3.8

CiteScore

2.4

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Siying Wang, Saiya Wang, Wenhan Cai, Jie Wang, Jianan Huang, Qing Yang, Hui Bai, Bin Jiang, Jingjing Ben, Hanwen Zhang, Xudong Zhu, Xiaoyu Li, Qi Chen. Macrophage scavenger receptor A1 promotes skeletal muscle regeneration after hindlimb ischemia[J]. The Journal of Biomedical Research, 2025, 39(1): 23-35. DOI: 10.7555/JBR.38.20240117
Citation: Siying Wang, Saiya Wang, Wenhan Cai, Jie Wang, Jianan Huang, Qing Yang, Hui Bai, Bin Jiang, Jingjing Ben, Hanwen Zhang, Xudong Zhu, Xiaoyu Li, Qi Chen. Macrophage scavenger receptor A1 promotes skeletal muscle regeneration after hindlimb ischemia[J]. The Journal of Biomedical Research, 2025, 39(1): 23-35. DOI: 10.7555/JBR.38.20240117

Macrophage scavenger receptor A1 promotes skeletal muscle regeneration after hindlimb ischemia

More Information
  • Corresponding author:

    Qi Chen and Xiaoyu Li, Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease and Molecular Intervention, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China. E-mails: qichen@njmu.edu.cn (Chen) and xyli@njmu.edu.cn (Li)

  • △These authors contributed equally to this work.

  • Received Date: April 23, 2024
  • Revised Date: May 10, 2024
  • Accepted Date: May 14, 2024
  • Available Online: May 19, 2024
  • Published Date: May 28, 2024
  • The macrophage-mediated inflammatory response is crucial for the recovery of skeletal muscle following ischemia. Therefore, macrophage-based therapeutic targets need to be explored for ischemic disease. In the current study, we found that the mRNA levels of scavenger receptor A1 (Sr-a1) were elevated in patients with critical limb ischemia, based on an analysis of the Gene Expression Omnibus data. We then investigated the role and underlying mechanisms of macrophage SR-A1 in a mouse hindlimb ischemia (HLI) model. Compared with the Sr-a1fl/fl mice, the LyzCre/+/Sr-a1flox/flox (Sr-a1ΔMΦ) mice showed significantly reduced laser Doppler blood flow in the ischemic limb on day seven after HLI. Consistently, histological analysis revealed that the ischemic limb of the Sr-a1ΔMΦ mice exhibited more severe and prolonged necrotic morphology, inflammation, fibrosis, decreased vessel density, and delayed regeneration than that of the control Sr-a1fl/fl mice. Furthermore, restoring wild-type myeloid cells to the Sr-a1 knockout mice effectively improved the Doppler perfusion in the ischemic limb and mitigated skeletal muscle damage seven days after HLI. Consistent with these in vivo findings, co-cultivating macrophages with the mouse myoblast cell line C2C12 revealed that the Sr-a1−/− bone marrow macrophages significantly inhibited myoblast differentiation in vitro. Mechanistically, SR-A1 enhanced the skeletal muscle regeneration in response to HLI by inhibiting oncostatin M production via suppression of the NF-κB signaling activation. These findings indicate that SR-A1 may be a promising candidate protein to improve tissue repair and regeneration in peripheral ischemic arterial disease.

  • This work was supported by the National Natural Science Foundation of China (Grant Nos. 82030012, 81670263, 82170444, 82270476, 82270361, and 82100433) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 24KJA310003).

    None.

    CLC number: R543, Document code: A

    The authors reported no conflict of interests.

