Citation: | Haoran Jia, Tianwu Xie. Tracers progress for positron emission tomography imaging of glial-related disease[J]. The Journal of Biomedical Research, 2022, 36(5): 321-335. DOI: 10.7555/JBR.36.20220017 |
This work was supported by the Key Laboratory of Biomedical Engineering of Hainan Province under Opening Foundation 2022001.
CLC number: R741.04; R817.4, Document code: A
The authors reported no conflict of interests.
[1] |
Von Bartheld CS. Myths and truths about the cellular composition of the human brain: a review of influential concepts[J]. J Chem Neuroanat, 2018, 93: 2–15. doi: 10.1016/j.jchemneu.2017.08.004
|
[2] |
Herculano-Houzel S. The glia/neuron ratio: how it varies uniformly across brain structures and species and what that means for brain physiology and evolution[J]. Glia, 2014, 62(9): 1377–1391. doi: 10.1002/glia.22683
|
[3] |
Jäkel S, Dimou L. Glial cells and their function in the adult brain: a journey through the history of their ablation[J]. Front Cell Neurosci, 2017, 11: 24. doi: 10.3389/fncel.2017.00024
|
[4] |
Nayak D, Roth TL, McGavern DB. Microglia development and function[J]. Annu Rev Immunol, 2014, 32: 367–402. doi: 10.1146/annurev-immunol-032713-120240
|
[5] |
Siracusa R, Fusco R, Cuzzocrea S. Astrocytes: role and functions in brain pathologies[J]. Front Pharmacol, 2019, 10: 1114. doi: 10.3389/fphar.2019.01114
|
[6] |
Disabato DJ, Quan N, Godbout JP. Neuroinflammation: the devil is in the details[J]. J Neurochem, 2016, 139(S2): 136–153. doi: 10.1111/jnc.13607
|
[7] |
Mantovani A, Sica A, Locati M. Macrophage polarization comes of age[J]. Immunity, 2005, 23(4): 344–346. doi: 10.1016/j.immuni.2005.10.001
|
[8] |
Zamanian JL, Xu L, Foo LC, et al. Genomic analysis of reactive astrogliosis[J]. J Neurosci, 2012, 32(18): 6391–6410. doi: 10.1523/JNEUROSCI.6221-11.2012
|
[9] |
Lyman M, Lloyd DG, Ji X, et al. Neuroinflammation: the role and consequences[J]. Neurosci Res, 2014, 79: 1–12. doi: 10.1016/j.neures.2013.10.004
|
[10] |
Pandey R, Caflisch L, Lodi A, et al. Metabolomic signature of brain cancer[J]. Mol Carcinog, 2017, 56(11): 2355–2371. doi: 10.1002/mc.22694
|
[11] |
Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary[J]. Acta Neuropathol, 2016, 131(6): 803–820. doi: 10.1007/s00401-016-1545-1
|
[12] |
Walker C, Baborie A, Crooks D, et al. Biology, genetics and imaging of glial cell tumours[J]. Br J Radiol, 2011, 84(S2): S90–S106. doi: 10.1259/bjr/23430927
|
[13] |
Santoro A, Mattace Raso G, Taliani S, et al. TSPO-ligands prevent oxidative damage and inflammatory response in C6 glioma cells by neurosteroid synthesis[J]. Eur J Pharm Sci, 2016, 88: 124–131. doi: 10.1016/j.ejps.2016.04.006
|
[14] |
Veenman L, Gavish M. The peripheral-type benzodiazepine receptor and the cardiovascular system. Implications for drug development[J]. Pharmacol Ther, 2006, 110(3): 503–524. doi: 10.1016/j.pharmthera.2005.09.007
|
[15] |
Hauet T, Yao Z, Bose HS, et al. Peripheral-type benzodiazepine receptor-mediated action of steroidogenic acute regulatory protein on cholesterol entry into leydig cell mitochondria[J]. Mol Endocrinol, 2005, 19(2): 540–554. doi: 10.1210/me.2004-0307
|
[16] |
O’Hara MF, Nibbio BJ, Craig RC, et al. Mitochondrial benzodiazepine receptors regulate oxygen homeostasis in the early mouse embryo[J]. Reprod Toxicol, 2003, 17(4): 365–375. doi: 10.1016/S0890-6238(03)00035-2
|
[17] |
Larcher JC, Vayssiere JL, Le Marquer FJ, et al. Effects of peripheral benzodiazepines upon the O2 consumption of neuroblastoma cells[J]. Eur J Pharmacol, 1989, 161(2–3): 197–202. doi: 10.1016/0014-2999(89)90843-1
|
[18] |
Jain P, Chaney AM, Carlson ML, et al. Neuroinflammation PET imaging: current opinion and future directions[J]. J Nucl Med, 2020, 61(8): 1107–1112. doi: 10.2967/jnumed.119.229443
|
[19] |
Nutma E, Ceyzériat K, Amor S, et al. Cellular sources of TSPO expression in healthy and diseased brain[J]. Eur J Nucl Med Mol Imaging, 2021, 49(1): 146–163. doi: 10.1007/s00259-020-05166-2
|
[20] |
Camsonne R, Crouzel C, Comar D, et al. Synthesis of N-(11C) methyl, N-(methyl-1 propyl), (chloro-2 phenyl)-1 isoquinoleine carboxamide-3 (PK 11195): a new ligand for peripheral benzodiazepine receptors[J]. J Label Compd Radiopharm, 1984, 21(10): 985–991. doi: 10.1002/jlcr.2580211012
|
[21] |
Cagnin A, Brooks DJ, Kennedy AM, et al. In-vivo measurement of activated microglia in dementia[J]. Lancet, 2001, 358(9280): 461–467. doi: 10.1016/S0140-6736(01)05625-2
|
[22] |
Ouchi Y, Yoshikawa E, Sekine Y, et al. Microglial activation and dopamine terminal loss in early Parkinson's disease[J]. Ann Neurol, 2005, 57(2): 168–175. doi: 10.1002/ana.20338
|
[23] |
De Souza AM, Pitombeira MS, De Souza LE, et al. 11C-PK11195 plasma metabolization has the same rate in multiple sclerosis patients and healthy controls: a cross-sectional study[J]. Neural Regen Res, 2021, 16(12): 2494–2498. doi: 10.4103/1673-5374.313062
|
[24] |
