Citation: | Shu Liu, Xu Yang, Fei Chen, Zhiyou Cai. Dysfunction of the neurovascular unit in brain aging[J]. The Journal of Biomedical Research, 2023, 37(3): 153-165. DOI: 10.7555/JBR.36.20220105 |
CLC number: R741, Document code: A
The authors reported no conflict of interests.
[1] |
López-Otín C, Blasco MA, Partridge L, et al. The hallmarks of aging[J]. Cell, 2013, 153(6): 1194–1217. doi: 10.1016/j.cell.2013.05.039
|
[2] |
Rudnicka E, Napierała P, Podfigurna A, et al. The World Health Organization (WHO) approach to healthy ageing[J]. Maturitas, 2020, 139: 6–11. doi: 10.1016/j.maturitas.2020.05.018
|
[3] |
Hou Y, Dan X, Babbar M, et al. Ageing as a risk factor for neurodegenerative disease[J]. Nat Rev Neurol, 2019, 15(10): 565–581. doi: 10.1038/s41582-019-0244-7
|
[4] |
Grammas P, Martinez J, Miller B. Cerebral microvascular endothelium and the pathogenesis of neurodegenerative diseases[J]. Expert Rev Mol Med, 2011, 13: e19. doi: 10.1017/S1462399411001918
|
[5] |
Abbott NJ, Rönnbäck L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier[J]. Nat Rev Neurosci, 2006, 7(1): 41–53. doi: 10.1038/nrn1824
|
[6] |
Nutma E, van Gent D, Amor S, et al. Astrocyte and oligodendrocyte cross-talk in the central nervous system[J]. Cells, 2020, 9(3): 600. doi: 10.3390/cells9030600
|
[7] |
Wolf SA, Boddeke HWGM, Kettenmann H. Microglia in physiology and disease[J]. Annu Rev Physiol, 2017, 79: 619–643. doi: 10.1146/annurev-physiol-022516-034406
|
[8] |
Angelova DM, Brown DR. Microglia and the aging brain: are senescent microglia the key to neurodegeneration?[J]. J Neurochem, 2019, 151(6): 676–688. doi: 10.1111/jnc.14860
|
[9] |
Kabba JA, Xu Y, Christian H, et al. Microglia: housekeeper of the central nervous system[J]. Cell Mol Neurobiol, 2018, 38(1): 53–71. doi: 10.1007/s10571-017-0504-2
|
[10] |
Thurgur H, Pinteaux E. Microglia in the neurovascular unit: blood-brain barrier-microglia interactions after central nervous system disorders[J]. Neuroscience, 2019, 405: 55–67. doi: 10.1016/j.neuroscience.2018.06.046
|
[11] |
McTigue DM, Tripathi RB. The life, death, and replacement of oligodendrocytes in the adult CNS[J]. J Neurochem, 2008, 107(1): 1–19. doi: 10.1111/j.1471-4159.2008.05570.x
|
[12] |
Gaudet AD, Fonken LK. Glial cells shape pathology and repair after spinal cord injury[J]. Neurotherapeutics, 2018, 15(3): 554–577. doi: 10.1007/s13311-018-0630-7
|
[13] |
Peferoen L, Kipp M, van der Valk P, et al. Oligodendrocyte-microglia cross-talk in the central nervous system[J]. Immunology, 2014, 141(3): 302–313. doi: 10.1111/imm.12163
|
[14] |
Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease[J]. Pharmacol Rev, 2005, 57(2): 173–185. doi: 10.1124/pr.57.2.4
|
[15] |
Miyazaki I, Asanuma M. Neuron-astrocyte interactions in parkinson's disease[J]. Cells, 2020, 9(12): 2623. doi: 10.3390/cells9122623
|
[16] |
Durkee CA, Araque A. Diversity and specificity of astrocyte-neuron communication[J]. Neuroscience, 2019, 396: 73–78. doi: 10.1016/j.neuroscience.2018.11.010
|
[17] |
Winkler EA, Sagare AP, Zlokovic BV. The pericyte: a forgotten cell type with important implications for Alzheimer's disease?[J]. Brain Pathol, 2014, 24(4): 371–386. doi: 10.1111/bpa.12152
