Citation: | Siying Wang, Saiya Wang, Wenhan Cai, Jie Wang, Jianan Huang, Qing Yang, Hui Bai, Bin Jiang, Jingjing Ben, Hanwen Zhang, Xudong Zhu, Xiaoyu Li, Qi Chen. Macrophage scavenger receptor A1 promotes skeletal muscle regeneration after hindlimb ischemia[J]. The Journal of Biomedical Research, 2025, 39(1): 23-35. DOI: 10.7555/JBR.38.20240117 |
The macrophage-mediated inflammatory response is crucial for the recovery of skeletal muscle following ischemia. Therefore, macrophage-based therapeutic targets need to be explored for ischemic disease. In the current study, we found that the mRNA levels of scavenger receptor A1 (Sr-a1) were elevated in patients with critical limb ischemia, based on an analysis of the Gene Expression Omnibus data. We then investigated the role and underlying mechanisms of macrophage SR-A1 in a mouse hindlimb ischemia (HLI) model. Compared with the Sr-a1fl/fl mice, the LyzCre/+/Sr-a1flox/flox (Sr-a1ΔMΦ) mice showed significantly reduced laser Doppler blood flow in the ischemic limb on day seven after HLI. Consistently, histological analysis revealed that the ischemic limb of the Sr-a1ΔMΦ mice exhibited more severe and prolonged necrotic morphology, inflammation, fibrosis, decreased vessel density, and delayed regeneration than that of the control Sr-a1fl/fl mice. Furthermore, restoring wild-type myeloid cells to the Sr-a1 knockout mice effectively improved the Doppler perfusion in the ischemic limb and mitigated skeletal muscle damage seven days after HLI. Consistent with these in vivo findings, co-cultivating macrophages with the mouse myoblast cell line C2C12 revealed that the Sr-a1−/− bone marrow macrophages significantly inhibited myoblast differentiation in vitro. Mechanistically, SR-A1 enhanced the skeletal muscle regeneration in response to HLI by inhibiting oncostatin M production via suppression of the NF-κB signaling activation. These findings indicate that SR-A1 may be a promising candidate protein to improve tissue repair and regeneration in peripheral ischemic arterial disease.
This work was supported by the National Natural Science Foundation of China (Grant Nos. 82030012, 81670263, 82170444, 82270476, 82270361, and 82100433) and the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 24KJA310003).
None.
CLC number: R543, Document code: A
The authors reported no conflict of interests.
[1] |
Criqui MH, Matsushita K, Aboyans V, et al. Lower extremity peripheral artery disease: contemporary epidemiology, management gaps, and future directions: a scientific statement from the American heart association[J]. Circulation, 2021, 144: e171–e191. https://pubmed.ncbi.nlm.nih.gov/34315230/
|
[2] |
Hiramoto JS, Teraa M, De Borst GJ, et al. Interventions for lower extremity peripheral artery disease[J]. Nat Rev Cardiol, 2018, 15(6): 332–350. doi: 10.1038/s41569-018-0005-0
|
[3] |
Ryan TE, Yamaguchi DJ, Schmidt CA, et al. Extensive skeletal muscle cell mitochondriopathy distinguishes critical limb ischemia patients from claudicants[J]. JCI Insight, 2018, 3(21): e123235. doi: 10.1172/jci.insight.123235
|
[4] |
Sousa-Victor P, García-Prat L, Muñoz-Cánoves P. Control of satellite cell function in muscle regeneration and its disruption in ageing[J]. Nat Rev Mol Cell Biol, 2022, 23(3): 204–226. doi: 10.1038/s41580-021-00421-2
|
[5] |
Dort J, Fabre P, Molina T, et al. Macrophages are key regulators of stem cells during skeletal muscle regeneration and diseases[J]. Stem Cells Int, 2019, 2019: 4761427. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6664695/
|
[6] |
Tidball JG. Regulation of muscle growth and regeneration by the immune system[J]. Nat Rev Immunol, 2017, 17(3): 165–178. doi: 10.1038/nri.2016.150
|
[7] |
Saclier M, Yacoub-Youssef H, Mackey AL, et al. Differentially activated macrophages orchestrate myogenic precursor cell fate during human skeletal muscle regeneration[J]. Stem Cells, 2013, 31(2): 384–396. doi: 10.1002/stem.1288
|
[8] |
Huang H, Li X, Zhuang Y, et al. Class A scavenger receptor activation inhibits endoplasmic reticulum stress-induced autophagy in macrophage[J]. J Biomed Res, 2014, 28(3): 213–221. doi: 10.7555/JBR.28.20130105
|
[9] |
Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity[J]. Nat Rev Immunol, 2013, 13(9): 621–634. doi: 10.1038/nri3515
|
[10] |
Hu Y, Zhang H, Lu Y, et al. Class A scavenger receptor attenuates myocardial infarction-induced cardiomyocyte necrosis through suppressing M1 macrophage subset polarization[J]. Basic Res Cardiol, 2011, 106(6): 1311–1328. doi: 10.1007/s00395-011-0204-x
|
[11] |