Jučaite A, Cselényi Z, Arvidsson A, et al. Kinetic analysis and test-retest variability of the radioligand [11C](R)-PK11195 binding to TSPO in the human brain-a PET study in control subjects[J]. EJNMMI Res, 2012, 2: 15. doi: 10.1186/2191-219X-2-15
|
[25] |
Parente A, Feltes PK, Vallez García D, et al. Pharmacokinetic analysis of 11C-PBR28 in the rat model of herpes encephalitis: comparison with (R)-11C-PK11195[J]. J Nucl Med, 2016, 57(5): 785–791. doi: 10.2967/jnumed.115.165019
|
[26] |
James ML, Fulton RR, Henderson DJ, et al. Synthesis and in vivo evaluation of a novel peripheral benzodiazepine receptor PET radioligand[J]. Bioorg Med Chem, 2005, 13(22): 6188–6194. doi: 10.1016/j.bmc.2005.06.030
|
[27] |
Boutin H, Chauveau F, Thominiaux C, et al. 11C-DPA-713: a novel peripheral benzodiazepine receptor PET ligand for in vivo imaging of neuroinflammation[J]. J Nucl Med, 2007, 48(4): 573–581. doi: 10.2967/jnumed.106.036764
|
[28] |
Endres CJ, Pomper MG, James M, et al. Initial evaluation of 11C-DPA-713, a novel TSPO PET ligand, in humans[J]. J Nucl Med, 2009, 50(8): 1276–1282. doi: 10.2967/jnumed.109.062265
|
[29] |
Yasuno F, Kimura Y, Ogata A, et al. Kinetic modeling and non-invasive approach for translocator protein quantification with 11C-DPA-713[J]. Nucl Med Biol, 200, 108–109: 76–84. doi: 10.1016/j.nucmedbio.2022.02.005
|
[30] |
Akerele MI, Zein SA, Pandya S, et al. Population-based input function for TSPO quantification and kinetic modeling with [11C]-DPA-713[J]. EJNMMI Phys, 2021, 8(1): 39. doi: 10.1186/s40658-021-00381-8
|
[31] |
Sarda-Mantel L, Alsac JM, Boisgard R, et al. Comparison of 18F-fluoro-deoxy-glucose, 18F-fluoro-methyl-choline, and 18F-DPA714 for positron-emission tomography imaging of leukocyte accumulation in the aortic wall of experimental abdominal aneurysms[J]. J Vasc Surg, 2012, 56(3): 765–773. doi: 10.1016/j.jvs.2012.01.069
|
[32] |
Kaneko KI, Irie S, Mawatari A, et al. [18F]DPA-714 PET imaging for the quantitative evaluation of early spatiotemporal changes of neuroinflammation in rat brain following status epilepticus[J]. Eur J Nucl Med Mol Imaging, 2022, 49(7): 2265–2275. doi: 10.1007/s00259-022-05719-7
|
[33] |
Tang D, McKinley ET, Hight MR, et al. Synthesis and structure-activity relationships of 5, 6, 7-substituted pyrazolopyrimidines: discovery of a novel TSPO PET ligand for cancer imaging[J]. J Med Chem, 2013, 56(8): 3429–3433. doi: 10.1021/jm4001874
|
[34] |
Li J, Smith JA, Dawson ES, et al. Optimized translocator protein ligand for optical molecular imaging and screening[J]. Bioconjugate Chem, 2017, 28(4): 1016–1023. doi: 10.1021/acs.bioconjchem.6b00711
|
[35] |
Okubo T, Yoshikawa R, Chaki S, et al. Design, synthesis and structure–affinity relationships of aryloxyanilide derivatives as novel peripheral benzodiazepine receptor ligands[J]. Bioorg Med Chem, 2004, 12(2): 423–438. doi: 10.1016/j.bmc.2003.10.050
|
[36] |
Briard E, Zoghbi SS, Imaizumi M, et al. Synthesis and evaluation in monkey of two sensitive 11C-labeled aryloxyanilide ligands for imaging brain peripheral benzodiazepine receptors in vivo[J]. J Med Chem, 2008, 51(1): 17–30. doi: 10.1021/jm0707370
|
[37] |
Kreisl WC, Fujita M, Fujimura Y, et al. Comparison of [11C]-(R)-PK 11195 and [11C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: Implications for positron emission tomographic imaging of this inflammation biomarker[J]. Neuroimage, 2010, 49(4): 2924–2932. doi: 10.1016/j.neuroimage.2009.11.056
|
[38] |
Nair A, Veronese M, Xu X, et al. Test-retest analysis of a non-invasive method of quantifying [11C]-PBR28 binding in Alzheimer's disease[J]. EJNMMI Res, 2016, 6(1): 72. doi: 10.1186/s13550-016-0226-3
|
[39] |
Schaechter JD, Hightower BG, Kim M, et al. A pilot [11C]PBR28 PET/MRI study of neuroinflammation and neurodegeneration in chronic stroke patients[J]. Brain Behav Immun Health, 2021, 17: 100336. doi: 10.1016/j.bbih.2021.100336
|
[40] |
Pascual B, Funk Q, Zanotti-Fregonara P, et al. Neuroinflammation is highest in areas of disease progression in semantic dementia[J]. Brain, 2021, 144(5): 1565–1575. doi: 10.1093/brain/awab057
|
[41] |
Owen DR, Yeo AJ, Gunn RN, et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28[J]. J Cereb Blood Flow Metab, 2012, 32(1): 1–5. doi: 10.1038/jcbfm.2011.147
|
[42] |
Zanotti-Fregonara P, Zhang Y, Jenko KJ, et al. Synthesis and evaluation of translocator 18 kDa protein (TSPO) positron emission tomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971[J]. ACS Chem Neurosci, 2014, 5(10): 963–971. doi: 10.1021/cn500138n
|
[43] |
Ikawa M, Lohith TG, Shrestha S, et al. 11C-ER176, a Radioligand for 18-kDa translocator protein, has adequate sensitivity to robustly image all three affinity genotypes in human brain[J]. J Nucl Med, 2017, 58(2): 320–325. doi: 10.2967/jnumed.116.178996
|
[44] |
Fujita M, Kobayashi M, Ikawa M, et al. Comparison of four 11C-labeled PET ligands to quantify translocator protein 18 kDa (TSPO) in human brain: (R)-PK11195, PBR28, DPA-713, and ER176-based on recent publications that measured specific-to-non-displaceable ratios[J]. EJNMMI Res, 2017, 7(1): 84. doi: 10.1186/s13550-017-0334-8