|
[18] |
Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions[J]. Circ Res, 2005, 97(6): 512–523. doi: 10.1161/01.RES.0000182903.16652.d7
|
[19] |
Stebbins MJ, Gastfriend BD, Canfield SG, et al. Human pluripotent stem cell-derived brain pericyte-like cells induce blood-brain barrier properties[J]. Sci Adv, 2019, 5(3): eaau7375. doi: 10.1126/sciadv.aau7375
|
[20] |
Teichert M, Milde L, Holm A, et al. Pericyte-expressed Tie2 controls angiogenesis and vessel maturation[J]. Nat Commun, 2017, 8: 16106. doi: 10.1038/ncomms16106
|
[21] |
Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis[J]. Nature, 2011, 473(7347): 298–307. doi: 10.1038/nature10144
|
[22] |
Rustenhoven J, Jansson D, Smyth LC, et al. Brain pericytes As mediators of neuroinflammation[J]. Trends Pharmacol Sci, 2017, 38(3): 291–304. doi: 10.1016/j.tips.2016.12.001
|
[23] |
De La Fuente AG, Lange S, Silva ME, et al. Pericytes stimulate oligodendrocyte progenitor cell differentiation during CNS remyelination[J]. Cell Rep, 2017, 20(8): 1755–1764. doi: 10.1016/j.celrep.2017.08.007
|
[24] |
Navarro R, Compte M, Álvarez-Vallina L, et al. Immune regulation by pericytes: modulating innate and adaptive immunity[J]. Front Immunol, 2016, 7: 480. https://pubmed.ncbi.nlm.nih.gov/27867386/
|
[25] |
Smyth LCD, Rustenhoven J, Park TIH, et al. Unique and shared inflammatory profiles of human brain endothelia and pericytes[J]. J Neuroinflammation, 2018, 15(1): 138. doi: 10.1186/s12974-018-1167-8
|
[26] |
Castelli V, Benedetti E, Antonosante A, et al. Neuronal cells rearrangement during aging and neurodegenerative disease: metabolism, oxidative stress and organelles dynamic[J]. Front Mol Neurosci, 2019, 12: 132. doi: 10.3389/fnmol.2019.00132
|
[27] |
Kirch C, Gollo LL. Single-neuron dynamical effects of dendritic pruning implicated in aging and neurodegeneration: towards a measure of neuronal reserve[J]. Sci Rep, 2021, 11(1): 1309. doi: 10.1038/s41598-020-78815-z
|
[28] |
Sandell JH, Peters A. Disrupted myelin and axon loss in the anterior commissure of the aged rhesus monkey[J]. J Comp Neurol, 2003, 466(1): 14–30. doi: 10.1002/cne.10859
|
[29] |
Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment[J]. Drugs Aging, 2001, 18(9): 685–716. doi: 10.2165/00002512-200118090-00004
|
[30] |
Gounder SS, Kannan S, Devadoss D, et al. Impaired transcriptional activity of Nrf2 in age-related myocardial oxidative stress is reversible by moderate exercise training[J]. PLoS One, 2012, 7(9): e45697. doi: 10.1371/journal.pone.0045697
|
[31] |
Gu Y, Dee CM, Shen J. Interaction of free radicals, matrix metalloproteinases and caveolin-1 impacts blood-brain barrier permeability[J]. Front Biosci, 2011, 3(4): 1216–1231. https://pubmed.ncbi.nlm.nih.gov/21622267/
|
[32] |
DeBalsi KL, Hoff KE, Copeland WC. Role of the mitochondrial DNA replication machinery in mitochondrial DNA mutagenesis, aging and age-related diseases[J]. Ageing Res Rev, 2017, 33: 89–104. doi: 10.1016/j.arr.2016.04.006
|
[33] |
Mattson MP, Gleichmann M, Cheng A. Mitochondria in neuroplasticity and neurological disorders[J]. Neuron, 2008, 60(5): 748–766. doi: 10.1016/j.neuron.2008.10.010