  • [1]
    Criqui MH, Matsushita K, Aboyans V, et al. Lower extremity peripheral artery disease: contemporary epidemiology, management gaps, and future directions: a scientific statement from the American heart association[J]. Circulation, 2021, 144: e171–e191. https://pubmed.ncbi.nlm.nih.gov/34315230/
    [2]
    Hiramoto JS, Teraa M, De Borst GJ, et al. Interventions for lower extremity peripheral artery disease[J]. Nat Rev Cardiol, 2018, 15(6): 332–350. doi: 10.1038/s41569-018-0005-0
    [3]
    Ryan TE, Yamaguchi DJ, Schmidt CA, et al. Extensive skeletal muscle cell mitochondriopathy distinguishes critical limb ischemia patients from claudicants[J]. JCI Insight, 2018, 3(21): e123235. doi: 10.1172/jci.insight.123235
    [4]
    Sousa-Victor P, García-Prat L, Muñoz-Cánoves P. Control of satellite cell function in muscle regeneration and its disruption in ageing[J]. Nat Rev Mol Cell Biol, 2022, 23(3): 204–226. doi: 10.1038/s41580-021-00421-2
    [5]
    Dort J, Fabre P, Molina T, et al. Macrophages are key regulators of stem cells during skeletal muscle regeneration and diseases[J]. Stem Cells Int, 2019, 2019: 4761427. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664695/
    [6]
    Tidball JG. Regulation of muscle growth and regeneration by the immune system[J]. Nat Rev Immunol, 2017, 17(3): 165–178. doi: 10.1038/nri.2016.150
    [7]
    Saclier M, Yacoub-Youssef H, Mackey AL, et al. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration[J]. Stem Cells, 2013, 31(2): 384–396. doi: 10.1002/stem.1288
    [8]
    Huang H, Li X, Zhuang Y, et al. Class A scavenger receptor activation inhibits endoplasmic reticulum stress-induced autophagy in macrophage[J]. J Biomed Res, 2014, 28(3): 213–221. doi: 10.7555/JBR.28.20130105
    [9]
    Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity[J]. Nat Rev Immunol, 2013, 13(9): 621–634. doi: 10.1038/nri3515
    [10]
    Hu Y, Zhang H, Lu Y, et al. Class A scavenger receptor attenuates myocardial infarction-induced cardiomyocyte necrosis through suppressing M1 macrophage subset polarization[J]. Basic Res Cardiol, 2011, 106(6): 1311–1328. doi: 10.1007/s00395-011-0204-x
    [11]
    Zhao SJ, Kong FQ, Jie J, et al. Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3β/β-catenin pathway[J]. Theranostics, 2020, 10(1): 17–35. doi: 10.7150/thno.36930
    [12]
    Zhang H, Xu A, Sun X, et al. Self-maintenance of cardiac resident reparative macrophages attenuates doxorubicin-induced cardiomyopathy through the SR-A1-c-Myc Axis[J]. Circ Res, 2020, 127(5): 610–627. doi: 10.1161/CIRCRESAHA.119.316428
    [13]
    Limbourg A, Korff T, Napp LC, et al. Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia[J]. Nat Protoc, 2009, 4(12): 1737–1748. doi: 10.1038/nprot.2009.185
    [14]
    Xie L, Wang X, Ma Y, et al. Piezo1 (piezo-type mechanosensitive ion channel component 1)-mediated mechanosensation in macrophages impairs perfusion recovery after hindlimb ischemia in mice[J]. Arterioscler Thromb Vasc Biol, 2023, 43(4): 504–518. doi: 10.1161/ATVBAHA.122.318625
    [15]
    Huang J, Jiang Y, Ji R, et al. Macrophage scavenger receptor A1 antagonizes abdominal aortic aneurysm via upregulating IRG1[J]. Biochem Pharmacol, 2023, 213: 115631. doi: 10.1016/j.bcp.2023.115631
    [16]
    Xiao F, Wang H, Fu X, et al. Oncostatin M inhibits myoblast differentiation and regulates muscle regeneration[J]. Cell Res, 2011, 21(2): 350–364. doi: 10.1038/cr.2010.144
    [17]
    Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298(5): R1173–R1187. doi: 10.1152/ajpregu.00735.2009
    [18]
    Kohno S, Yamashita Y, Abe T, et al. Unloading stress disturbs muscle regeneration through perturbed recruitment and function of macrophages[J]. J Appl Physiol (1985), 2012, 112(10): 1773–1782. doi: 10.1152/japplphysiol.00103.2012
    [19]
    Chazaud B. Inflammation and skeletal muscle regeneration: leave it to the macrophages![J]. Trends Immunol, 2020, 41(6): 481–492. doi: 10.1016/j.it.2020.04.006
    [20]
    Southerland KW, Xu Y, Peters DT, et al. Skeletal muscle regeneration failure in ischemic-damaged limbs is associated with pro-inflammatory macrophages and premature differentiation of satellite cells[J]. Genome Med, 2023, 15(1): 95. doi: 10.1186/s13073-023-01250-y
    [21]
    Shang M, Cappellesso F, Amorim R, et al. Macrophage-derived glutamine boosts satellite cells and muscle regeneration[J]. Nature, 2020, 587(7835): 626–631. doi: 10.1038/s41586-020-2857-9
    [22]
    Zhang J, Muri J, Fitzgerald G, et al. Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization[J]. Cell Metab, 2020, 31(6): 1136-1153. e7.
    [23]
    Sampath SC, Sampath SC, Ho ATV, et al. Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M[J]. Nat Commun, 2018, 9(1): 1531. doi: 10.1038/s41467-018-03876-8
    [24]
    Miki Y, Morioka T, Shioi A, et al. Oncostatin M induces C2C12 myotube atrophy by modulating muscle differentiation and degradation[J]. Biochem Biophys Res Commun, 2019, 516(3): 951–956. doi: 10.1016/j.bbrc.2019.06.143
    [25]
    Wang ECE, Dai Z, Ferrante AW, et al. A subset of TREM2+ dermal macrophages secretes oncostatin M to maintain hair follicle stem cell quiescence and inhibit hair growth[J]. Cell Stem Cell, 2019, 24(4): 654-669. e6.
    [26]
    Latroche C, Weiss-Gayet M, Muller L, et al. Coupling between myogenesis and angiogenesis during skeletal muscle regeneration is stimulated by restorative macrophages[J]. Stem Cell Rep, 2017, 9(6): 2018–2033. doi: 10.1016/j.stemcr.2017.10.027
    [27]
    Yaghi OK, Hanna BS, Langston PK, et al. A discrete 'early-responder' stromal-cell subtype orchestrates immunocyte recruitment to injured tissue[J]. Nat Immunol, 2023, 24(12): 2053–2067. doi: 10.1038/s41590-023-01669-w
    [28]
    Ben J, Zhu X, Zhang H, et al. Class A1 scavenger receptors in cardiovascular diseases[J]. Br J Pharmacol, 2015, 172(23): 5523–5530. doi: 10.1111/bph.13105
    [29]
    Zhang Z, Jiang Y, Zhou Z, et al. Scavenger receptor A1 attenuates aortic dissection via promoting efferocytosis in macrophages[J]. Biochem Pharmacol, 2019, 168: 392–403. doi: 10.1016/j.bcp.2019.07.027
    [30]
    Su CM, Lee WL, Hsu CJ, et al. Adiponectin induces Oncostatin M expression in osteoblasts through the PI3K/Akt signaling pathway[J]. Int J Mol Sci, 2016, 17(1): 29.
    [31]
    Kastl SP, Speidl WS, Katsaros KM, et al. Thrombin induces the expression of oncostatin M via AP-1 activation in human macrophages: a link between coagulation and inflammation[J]. Blood, 2009, 114(13): 2812–2818. doi: 10.1182/blood-2009-01-200915
  • Related Articles