|
[45] |
Rocha NP, Charron O, Latham LB, et al. Microglia activation in basal ganglia is a late event in huntington disease pathophysiology[J]. Neurol Neuroimmunol Neuroinflamm, 2021, 8(3): e984. doi: 10.1212/NXI.0000000000000984
|
[46] |
Boutin H, Murray K, Pradillo J, et al. 18F-GE-180: a novel TSPO radiotracer compared to 11C-R-PK11195 in a preclinical model of stroke[J]. Eur J Nucl Med Mol Imaging, 2015, 42(3): 503–511. doi: 10.1007/s00259-014-2939-8
|
[47] |
Vettermann FJ, Harris S, Schmitt J, et al. Impact of TSPO receptor polymorphism on [18F]GE-180 binding in healthy brain and pseudo-reference regions of neurooncological and neurodegenerative disorders[J]. Life (Basel), 2021, 11(6): 484. doi: 10.3390/life11060484
|
[48] |
Zanotti-Fregonara P, Pascual B, Rostomily RC, et al. Anatomy of 18F-GE180, a failed radioligand for the TSPO protein[J]. Eur J Nucl Med Mol Imaging, 2020, 47(10): 2233–2236. doi: 10.1007/s00259-020-04732-y
|
[49] |
Lammertsma AA, Bench CJ, Price GW, et al. Measurement of cerebral monoamine oxidase B activity using L-[11C]deprenyl and dynamic positron emission tomography[J]. J Cereb Blood Flow Metab, 1991, 11(4): 545–556. doi: 10.1038/jcbfm.1991.103
|
[50] |
Gulyás B, Pavlova E, Kása P, et al. Activated MAO-B in the brain of Alzheimer patients, demonstrated by [11C]-L-deprenyl using whole hemisphere autoradiography[J]. Neurochem Int, 2011, 58(1): 60–68. doi: 10.1016/j.neuint.2010.10.013
|
[51] |
Mixdorf JC, Murali D, Xin Y, et al. Alternative strategies for the synthesis of [11C]ER176 for PET imaging of neuroinflammation[J]. Appl Radiat Isot, 2021, 178: 109954. doi: 10.1016/j.apradiso.2021.109954
|
[52] |
Lee JH, Simeon FG, Liow JS, et al. In vivo evaluation of six analogs of 11C-ER176 as candidate 18F-labeled radioligands for translocator protein 18 kDa (TSPO)[J]. J Nucl Med, 2022, 63(8): 1252–1258. doi: 10.2967/jnumed.121.263168
|
[53] |
Narayanaswami V, Dahl K, Bernard-Gauthier V, et al. Emerging PET radiotracers and targets for imaging of neuroinflammation in neurodegenerative diseases: outlook beyond TSPO[J]. Mol Imaging, 2018, 17: 1536012118792317. doi: 10.1177/1536012118792317
|
[54] |
Van Weehaeghe D, Van Schoor E, De Vocht J, et al. TSPO versus P2X7 as a target for neuroinflammation: an in vitro and in vivo study[J]. J Nucl Med, 2020, 61(4): 604–607. doi: 10.2967/jnumed.119.231985
|
[55] |
Upadhyay N, Waldman AD. Conventional MRI evaluation of gliomas[J]. Br J Radiol, 2011, 84(S2): S107–S111. doi: 10.1259/bjr/65711810
|
[56] |
Langen KJ, Galldiks N, Hattingen E, et al. Advances in neuro-oncology imaging[J]. Nat Rev Neurol, 2017, 13(5): 279–289. doi: 10.1038/nrneurol.2017.44
|
[57] |
Rosenfeld SS, Hoffman JM, Coleman RE, et al. Studies of primary central nervous system lymphoma with fluorine-18-fluorodeoxyglucose positron emission tomography[J]. J Nucl Med, 1992, 33(4): 532–536. https://pubmed.ncbi.nlm.nih.gov/1552337/
|
[58] |
Kosaka N, Tsuchida T, Uematsu H, et al. 18F-FDG PET of common enhancing malignant brain tumors[J]. AJR Am J Roentgenol, 2008, 190(6): W365–W369. doi: 10.2214/AJR.07.2660
|
[59] |
Omuro AMP, Leite CC, Mokhtari K, et al. Pitfalls in the diagnosis of brain tumours[J]. Lancet Neurol, 2006, 5(11): 937–948. doi: 10.1016/S1474-4422(06)70597-X
|
[60] |
Chung JK, Kim YK, Kim SK, et al. Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET[J]. Eur J Nucl Med Mol Imaging, 2002, 29(2): 176–182. doi: 10.1007/s00259-001-0690-4
|
[61] |
Galldiks N, Langen KJ. Applications of PET imaging of neurological tumors with radiolabeled amino acids[J]. Quart J Nucl Med Mol Imaging, 2015, 59(1): 70–82. https://pubmed.ncbi.nlm.nih.gov/25517079/
|
[62] |
Långström B, Antoni G, Gullberg P, et al. Synthesis of L- and D-[methyl-11C]methionine[J]. J Nucl Med, 1987, 28(6): 1037–1040. https://pubmed.ncbi.nlm.nih.gov/3585494/
|
[63] |
Singhal T, Narayanan TK, Jain V, et al. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas[J]. Mol Imaging Biol, 2008, 10(1): 1–18. doi: 10.1007/s11307-007-0115-2
|
[64] |
Deuschl C, Kirchner J, Poeppel TD, et al. 11C–MET PET/MRI for detection of recurrent glioma[J]. Eur J Nucl Med Mol Imaging, 2018, 45(4): 593–601. doi: 10.1007/s00259-017-3916-9
|
[65] |
Glaudemans AWJW, Enting RH, Heesters MAAM, et al. Value of 11C-methionine PET in imaging brain tumours and metastases[J]. Eur J Nucl Med Mol Imaging, 2013, 40(4): 615–635. doi: 10.1007/s00259-012-2295-5
|
[66] |
De Zwart PL, Van Dijken BR J, Holtman GA, et al. Diagnostic accuracy of PET tracers for the differentiation of tumor progression from treatment-related changes in high-grade glioma: a systematic review and metaanalysis[J]. J Nucl Med, 2020, 61(4): 498–504. doi: 10.2967/jnumed.119.233809
|
[67] |
Grosu AL, Astner ST, Riedel E, et al. An interindividual comparison of O-(2-[18F]fluoroethyl)-L-tyrosine (FET)- and L-[methyl-11C]methionine (MET)-PET in patients with brain gliomas and metastases[J]. Int J Radiat Oncol Biol Phys, 2011, 81(4): 1049–1058. doi: 10.1016/j.ijrobp.2010.07.002