|
[34] |
Harris JJ, Jolivet R, Attwell D. Synaptic energy use and supply[J]. Neuron, 2012, 75(5): 762–777. doi: 10.1016/j.neuron.2012.08.019
|
[35] |
Zhuo M, Gorgun MF, Englander EW. Augmentation of glycolytic metabolism by meclizine is indispensable for protection of dorsal root ganglion neurons from hypoxia-induced mitochondrial compromise[J]. Free Radic Biol Med, 2016, 99: 20–31. doi: 10.1016/j.freeradbiomed.2016.07.022
|
[36] |
Takahashi S. Metabolic compartmentalization between astroglia and neurons in physiological and pathophysiological conditions of the neurovascular unit[J]. Neuropathology, 2020, 40(2): 121–137. doi: 10.1111/neup.12639
|
[37] |
Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation[J]. Cell Metab, 2011, 14(6): 724–738. doi: 10.1016/j.cmet.2011.08.016
|
[38] |
Abe T, Takahashi S, Suzuki N. Oxidative metabolism in cultured rat astroglia: effects of reducing the glucose concentration in the culture medium and of D-aspartate or potassium stimulation[J]. J Cereb Blood Flow Metab, 2006, 26(2): 153–160. doi: 10.1038/sj.jcbfm.9600175
|
[39] |
Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization[J]. Proc Natl Acad Sci U S A, 1994, 91(22): 10625–10629. doi: 10.1073/pnas.91.22.10625
|
[40] |
Mergenthaler P, Lindauer U, Dienel GA, et al. Sugar for the brain: the role of glucose in physiological and pathological brain function[J]. Trends Neurosci, 2013, 36(10): 587–597. doi: 10.1016/j.tins.2013.07.001
|
[41] |
Salminen A, Ojala J, Kaarniranta K, et al. Astrocytes in the aging brain express characteristics of senescence-associated secretory phenotype[J]. Eur J Neurosci, 2011, 34(1): 3–11. doi: 10.1111/j.1460-9568.2011.07738.x
|
[42] |
Bhat R, Crowe EP, Bitto A, et al. Astrocyte senescence as a component of Alzheimer's disease[J]. PLoS One, 2012, 7(9): e45069. doi: 10.1371/journal.pone.0045069
|
[43] |
Reinert A, Morawski M, Seeger J, et al. Iron concentrations in neurons and glial cells with estimates on ferritin concentrations[J]. BMC Neurosci, 2019, 20(1): 25. doi: 10.1186/s12868-019-0507-7
|
[44] |
Salami A, Papenberg G, Sitnikov R, et al. Elevated neuroinflammation contributes to the deleterious impact of iron overload on brain function in aging[J]. Neuroimage, 2021, 230: 117792. doi: 10.1016/j.neuroimage.2021.117792
|
[45] |
Stockwell BR, Friedmann Angeli JP, Bayir H, et al. Ferroptosis: a regulated cell death nexus linking metabolism, redox biology, and disease[J]. Cell, 2017, 171(2): 273–285. doi: 10.1016/j.cell.2017.09.021
|
[46] |
Wang J, Song N, Jiang H, et al. Pro-inflammatory cytokines modulate iron regulatory protein 1 expression and iron transportation through reactive oxygen/nitrogen species production in ventral mesencephalic neurons[J]. Biochim Biophys Acta Mol Basis Dis, 2013, 1832(5): 618–625. doi: 10.1016/j.bbadis.2013.01.021
|
[47] |
Thomsen MS, Andersen MV, Christoffersen PR, et al. Neurodegeneration with inflammation is accompanied by accumulation of iron and ferritin in microglia and neurons[J]. Neurobiol Dis, 2015, 81: 108–118. doi: 10.1016/j.nbd.2015.03.013
|
[48] |