Zhao SJ, Kong FQ, Jie J, et al. Macrophage MSR1 promotes BMSC osteogenic differentiation and M2-like polarization by activating PI3K/AKT/GSK3β/β-catenin pathway[J]. Theranostics, 2020, 10(1): 17–35. doi: 10.7150/thno.36930
|
[12] |
Zhang H, Xu A, Sun X, et al. Self-maintenance of cardiac resident reparative macrophages attenuates doxorubicin-induced cardiomyopathy through the SR-A1-c-Myc Axis[J]. Circ Res, 2020, 127(5): 610–627. doi: 10.1161/CIRCRESAHA.119.316428
|
[13] |
Limbourg A, Korff T, Napp LC, et al. Evaluation of postnatal arteriogenesis and angiogenesis in a mouse model of hind-limb ischemia[J]. Nat Protoc, 2009, 4(12): 1737–1748. doi: 10.1038/nprot.2009.185
|
[14] |
Xie L, Wang X, Ma Y, et al. Piezo1 (piezo-type mechanosensitive ion channel component 1)-mediated mechanosensation in macrophages impairs perfusion recovery after hindlimb ischemia in mice[J]. Arterioscler Thromb Vasc Biol, 2023, 43(4): 504–518. doi: 10.1161/ATVBAHA.122.318625
|
[15] |
Huang J, Jiang Y, Ji R, et al. Macrophage scavenger receptor A1 antagonizes abdominal aortic aneurysm via upregulating IRG1[J]. Biochem Pharmacol, 2023, 213: 115631. doi: 10.1016/j.bcp.2023.115631
|
[16] |
Xiao F, Wang H, Fu X, et al. Oncostatin M inhibits myoblast differentiation and regulates muscle regeneration[J]. Cell Res, 2011, 21(2): 350–364. doi: 10.1038/cr.2010.144
|
[17] |
Tidball JG, Villalta SA. Regulatory interactions between muscle and the immune system during muscle regeneration[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298(5): R1173–R1187. doi: 10.1152/ajpregu.00735.2009
|
[18] |
Kohno S, Yamashita Y, Abe T, et al. Unloading stress disturbs muscle regeneration through perturbed recruitment and function of macrophages[J]. J Appl Physiol (1985), 2012, 112(10): 1773–1782. doi: 10.1152/japplphysiol.00103.2012
|
[19] |
Chazaud B. Inflammation and skeletal muscle regeneration: leave it to the macrophages![J]. Trends Immunol, 2020, 41(6): 481–492. doi: 10.1016/j.it.2020.04.006
|
[20] |
Southerland KW, Xu Y, Peters DT, et al. Skeletal muscle regeneration failure in ischemic-damaged limbs is associated with pro-inflammatory macrophages and premature differentiation of satellite cells[J]. Genome Med, 2023, 15(1): 95. doi: 10.1186/s13073-023-01250-y
|
[21] |
Shang M, Cappellesso F, Amorim R, et al. Macrophage-derived glutamine boosts satellite cells and muscle regeneration[J]. Nature, 2020, 587(7835): 626–631. doi: 10.1038/s41586-020-2857-9
|
[22] |
Zhang J, Muri J, Fitzgerald G, et al. Endothelial lactate controls muscle regeneration from ischemia by inducing M2-like macrophage polarization[J]. Cell Metab, 2020, 31(6): 1136-1153. e7.
|
[23] |
Sampath SC, Sampath SC, Ho ATV, et al. Induction of muscle stem cell quiescence by the secreted niche factor Oncostatin M[J]. Nat Commun, 2018, 9(1): 1531. doi: 10.1038/s41467-018-03876-8
|
[24] |
Miki Y, Morioka T, Shioi A, et al. Oncostatin M induces C2C12 myotube atrophy by modulating muscle differentiation and degradation[J]. Biochem Biophys Res Commun, 2019, 516(3): 951–956. doi: 10.1016/j.bbrc.2019.06.143
|
[25] |
Wang ECE, Dai Z, Ferrante AW, et al. A subset of TREM2+ dermal macrophages secretes oncostatin M to maintain hair follicle stem cell quiescence and inhibit hair growth[J]. Cell Stem Cell, 2019, 24(4): 654-669. e6.
|
[26] |
Latroche C, Weiss-Gayet M, Muller L, et al. Coupling between myogenesis and angiogenesis during skeletal muscle regeneration is stimulated by restorative macrophages[J]. Stem Cell Rep, 2017, 9(6): 2018–2033. doi: 10.1016/j.stemcr.2017.10.027
|
[27] |
Yaghi OK, Hanna BS, Langston PK, et al. A discrete 'early-responder' stromal-cell subtype orchestrates immunocyte recruitment to injured tissue[J]. Nat Immunol, 2023, 24(12): 2053–2067. doi: 10.1038/s41590-023-01669-w
|
[28] |
Ben J, Zhu X, Zhang H, et al. Class A1 scavenger receptors in cardiovascular diseases[J]. Br J Pharmacol, 2015, 172(23): 5523–5530. doi: 10.1111/bph.13105
|
[29] |
Zhang Z, Jiang Y, Zhou Z, et al. Scavenger receptor A1 attenuates aortic dissection via promoting efferocytosis in macrophages[J]. Biochem Pharmacol, 2019, 168: 392–403. doi: 10.1016/j.bcp.2019.07.027
|
[30] |
Su CM, Lee WL, Hsu CJ, et al. Adiponectin induces Oncostatin M expression in osteoblasts through the PI3K/Akt signaling pathway[J]. Int J Mol Sci, 2016, 17(1): 29.
|
[31] |
Kastl SP, Speidl WS, Katsaros KM, et al. Thrombin induces the expression of oncostatin M via AP-1 activation in human macrophages: a link between coagulation and inflammation[J]. Blood, 2009, 114(13): 2812–2818. doi: 10.1182/blood-2009-01-200915
|