|
[68] |
Yang Y, He MZ, Li T, et al. MRI combined with PET-CT of different tracers to improve the accuracy of glioma diagnosis: a systematic review and meta-analysis[J]. Neurosurg Rev, 2019, 42(2): 185–195. doi: 10.1007/s10143-017-0906-0
|
[69] |
Weckesser M, Langen KJ, Rickert CH, et al. O-(2-[18F]fluorethyl)-L-tyrosine PET in the clinical evaluation of primary brain tumours[J]. Eur J Nucl Med Mol Imaging, 2005, 32(4): 422–429. doi: 10.1007/s00259-004-1705-8
|
[70] |
Pöpperl G, Kreth FW, Herms J, et al. Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods?[J]. J Nucl Med, 2006, 47(3): 393–403. https://pubmed.ncbi.nlm.nih.gov/16513607/
|
[71] |
Moulin-Romsee G, D'hondt E, De Groot T, et al. Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine?[J]. Eur J Nucl Med Mol Imaging, 2007, 34(12): 2082–2087. doi: 10.1007/s00259-007-0557-4
|
[72] |
Kratochwil C, Combs SE, Leotta K, et al. Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors[J]. Neuro-Oncol, 2014, 16(3): 434–440. doi: 10.1093/neuonc/not199
|
[73] |
Xiao J, Jin Y, Nie J, et al. Diagnostic and grading accuracy of 18F-FDOPA PET and PET/CT in patients with gliomas: a systematic review and meta-analysis[J]. BMC Cancer, 2019, 19(1): 767. doi: 10.1186/s12885-019-5938-0
|
[74] |
Becherer A, Karanikas G, Szabó M, et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine[J]. Eur J Nucl Med Mol Imaging, 2003, 30(11): 1561–1567. doi: 10.1007/s00259-003-1259-1
|
[75] |
Fueger BJ, Czernin J, Cloughesy T, et al. Correlation of 6–18F-fluoro-L-dopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas[J]. J Nucl Med, 2010, 51(10): 1532–1538. doi: 10.2967/jnumed.110.078592
|
[76] |
Janvier L, Olivier P, Blonski M, et al. Correlation of SUV-derived indices with tumoral aggressiveness of gliomas in static 18F-FDOPA PET: use in clinical practice[J]. Clin Nucl Med, 2015, 40(9): e429–e435. doi: 10.1097/RLU.0000000000000897
|
[77] |
Shields AF, Grierson JR, Dohmen BM, et al. Imaging proliferation in vivo with [F-18]FLT and positron emission tomography[J]. Nat Med, 1998, 4(11): 1334–1336. doi: 10.1038/3337
|
[78] |
Hong IK, Kim JH, Ra YS, et al. Diagnostic usefulness of 3'-Deoxy-3'-[18F]Fluorothymidine positron emission tomography in recurrent brain tumor[J]. J Comput Assist Tomogr, 2011, 35(6): 679–684. doi: 10.1097/RCT.0b013e3182345b0e
|
[79] |
Enslow MS, Zollinger LV, Morton KA, et al. Comparison of 18F-fluorodeoxyglucose and 18F-fluorothymidine PET in differentiating radiation necrosis from recurrent glioma[J]. Clin Nucl Med, 2012, 37(9): 854–861. doi: 10.1097/RLU.0b013e318262c76a
|
[80] |
Shishido H, Kawai N, Miyake K, et al. Diagnostic value of 11C-methionine (MET) and 18F-fluorothymidine (FLT) positron emission tomography in recurrent high-grade gliomas; differentiation from treatment-induced tissue necrosis[J]. Cancers (Basel), 2012, 4(1): 244–256. doi: 10.3390/cancers4010244
|
[81] |
Weber MA, Henze M, Tüttenberg J, et al. Biopsy targeting gliomas: do functional imaging techniques identify similar target areas?[J]. Invest Radiol, 2010, 45(12): 755–768. doi: 10.1097/RLI.0b013e3181ec9db0
|
[82] |
Nowosielski M, Difranco MD, Putzer D, et al. An intra-individual comparison of MRI, [18F]-FET and [18F]-FLT PET in patients with high-grade gliomas[J]. PLoS One, 2014, 9(4): e95830. doi: 10.1371/journal.pone.0095830
|
[83] |
Mertens K, Slaets D, Lambert B, et al. PET with 18F-labelled choline-based tracers for tumour imaging: a review of the literature[J]. Eur J Nucl Med Mol Imaging, 2010, 37(11): 2188–2193. doi: 10.1007/s00259-010-1496-z
|
[84] |
Ito K, Yokoyama J, Kubota K, et al. Comparison of 18F-FDG and 11C-choline PET/CT for detecting recurrences in patients with nonsquamous cell head and neck malignancies[J]. Nucl Med Commun, 2010, 31(11): 931–937. doi: 10.1097/MNM.0b013e32833f3921
|
[85] |
Kato T, Shinoda J, Nakayama N, et al. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography[J]. AJNR Am J Neuroradiol, 2008, 29(6): 1176–1182. doi: 10.3174/ajnr.A1008
|
[86] |
Hara T, Kondo T, Hara T, et al. Use of 18F-choline and 11C-choline as contrast agents in positron emission tomography imaging-guided stereotactic biopsy sampling of gliomas[J]. J Neurosurg, 2003, 99(3): 474–479. doi: 10.3171/jns.2003.99.3.0474
|
[87] |
Montes A, Fernández A, Camacho V, et al. The usefulness of 18F-fluorocholine PET/CT in the detection of recurrence of central nervous system primary neoplasms[J]. Rev Esp Med Nucl Imagen Mol, 2017, 36(4): 227–232. doi: 10.1016/j.remn.2016.11.005
|
[88] |
Gao L, Xu W, Li T, et al. Accuracy of 11C-choline positron emission tomography in differentiating glioma recurrence from radiation necrosis: a systematic review and meta-analysis[J]. Medicine (Baltimore), 2018, 97(29): e11556. doi: 10.1097/MD.0000000000011556
|
[89] |
Dewhirst MW, Cao Y, Moeller B. Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response[J]. Nat Rev Cancer, 2008, 8(6): 425–437. doi: 10.1038/nrc2397
|
[90] |