Damani MR, Zhao L, Fontainhas AM, et al. Age-related alterations in the dynamic behavior of microglia[J]. Aging Cell, 2011, 10(2): 263–276. doi: 10.1111/j.1474-9726.2010.00660.x
|
[49] |
Orre M, Kamphuis W, Osborn LM, et al. Acute isolation and transcriptome characterization of cortical astrocytes and microglia from young and aged mice[J]. Neurobiol Aging, 2014, 35(1): 1–14. doi: 10.1016/j.neurobiolaging.2013.07.008
|
[50] |
Koellhoffer EC, McCullough LD, Ritzel RM. Old maids: aging and its impact on microglia function[J]. Int J Mol Sci, 2017, 18(4): 769. doi: 10.3390/ijms18040769
|
[51] |
von Bernhardi R, Eugenín-von Bernhardi L, Eugenín J. Microglial cell dysregulation in brain aging and neurodegeneration[J]. Front Aging Neurosci, 2015, 7: 124. doi: 10.3389/fnagi.2015.00124
|
[52] |
Duncombe J, Lennen RJ, Jansen MA, et al. Ageing causes prominent neurovascular dysfunction associated with loss of astrocytic contacts and gliosis[J]. Neuropathol Appl Neurobiol, 2017, 43(6): 477–491. doi: 10.1111/nan.12375
|
[53] |
Mishra A, Reynolds JP, Chen Y, et al. Astrocytes mediate neurovascular signaling to capillary pericytes but not to arterioles[J]. Nat Neurosci, 2016, 19(12): 1619–1627. doi: 10.1038/nn.4428
|
[54] |
Bell RD, Winkler EA, Sagare AP, et al. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging[J]. Neuron, 2010, 68(3): 409–427. doi: 10.1016/j.neuron.2010.09.043
|
[55] |
Lourenço CF, Ledo A, Caetano M, et al. Age-dependent impairment of neurovascular and neurometabolic coupling in the hippocampus[J]. Front Physiol, 2018, 9: 913. doi: 10.3389/fphys.2018.00913
|
[56] |
Balbi M, Ghosh M, Longden TA, et al. Dysfunction of mouse cerebral arteries during early aging[J]. J Cereb Blood Flow Metab, 2015, 35(9): 1445–1453. doi: 10.1038/jcbfm.2015.107
|
[57] |
Fabiani M, Gordon BA, Maclin EL, et al. Neurovascular coupling in normal aging: a combined optical, ERP and fMRI study[J]. Neuroimage, 2014, 85: 592–607. doi: 10.1016/j.neuroimage.2013.04.113
|
[58] |
Graves SI, Baker DJ. Implicating endothelial cell senescence to dysfunction in the ageing and diseased brain[J]. Basic Clin Pharmacol Toxicol, 2020, 127(2): 102–110. doi: 10.1111/bcpt.13403
|
[59] |
Murugesan N, Demarest TG, Madri JA, et al. Brain regional angiogenic potential at the neurovascular unit during normal aging[J]. Neurobiol Aging, 2012, 33(5): 1004.e1–1004.e16. doi: 10.1016/j.neurobiolaging.2011.09.022
|
[60] |
Ungvari Z, Tucsek Z, Sosnowska D, et al. Aging-induced dysregulation of dicer1-dependent microRNA expression impairs angiogenic capacity of rat cerebromicrovascular endothelial cells[J]. J Gerontol A Biol Sci Med Sci, 2013, 68(8): 877–891. doi: 10.1093/gerona/gls242
|
[61] |
Senatorov VV JR, Friedman AR, Milikovsky DZ, et al. Blood-brain barrier dysfunction in aging induces hyperactivation of TGFβ signaling and chronic yet reversible neural dysfunction[J]. Sci Transl Med, 2019, 11(521): eaaw8283. doi: 10.1126/scitranslmed.aaw8283
|
[62] |
Cacheaux LP, Ivens S, David Y, et al. Transcriptome profiling reveals TGF-β signaling involvement in epileptogenesis[J]. J Neurosci, 2009, 29(28): 8927–8935. doi: 10.1523/JNEUROSCI.0430-09.2009
