 46(6): 6413-6420. DOI:10.1007/s11033-019-05088-9 |
7. | Kazemian E, Akbari ME, Moradi N, et al. Vitamin D Receptor Genetic Variation and Cancer Biomarkers among Breast Cancer Patients Supplemented with Vitamin D3: A Single-Arm Non-Randomized Before and After Trial. Nutrients, 2019, 11(6): 1264. DOI:10.3390/nu11061264 |
8. | Cai H, Jing C, Chang X, et al. Mutational landscape of gastric cancer and clinical application of genomic profiling based on target next-generation sequencing. J Transl Med, 2019, 17(1): 189. DOI:10.1186/s12967-019-1941-0 |