Gerstner ER, Zhang Z, Fink JR, et al. ACRIN 6684: assessment of tumor hypoxia in newly diagnosed glioblastoma using 18F-FMISO PET and MRI[J]. Clin Cancer Res, 2016, 22(20): 5079–5086. doi: 10.1158/1078-0432.CCR-15-2529
|
[91] |
Reeves KM, Song PN, Angermeier A, et al. 18F-FMISO PET imaging identifies hypoxia and immunosuppressive tumor microenvironments and guides targeted evofosfamide therapy in tumors refractory to PD-1 and CTLA-4 inhibition[J]. Clin Cancer Res, 2022, 28(2): 327–337. doi: 10.1158/1078-0432.CCR-21-2394
|
[92] |
Parent EE, Benayoun M, Ibeanu I, et al. [18F]Fluciclovine PET discrimination between high- and low-grade gliomas[J]. EJNMMI Res, 2018, 8(1): 67. doi: 10.1186/s13550-018-0415-3
|
[93] |
Sörensen J, Owenius R, Lax M, et al. Regional distribution and kinetics of [18F]fluciclovine (anti-[18F]FACBC), a tracer of amino acid transport, in subjects with primary prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2013, 40(3): 394–402. doi: 10.1007/s00259-012-2291-9
|
[94] |
Kondo A, Ishii H, Aoki S, et al. Phase IIa clinical study of[18F]fluciclovine: efficacy and safety of a new PET tracer for brain tumors[J]. Ann Nucl Med, 2016, 30(9): 608–618. doi: 10.1007/s12149-016-1102-y
|
[95] |
Wakabayashi T, Iuchi T, Tsuyuguchi N, et al. Diagnostic performance and safety of positron emission tomography using 18F-Fluciclovine in patients with clinically suspected high- or low-grade gliomas: a multicenter phase IIb trial[J]. Asia Ocean J Nucl Med Biol, 2017, 5(1): 10–21. doi: 10.22038/aojnmb.2016.7869
|
[96] |
Wakabayashi T, Hirose Y, Miyake K, et al. Determining the extent of tumor resection at surgical planning with 18F-fluciclovine PET/CT in patients with suspected glioma: multicenter phase III trials[J]. Ann Nucl Med, 2021, 35(12): 1279–1292. doi: 10.1007/s12149-021-01670-z
|
[97] |
Mashimo T, Pichumani K, Vemireddy V, et al. Acetate is a bioenergetic substrate for human glioblastoma and brain metastases[J]. Cell, 2014, 159(7): 1603–1614. doi: 10.1016/j.cell.2014.11.025
|
[98] |
Yoshii Y, Furukawa T, Saga T, et al. Acetate/acetyl-CoA metabolism associated with cancer fatty acid synthesis: overview and application[J]. Cancer Lett, 2015, 356(2 Pt A): 211–216. doi: 10.1016/j.canlet.2014.02.019
|
[99] |
Liu RS, Chang C, Chu LS, et al. PET imaging of brain astrocytoma with 1–11C-acetate[J]. Eur J Nucl Med Mol Imaging, 2006, 33(4): 420–427. doi: 10.1007/s00259-005-0023-0
|
[100] |
Tsuchida T, Takeuchi H, Okazawa H, et al. Grading of brain glioma with 1–11C-acetate PET: comparison with 18F-FDG PET[J]. Nucl Med Biol, 2008, 35(2): 171–176. doi: 10.1016/j.nucmedbio.2007.11.004
|
[101] |
Dienel GA, Popp D, Drew PD, et al. Preferential labeling of glial and meningial brain tumors with [2-14C]Acetate[J]. J Nucl Med, 2001, 42(8): 1243–1250. https://pubmed.ncbi.nlm.nih.gov/11483687/
|
[102] |
Marik J, Ogasawara A, Martin-Mcnulty B, et al. PET of glial metabolism using 2–18F-fluoroacetate[J]. J Nucl Med, 2009, 50(6): 982–990. doi: 10.2967/jnumed.108.057356
|
[103] |
Vassileva V, Braga M, Barnes C, et al. Effective detection and monitoring of glioma using [18F]FPIA PET imaging[J]. Biomedicines, 2021, 9(7): 811. doi: 10.3390/biomedicines9070811
|
[104] |
Chin FT, Shen B, Liu S, et al. First experience with clinical-grade [18F]FPP(RGD)2: an automated multi-step radiosynthesis for clinical PET studies[J]. Mol Imaging Biol, 2012, 14(1): 88–95. doi: 10.1007/s11307-011-0477-3
|
[105] |
Iagaru A, Mosci C, Mittra E, et al. Glioblastoma multiforme recurrence: an exploratory study of 18F FPPRGD2 PET/CT[J]. Radiology, 2015, 277(2): 497–506. doi: 10.1148/radiol.2015141550
|
[106] |
Minamimoto R, Jamali M, Barkhodari A, et al. Biodistribution of the 18F-FPPRGD2 PET radiopharmaceutical in cancer patients: an atlas of SUV measurements[J]. Eur J Nucl Med Mol Imaging, 2015, 42(12): 1850–1858. doi: 10.1007/s00259-015-3096-4
|
[107] |
Albert NL, Weller M, Suchorska B, et al. Response assessment in Neuro-oncology working group and European association for Neuro-oncology recommendations for the clinical use of PET imaging in gliomas[J]. Neuro Oncol, 2016, 18(9): 1199–1208. doi: 10.1093/neuonc/now058
|
[108] |
Lin J, Chuang CP, Lin J, et al. Rational design, pharmacomodulation, and synthesis of [68Ga]Ga-Alb-FAPtp-01, a selective tumor-associated fibroblast activation protein tracer for PET imaging of Glioma[J]. ACS Sens, 2021, 6(9): 3424–3435. doi: 10.1021/acssensors.1c01316
|
[109] |
Foster A, Nigam S, Tatum DS, et al. Novel theranostic agent for PET imaging and targeted radiopharmaceutical therapy of tumour-infiltrating immune cells in glioma[J]. EBioMedicine, 2021, 71: 103571. doi: 10.1016/j.ebiom.2021.103571
|
[110] |
Alzheimer's Association. 2018 Alzheimer's disease facts and figures[J]. Alzheimer's Dement, 2018, 14(3): 367–429. doi: 10.1016/j.jalz.2018.02.001
|
[111] |
Patterson C. World Alzheimer report 2018: the state of the art of dementia research: new frontiers[M]. London: Alzheimer's Disease International, 2018.