|
[63] |
Bar-Klein G, Cacheaux LP, Kamintsky L, et al. Losartan prevents acquired epilepsy via TGF-β signaling suppression[J]. Ann Neurol, 2014, 75(6): 864–875. doi: 10.1002/ana.24147
|
[64] |
Levy N, Milikovsky DZ, Baranauskas G, et al. Differential TGF-β signaling in glial subsets underlies IL-6-mediated epileptogenesis in Mice[J]. J Immunol, 2015, 195(4): 1713–1722. doi: 10.4049/jimmunol.1401446
|
[65] |
Montagne A, Barnes SR, Sweeney MD, et al. Blood-brain barrier breakdown in the aging human hippocampus[J]. Neuron, 2015, 85(2): 296–302. doi: 10.1016/j.neuron.2014.12.032
|
[66] |
Ivens S, Kaufer D, Flores LP, et al. TGF-β receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis[J]. Brain, 2007, 130(2): 535–547. doi: 10.1093/brain/awl317
|
[67] |
Garwood CJ, Ratcliffe LE, Simpson JE, et al. Review: Astrocytes in Alzheimer's disease and other age-associated dementias: a supporting player with a central role[J]. Neuropathol Appl Neurobiol, 2017, 43(4): 281–298. doi: 10.1111/nan.12338
|
[68] |
Simpson JE, Ince PG, Haynes LJ, et al. Population variation in oxidative stress and astrocyte DNA damage in relation to Alzheimer-type pathology in the ageing brain[J]. Neuropathol Appl Neurobiol, 2010, 36(1): 25–40. doi: 10.1111/j.1365-2990.2009.01030.x
|
[69] |
Angelova DM, Brown DR. Altered processing of β-amyloid in SH-SY5Y cells induced by model senescent microglia[J]. ACS Chem Neurosci, 2018, 9(12): 3137–3152. doi: 10.1021/acschemneuro.8b00334
|
[70] |
Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer's disease mice[J]. J Neurosci, 2008, 28(33): 8354–8360. doi: 10.1523/JNEUROSCI.0616-08.2008
|
[71] |
Yamazaki Y, Kanekiyo T. Blood-brain barrier dysfunction and the pathogenesis of Alzheimer's disease[J]. Int J Mol Sci, 2017, 18(9): 1965. doi: 10.3390/ijms18091965
|
[72] |
Soto-Rojas LO, Pacheco-Herrero M, Martínez-Gómez PA, et al. The neurovascular unit dysfunction in Alzheimer's disease[J]. Int J Mol Sci, 2021, 22(4): 2022. doi: 10.3390/ijms22042022
|
[73] |
Garwood CJ, Simpson JE, Al Mashhadi S, et al. DNA damage response and senescence in endothelial cells of human cerebral cortex and relation to Alzheimer's neuropathology progression: a population-based study in the Medical Research Council Cognitive Function and Ageing Study (MRC-CFAS) cohort[J]. Neuropathol Appl Neurobiol, 2014, 40(7): 802–814. doi: 10.1111/nan.12156
|
[74] |
Procter TV, Williams A, Montagne A. Interplay between brain pericytes and endothelial cells in dementia[J]. Am J Pathol, 2021, 191(11): 1917–1931. doi: 10.1016/j.ajpath.2021.07.003
|
[75] |
Winkler EA, Sengillo JD, Bell RD, et al. Blood-spinal cord barrier pericyte reductions contribute to increased capillary permeability[J]. J Cereb Blood Flow Metab, 2012, 32(10): 1841–1852. doi: 10.1038/jcbfm.2012.113
|
[76] |
Yang AC, Stevens MY, Chen MB, et al. Physiological blood-brain transport is impaired with age by a shift in transcytosis[J]. Nature, 2020, 583(7816): 425–430. doi: 10.1038/s41586-020-2453-z
|
[77] |
Sengillo JD, Winkler EA, Walker CT, et al. Deficiency in mural vascular cells coincides with blood-brain barrier disruption in Alzheimer's disease[J]. Brain Pathol, 2013, 23(3): 303–310. doi: 10.1111/bpa.12004