    [1]Xiyin Zheng, Lulu Yin, Jing Song, Juan Chen, Wensha Gu, Min Shi, Hong Zhang. ELABELA protects against diabetic kidney disease by activating high glucose-inhibited renal tubular autophagy[J]. The Journal of Biomedical Research, 2023, 37(6): 460-469. DOI: 10.7555/JBR.37.20220214
    [2]Xinlu Chai, Yuting Meng, Wei Ge, Juan Wang, Fei Li, Xue Jun Wang, Xuerong Wang. A novel synthesized prodrug of gemcitabine based on oxygen-free radical sensitivity inhibited the growth of lung cancer cells[J]. The Journal of Biomedical Research, 2023, 37(5): 355-366. DOI: 10.7555/JBR.37.20230022
    [3]Min Shi, Xiangcheng Zhang, Ridong Zhang, Hong Zhang, Dalong Zhu, Xiao Han. Glycyrrhizic acid promotes sciatic nerves recovery in type 1 diabetic rats and protects Schwann cells from high glucose-induced cytotoxicity[J]. The Journal of Biomedical Research, 2022, 36(3): 181-194. DOI: 10.7555/JBR.36.20210198
    [4]Wenqian Xia, Xiao Han, Lin Wang. E26 transformation-specific 1 is implicated in the inhibition of osteogenic differentiation induced by chronic high glucose by directly regulating Runx2 expression[J]. The Journal of Biomedical Research, 2022, 36(1): 39-47. DOI: 10.7555/JBR.35.20210123
    [5]Li Cao, Zhen-zhen Zhang, Shuang-bo Xu, Ming Ma, Xin Wei. Farnesol inhibits development of caries by augmenting oxygen sensitivity and suppressing virulence-associated gene expression in Streptococcus mutans[J]. The Journal of Biomedical Research, 2017, 31(4): 333-343. DOI: 10.7555/JBR.31.20150151
    [6]Zeping Xu, Lianbing Gu, Qingming Bian, Pengyi Li, Lijun Wang, Jingyuan Zhang, Yanning Qian. Oxygenation, inflammatory response and lung injury during one lung ventilation in rabbits using inspired oxygen fraction of 0.6 vs. 1.0[J]. The Journal of Biomedical Research, 2017, 31(1): 56-64. DOI: 10.7555/JBR.31.20160108
    [7]JunLin Cheng, Ying Wang, Zhengwei Zhang, Yong Jin, QianKun Li, RongGen Want, Yan Wang, XiaoKang Li, Qiang Xiong, ManLing Zhang, RongFeng Li, YiFan Dai. Dominant-negative inhibition of glucose-dependent insulinotropic polypeptide impairs function of b cells in transgenic pigs[J]. The Journal of Biomedical Research, 2015, 29(6): 512-514. DOI: 10.7555/JBR.29.20150046
    [8]Xiaodong Yang, Ping Huang, Feng Wang, Zekuan Xu, Xiaonin Wang. Growth hormone receptor expression in human primary gastric adenocarcinoma[J]. The Journal of Biomedical Research, 2012, 26(5): 307-314. DOI: 10.7555/JBR.26.20110133
    [9]Yumin Zhang, Gerard B. Fox. PET imaging for receptor occupancy: meditations on calculation and simplification[J]. The Journal of Biomedical Research, 2012, 26(2): 69-76. DOI: 10.1016/S1674-8301(12)60014-1
    [10]Keh-Dong Shiang, Fouad Kandeel. A computational model of the human glucose-insulin regulatory system[J]. The Journal of Biomedical Research, 2010, 24(5): 347-364. DOI: 10.1016/S1674-8301(10)60048-6
  • Other Related Supplements

Catalog

    Corresponding author: Qi Chen, qichen@njmu.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Figures(5)

    Article Metrics

    Article views (924) PDF downloads (132) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return