|
[112] |
Breijyeh Z, Karaman R. Comprehensive review on Alzheimer's disease: causes and treatment[J]. Molecules, 2020, 25(24): 5789. doi: 10.3390/molecules25245789
|
[113] |
Filippi L, Chiaravalloti A, Bagni O, et al. 18F-labeled radiopharmaceuticals for the molecular neuroimaging of amyloid plaques in Alzheimer's disease[J]. Am J Nucl Med Mol Imaging, 2018, 8(4): 268–281. https://pubmed.ncbi.nlm.nih.gov/30245918/
|
[114] |
Beach TG. A review of biomarkers for neurodegenerative disease: will they swing us across the valley?[J]. Neurol Ther, 2017, 6(S1): 5–13. doi: 10.1007/s40120-017-0072-x
|
[115] |
Gu L, Guo Z. Alzheimer's Aβ42 and Aβ40 peptides form interlaced amyloid fibrils[J]. J Neurochem, 2013, 126(3): 305–311. doi: 10.1111/jnc.12202
|
[116] |
Kayed R, Lasagna-Reeves CA. Molecular mechanisms of amyloid oligomers toxicity[J]. J Alzheimers Dis, 2013, 33(S1): S67–S78. doi: 10.3233/JAD-2012-129001
|
[117] |
Hu WT, Watts KD, Shaw LM, et al. CSF beta-amyloid 1–42-what are we measuring in Alzheimer's disease?[J]. Ann Clin Transl Neurol, 2015, 2(2): 131–139. doi: 10.1002/acn3.160
|
[118] |
Uzuegbunam BC, Librizzi D, Hooshyar Yousefi B. PET radiopharmaceuticals for Alzheimer's disease and Parkinson's disease diagnosis, the current and future landscape[J]. Molecules, 2020, 25(4): 977. doi: 10.3390/molecules25040977
|
[119] |
Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer's disease with Pittsburgh Compound-B[J]. Ann Neurol, 2004, 55(3): 306–319. doi: 10.1002/ana.20009
|
[120] |
Forsberg A, Engler H, Almkvist O, et al. PET imaging of amyloid deposition in patients with mild cognitive impairment[J]. Neurobiol Aging, 2008, 29(10): 1456–1465. doi: 10.1016/j.neurobiolaging.2007.03.029
|
[121] |
Okello A, Koivunen J, Edison P, et al. Conversion of amyloid positive and negative MCI to AD over 3 years: an 11C-PIB PET study[J]. Neurology, 2009, 73(10): 754–760. doi: 10.1212/WNL.0b013e3181b23564
|
[122] |
Jack CR JR, Wiste HJ, Vemuri P, et al. Brain beta-amyloid measures and magnetic resonance imaging atrophy both predict time-to-progression from mild cognitive impairment to Alzheimer's disease[J]. Brain, 2010, 133(11): 3336–3348. doi: 10.1093/brain/awq277
|
[123] |
Kemppainen NM, Scheinin NM, Koivunen J, et al. Five-year follow-up of 11C-PIB uptake in Alzheimer's disease and MCI[J]. Eur J Nucl Med Mol Imaging, 2014, 41(2): 283–289. doi: 10.1007/s00259-013-2562-0
|
[124] |
Mathis CA, Ikonomovic MD, Debnath ML, et al. Comparison of the binding of 3′-F-PiB and PiB in human brain homogenates[J]. NeuroImage, 2008, 41(S2): T113–T114. https://www.proquest.com/docview/1506904887/fulltextPDF/E1CB33F6B4B14D3FPQ/1?accountid=42094
|
[125] |
Vandenberghe R, Van Laere K, Ivanoiu A, et al. 18F-flutemetamol amyloid imaging in Alzheimer disease and mild cognitive impairment: a phase 2 trial[J]. Ann Neurol, 2010, 68(3): 319–329. doi: 10.1002/ana.22068
|
[126] |
Juréus A, Swahn BM, Sandell J, et al. Characterization of AZD4694, a novel fluorinated Aβ plaque neuroimaging PET radioligand[J]. J Neurochem, 2010, 114(3): 784–794. doi: 10.1111/j.1471-4159.2010.06812.x
|
[127] |
Verhoeff NPLG, Wilson AA, Takeshita S, et al. In-vivo imaging of Alzheimer disease beta-amyloid with[11C] SB-13 PET[J]. Am J Geriatr Psychiatry, 2004, 12(6): 584–595. doi: 10.1176/appi.ajgp.12.6.584
|
[128] |
Johnson AE, Jeppsson F, Sandell J, et al. AZD2184: a radioligand for sensitive detection of β-amyloid deposits[J]. J Neurochem, 2009, 108(5): 1177–1186. doi: 10.1111/j.1471-4159.2008.05861.x
|
[129] |
Nyberg S, Jönhagen ME, Cselényi Z, et al. Detection of amyloid in Alzheimer's disease with positron emission tomography using [11C]AZD2184[J]. Eur J Nucl Med Mol Imaging, 2009, 36(11): 1859–1863. doi: 10.1007/s00259-009-1182-1
|
[130] |
Cselényi Z, Jönhagen ME, Forsberg A, et al. Clinical validation of 18F-AZD4694, an amyloid-β–specific PET radioligand[J]. J Nucl Med, 2012, 53(3): 415–424. doi: 10.2967/jnumed.111.094029
|
[131] |
Rowe CC, Pejoska S, Mulligan RS, et al. Head-to-head comparison of 11C-PiB and 18F-AZD4694 (NAV4694) for β-amyloid imaging in aging and dementia[J]. J Nucl Med, 2013, 54(6): 880–886. doi: 10.2967/jnumed.112.114785
|
[132] |
Giannakopoulos P, Herrmann FR, Bussière T, et al. Tangle and neuron numbers, but not amyloid load, predict cognitive status in Alzheimer's disease[J]. Neurology, 2003, 60(9): 1495–1500. doi: 10.1212/01.WNL.0000063311.58879.01
|
[133] |
Van Rossum IA, Visser PJ, Knol DL, et al. Injury markers but not amyloid markers are associated with rapid progression from mild cognitive impairment to dementia in Alzheimer's disease[J]. J Alzheimers Dis, 2012, 29(2): 319–327. doi: 10.3233/JAD-2011-111694
|
[134] |
Small GW, Kepe V, Ercoli LM, et al. PET of brain amyloid and tau in mild cognitive impairment[J]. N Engl J Med, 2006, 355(25): 2652–2663. doi: 10.1056/NEJMoa054625
|
[135] |
Thompson PW, Ye L, Morgenstern JL, et al. Interaction of the amyloid imaging tracer FDDNP with hallmark Alzheimer's disease pathologies[J]. J Neurochem, 2009, 109(2): 623–630. doi: 10.1111/j.1471-4159.2009.05996.x