|
[78] |
Montagne A, Nikolakopoulou AM, Zhao Z, et al. Pericyte degeneration causes white matter dysfunction in the mouse central nervous system[J]. Nat Med, 2018, 24(3): 326–337. doi: 10.1038/nm.4482
|
[79] |
Rucker HK, Wynder HJ, Thomas WE. Cellular mechanisms of CNS pericytes[J]. Brain Res Bull, 2000, 51(5): 363–369. doi: 10.1016/S0361-9230(99)00260-9
|
[80] |
Barker R, Ashby EL, Wellington D, et al. Pathophysiology of white matter perfusion in Alzheimer's disease and vascular dementia[J]. Brain, 2014, 137(5): 1524–1532. doi: 10.1093/brain/awu040
|
[81] |
Rajani RM, Quick S, Ruigrok SR, et al. Reversal of endothelial dysfunction reduces white matter vulnerability in cerebral small vessel disease in rats[J]. Sci Transl Med, 2018, 10(448): eaam9507. doi: 10.1126/scitranslmed.aam9507
|
[82] |
Desai BS, Schneider JA, Li J, et al. Evidence of angiogenic vessels in Alzheimer's disease[J]. J Neural Transm (Vienna), 2009, 116(5): 587–597. doi: 10.1007/s00702-009-0226-9
|
[83] |
Gonzalez-Rodriguez P, Zampese E, Surmeier DJ. Selective neuronal vulnerability in Parkinson's disease[J]. Prog Brain Res, 2020, 252: 61–89. https://pubmed.ncbi.nlm.nih.gov/32247375/
|
[84] |
Liang C, Wang TT, Luby-Phelps K, et al. Mitochondria mass is low in mouse substantia nigra dopamine neurons: implications for Parkinson's disease[J]. Exp Neurol, 2007, 203(2): 370–380. doi: 10.1016/j.expneurol.2006.08.015
|
[85] |
Fivenson EM, Lautrup S, Sun N, et al. Mitophagy in neurodegeneration and aging[J]. Neurochem Int, 2017, 109: 202–209. doi: 10.1016/j.neuint.2017.02.007
|
[86] |
Gredilla R, Bohr VA, Stevnsner T. Mitochondrial DNA repair and association with aging--an update[J]. Exp Gerontol, 2010, 45(7–8): 478–488. doi: 10.1016/j.exger.2010.01.017
|
[87] |
Youdim MBH, Stephenson G, Ben Shachar D. Ironing iron out in Parkinson's disease and other neurodegenerative diseases with iron chelators: a lesson from 6-hydroxydopamine and iron chelators, desferal and VK-28[J]. Ann N Y Acad Sci, 2004, 1012: 306–325. doi: 10.1196/annals.1306.025
|
[88] |
Takahashi M, Ko LW, Kulathingal J, et al. Oxidative stress-induced phosphorylation, degradation and aggregation of α-synuclein are linked to upregulated CK2 and cathepsin D[J]. Eur J Neurosci, 2007, 26(4): 863–874. doi: 10.1111/j.1460-9568.2007.05736.x
|
[89] |
Rai SN, Tiwari N, Singh P, et al. Therapeutic potential of vital transcription factors in Alzheimer's and Parkinson's disease with particular emphasis on transcription factor EB mediated autophagy[J]. Front Neurosci, 2021, 15: 777347. doi: 10.3389/fnins.2021.777347
|
[90] |
He J, Zhu G, Wang G, et al. Oxidative stress and neuroinflammation potentiate each other to promote progression of dopamine neurodegeneration[J]. Oxid Med Cell Longev, 2020, 2020: 6137521. doi: 10.1155/2020/6137521
|
[91] |
Rai SN, Singh P, Varshney R, et al. Promising drug targets and associated therapeutic interventions in Parkinson's disease[J]. Neural Regen Res, 2021, 16(9): 1730–1739. doi: 10.4103/1673-5374.306066
|
[92] |