|
[136] |
Okamura N, Suemoto T, Furumoto S, et al. Quinoline and benzimidazole derivatives: candidate probes for in vivo imaging of tau pathology in Alzheimer's disease[J]. J Neurosci, 2005, 25(47): 10857–1062. doi: 10.1523/JNEUROSCI.1738-05.2005
|
[137] |
Fodero-Tavoletti MT, Okamura N, Furumoto S, et al. 18F-THK523: a novel in vivo tau imaging ligand for Alzheimer's disease[J]. Brain, 2011, 134(Pt 4): 1089–1100. doi: 10.1093/brain/awr038
|
[138] |
Okamura N, Furumoto S, Harada R, et al. Novel 18F-labeled arylquinoline derivatives for noninvasive imaging of tau pathology in Alzheimer disease[J]. J Nucl Med, 2013, 54(8): 1420–1427. doi: 10.2967/jnumed.112.117341
|
[139] |
Harada R, Okamura N, Furumoto S, et al. Characteristics of tau and its ligands in PET imaging[J]. Biomolecules, 2016, 6(1): 7. doi: 10.3390/biom6010007
|
[140] |
Harada R, Okamura N, Furumoto S, et al. 18F-THK5351: a novel PET radiotracer for imaging neurofibrillary pathology in Alzheimer disease[J]. J Nucl Med, 2016, 57(2): 208–214. doi: 10.2967/jnumed.115.164848
|
[141] |
Xia C, Arteaga J, Chen G, et al. [18F]T807, a novel tau positron emission tomography imaging agent for Alzheimer's disease[J]. Alzheimers Dement, 2013, 9(6): 666–676. doi: 10.1016/j.jalz.2012.11.008
|
[142] |
Chhatwal JP, Schultz AP, Marshall GA, et al. Temporal T807 binding correlates with CSF tau and phospho-tau in normal elderly[J]. Neurology, 2016, 87(9): 920–926. doi: 10.1212/WNL.0000000000003050
|
[143] |
Johnson KA, Schultz A, Betensky RA, et al. Tau positron emission tomographic imaging in aging and early Alzheimer disease[J]. Ann Neurol, 2016, 79(1): 110–119. doi: 10.1002/ana.24546
|
[144] |
Vermeiren C, Motte P, Viot D, et al. The tau positron-emission tomography tracer AV-1451 binds with similar affinities to tau fibrils and monoamine oxidases[J]. Mov Disord, 2018, 33(2): 273–281. doi: 10.1002/mds.27271
|
[145] |
Maruyama M, Shimada H, Suhara T, et al. Imaging of tau pathology in a tauopathy mouse model and in Alzheimer patients compared to normal controls[J]. Neuron, 2013, 79(6): 1094–1108. doi: 10.1016/j.neuron.2013.07.037
|
[146] |
Kolb HC, Andrés JI. Tau positron emission tomography imaging[J]. Cold Spring Harb Perspect Biol, 2017, 9(5): a023721. doi: 10.1101/cshperspect.a023721
|
[147] |
Sanabria Bohórquez S, Marik J, Ogasawara A, et al. [18F]GTP1 (Genentech Tau Probe 1), a radioligand for detecting neurofibrillary tangle tau pathology in Alzheimer's disease[J]. Eur J Nucl Med Mol Imaging, 2019, 46(10): 2077–2089. doi: 10.1007/s00259-019-04399-0
|
[148] |
Wong DF, Comley RA, Kuwabara H, et al. Characterization of 3 novel tau radiopharmaceuticals, 11C-RO-963, 11C-RO-643, and 18F-RO-948, in healthy controls and in Alzheimer subjects[J]. J Nucl Med, 2018, 59(12): 1869–1876. doi: 10.2967/jnumed.118.209916
|
[149] |
Kroth H, Oden F, Molette J, et al. Discovery and preclinical characterization of [18F]PI-2620, a next-generation tau PET tracer for the assessment of tau pathology in Alzheimer's disease and other tauopathies[J]. Eur J Nucl Med Mol Imaging, 2019, 46(10): 2178–2189. doi: 10.1007/s00259-019-04397-2
|
[150] |
Shi Y, Murzin AG, Falcon B, et al. Cryo-EM structures of tau filaments from Alzheimer's disease with PET ligand APN-1607[J]. Acta Neuropathol, 2021, 141(5): 697–708. doi: 10.1007/s00401-021-02294-3
|
[151] |
Hsu JL, Lin KJ, Hsiao IT, et al. The imaging features and clinical Associations of a novel tau PET tracer-18F-APN1607 in Alzheimer disease[J]. Clin Nucl Med, 2020, 45(10): 747–756. doi: 10.1097/RLU.0000000000003164
|
[152] |
Walji AM, Hostetler ED, Selnick H, et al. Discovery of 6-(Fluoro-18F)-3-(1H-pyrrolo[2, 3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]-MK-6240): A positron emission tomography (PET) imaging agent for quantification of neurofibrillary tangles (NFTs)[J]. J Med Chem, 2016, 59(10): 4778–4789. doi: 10.1021/acs.jmedchem.6b00166
|
[153] |
Betthauser TJ, Cody KA, Zammit MD, et al. In vivo characterization and quantification of neurofibrillary tau PET Radioligand 18F-MK-6240 in humans from Alzheimer disease dementia to young controls[J]. J Nucl Med, 2019, 60(1): 93–99. doi: 10.2967/jnumed.118.209650
|
[154] |
Rombouts FJR, Andrés JI, Ariza M, et al. Discovery of N-(Pyridin-4-yl)-1, 5-naphthyridin-2-amines as potential tau pathology PET tracers for Alzheimer's disease[J]. J Med Chem, 2017, 60(4): 1272–1291. doi: 10.1021/acs.jmedchem.6b01173
|
[155] |
Declercq L, Rombouts F, Koole M, et al. Preclinical evaluation of 18F-JNJ64349311, a Novel PET tracer for tau imaging[J]. J Nucl Med, 2017, 58(6): 975–981. doi: 10.2967/jnumed.116.185199
|
[156] |
Ehman EC, Johnson GB, Villanueva-Meyer JE, et al. PET/MRI: where might it replace PET/CT?[J]. J Magn Reson Imaging, 2017, 46(5): 1247–1262. doi: 10.1002/jmri.25711
|
[157] |
Mainta IC, Vargas MI, Trombella S, et al. Hybrid PET-MRI in Alzheimer's disease research[M]//Perneczky R. Biomarkers for Alzheimer's Disease Drug Development. New York: Humana Press, 2018: 185–200.