Mbefo MK, Paleologou KE, Boucharaba A, et al. Phosphorylation of synucleins by members of the Polo-like kinase family[J]. J Biol Chem, 2010, 285(4): 2807–2822. doi: 10.1074/jbc.M109.081950
|
[93] |
Rocha EM, De Miranda B, Sanders LH. Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease[J]. Neurobiol Dis, 2018, 109: 249–257. doi: 10.1016/j.nbd.2017.04.004
|
[94] |
Hoenen C, Gustin A, Birck C, et al. Alpha-synuclein proteins promote pro-inflammatory cascades in microglia: stronger effects of the A53T mutant[J]. PLoS One, 2016, 11(9): e0162717. doi: 10.1371/journal.pone.0162717
|
[95] |
Zhang Q, Heng Y, Yuan Y, et al. Pathological α-synuclein exacerbates the progression of Parkinson's disease through microglial activation[J]. Toxicol Lett, 2017, 265: 30–37. doi: 10.1016/j.toxlet.2016.11.002
|
[96] |
Rappold PM, Tieu K. Astrocytes and therapeutics for Parkinson's disease[J]. Neurotherapeutics, 2010, 7(4): 413–423. doi: 10.1016/j.nurt.2010.07.001
|
[97] |
Rodriguez M, Rodriguez-Sabate C, Morales I, et al. Parkinson's disease as a result of aging[J]. Aging Cell, 2015, 14(3): 293–308. doi: 10.1111/acel.12312
|
[98] |
Rai SN, Singh P. Advancement in the modelling and therapeutics of Parkinson's disease[J]. J Chem Neuroanat, 2020, 104: 101752. doi: 10.1016/j.jchemneu.2020.101752
|
[99] |
Martí Y, Matthaeus F, Lau T, et al. Methyl-4-phenylpyridinium (MPP +) differentially affects monoamine release and re-uptake in murine embryonic stem cell-derived dopaminergic and serotonergic neurons[J]. Mol Cell Neurosci, 2017, 83: 37–45. doi: 10.1016/j.mcn.2017.06.009
|
[100] |
Rai SN, Chaturvedi VK, Singh P, et al. Mucuna pruriens in Parkinson's and in some other diseases: recent advancement and future prospective[J]. 3 Biotech, 2020, 10(12): 522. doi: 10.1007/s13205-020-02532-7
|
[101] |
Trovato Salinaro A, Pennisi M, Di Paola R, et al. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer's disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms[J]. Immun Ageing, 2018, 15: 8. doi: 10.1186/s12979-017-0108-1
|
[102] |
Mancuso C, Pani G, Calabrese V. Bilirubin: an endogenous scavenger of nitric oxide and reactive nitrogen species[J]. Redox Rep, 2006, 11(5): 207–213. doi: 10.1179/135100006X154978
|
[103] |
Calabrese V, Cornelius C, Dinkova-Kostova AT, et al. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders[J]. Antioxid Redox Signal, 2010, 13(11): 1763–1811. doi: 10.1089/ars.2009.3074
|
[104] |
Calabrese V, Mancuso C, Calvani M, et al. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity[J]. Nat Rev Neurosci, 2007, 8(10): 766–775. doi: 10.1038/nrn2214
|
[105] |
Goodman Y, Mattson MP. Ceramide protects hippocampal neurons against excitotoxic and oxidative insults, and amyloid β-peptide toxicity[J]. J Neurochem, 1996, 66(2): 869–872. doi: 10.1046/j.1471-4159.1996.66020869.x
|
[106] |
Dirnagl U, Meisel A. Endogenous neuroprotection: mitochondria as gateways to cerebral preconditioning?[J]. Neuropharmacology, 2008, 55(3): 334–344. doi: 10.1016/j.neuropharm.2008.02.017
|
[107] |
Miquel S, Champ C, Day J, et al. Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions[J]. Ageing Res Rev, 2018, 42: 40–55. doi: 10.1016/j.arr.2017.12.004
|