|
[158] |
Zhang M, Ni Y, Zhou Q, et al. 18F-florbetapir PET/MRI for quantitatively monitoring myelin loss and recovery in patients with multiple sclerosis: a longitudinal study[J]. eClinicalMedicine, 2021, 37: 100982. doi: 10.1016/j.eclinm.2021.100982
|
[159] |
Zhang M, Sun W, Guan Z, et al. Simultaneous PET/fMRI detects distinctive alterations in functional connectivity and glucose metabolism of Precuneus Subregions in Alzheimer's disease[J]. Front Aging Neurosci, 2021, 13: 737002. doi: 10.3389/fnagi.2021.737002
|
[160] |
Jabeen S, Arbind A, Kumar D, et al. Combined amino acid PET-MRI for identifying recurrence in post-treatment gliomas: together we grow[J]. Eur J Hybrid Imaging, 2021, 5(1): 15. doi: 10.1186/s41824-021-00109-y
|
[161] |
Johannessen K, Berntsen EM, Johansen H, et al. 18F-FACBC PET/MRI in the evaluation of human brain metastases: a case report[J]. Eur J Hybrid Imaging, 2021, 5(1): 7. doi: 10.1186/s41824-021-00101-6
|
[162] |
Bertaux M, Berenbaum A, Di Stefano AL, et al. Hybrid[18F]-F-DOPA PET/MRI interpretation criteria and scores for Glioma follow-up after radiotherapy[J]. Clin Neuroradiol, 2022, 32(3): 735–747. doi: 10.1007/s00062-022-01139-0
|
[1] | Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387 |
[2] | Kaibo Lin, Shikun Zhang, Jieli Chen, Ding Yang, Mengyi Zhu, Eugene Yujun Xu. Generation and functional characterization of a conditional Pumilio2 null allele[J]. The Journal of Biomedical Research, 2018, 32(6): 434-441. DOI: 10.7555/JBR.32.20170117 |
[3] | Huanyu Ni, Yixuan Song, Haiyin Wu, Lei Chang, Chunxia Luo, Dongya Zhu. 2-Methyl-5H-benzo[d]pyrazolo[5,1-b][1,3]oxazin-5-imine, an edaravone analog, exerts neuroprotective effects against acute ischemic injury via inhibiting oxidative stress[J]. The Journal of Biomedical Research, 2018, 32(4): 270-280. DOI: 10.7555/JBR.32.20180014 |
[4] | Zhifeng Sun, Kaixiang Yang, Hongtao Chen, Tao Sui, Lei Yang, Dawei Ge, Jian Tang, Xiaojian Cao. A novel entry point for pedicle screw placement in the thoracic spine[J]. The Journal of Biomedical Research, 2018, 32(2): 123-129. DOI: 10.7555/JBR.31.20160037 |
[5] | Arjang Ahmadpour, Amir Goodarzi, Darrin J. Lee, Ripul R. Panchal, Kee D. Kim. Cervical spine fractures in osteopetrosis: a case report and review of the literature[J]. The Journal of Biomedical Research, 2018, 32(1): 68-76. DOI: 10.7555/JBR.32.20170055 |
[6] | Bing Zhang, Ling Ni, Fangfang Wang, Weiping Li, Xin Zhang, Xiaohua Gu, Zuzana Nedelska, Fei Chen, Kun Wang, Bin Zhu, Renyuan Liu, Jun Xu, Jinfan Wang. Effective doctor-patient communication skills training optimizes functional organization of intrinsic brain architecture: a restingstate functional MRI study[J]. The Journal of Biomedical Research, 2017, 31(6): 486-493. DOI: 10.7555/JBR.31.20160135 |
[7] | Hong Zhang, Lingzhong Meng, Russ Lyon, Dong-Xin Wang. Monitoring cerebral ischemia during cerebrovascular surgery[J]. The Journal of Biomedical Research, 2017, 31(4): 279-282. DOI: 10.7555/JBR.31.20150106 |
[8] | ZhiBin Zhou, Lingzhong Meng, Adrian W. Gelb, Roger Lee, Wen-Qi Huang. Cerebral ischemia during surgery: an overview[J]. The Journal of Biomedical Research, 2016, 30(2): 83-87. DOI: 10.7555/JBR.30.20150126 |
[9] | Xianjin Ke, Qian Li, Li Xu, Ying Zhang, Dongmei Li, Jianhua Ma, Xiaoming Mao. Netrin-1 overexpression in bone marrow mesenchymal stem cells promotes functional recovery in a rat model of peripheral nerve injury[J]. The Journal of Biomedical Research, 2015, 29(5): 380-389. DOI: 10.7555/JBR.29.20140076 |
[10] | Zhida Sun, Rong Zhang, Huijuan Wang, Pengtao Jiang, Jiangquan Zhang, Mingshun Zhang, Lei Gu, Xiaofan Yang, Miaojia Zhang, Xiaohui Ji. Serum IL-10 from systemic lupus erythematosus patients suppresses the differentiation and function of monocyte-derived dendritic cells[J]. The Journal of Biomedical Research, 2012, 26(6): 456-466. DOI: 10.7555/JBR.26.20120115 |
1. | Xu C, Mei Y, Yang R, et al. Edaravone Dexborneol mitigates pathology in animal and cell culture models of Alzheimer's disease by inhibiting neuroinflammation and neuronal necroptosis. Cell Biosci, 2024, 14(1): 55. DOI:10.1186/s13578-024-01230-8 |
2. | Tan X, Zhang K, Shi W, et al. Research progress on the regulation and mechanism of borneol on the blood-brain barrier in pathological states: a narrative review focused on ischemic stroke and cerebral glioma. Transl Cancer Res, 2023, 12(11): 3198-3209. DOI:10.21037/tcr-23-1487 |
3. | Wang Y, Qiu XY, Liu JY, et al. (+)-Borneol enantiomer ameliorates epileptic seizure via decreasing the excitability of glutamatergic transmission. Acta Pharmacol Sin, 2023, 44(8): 1600-1611. DOI:10.1038/s41401-023-01075-w |
4. | Zhang W, Yang H, Gao M, et al. Edaravone Dexborneol Alleviates Cerebral Ischemic Injury via MKP-1-Mediated Inhibition of MAPKs and Activation of Nrf2. Biomed Res Int, 2022, 2022: 4013707. DOI:10.1155/2022/4013707 |
5. | Huang P, Wan H, Shao C, et al. Recent Advances in Chinese Herbal Medicine for Cerebral Ischemic Reperfusion Injury. Front Pharmacol, 2022, 12: 688596. DOI:10.3389/fphar.2021.688596 |
6. | Li Y, Ren M, Wang J, et al. Progress in Borneol Intervention for Ischemic Stroke: A Systematic Review. Front Pharmacol, 2021, 12: 606682. DOI:10.3389/fphar.2021.606682 |
7. | da Fonsêca DV, da Silva Maia Bezerra Filho C, Lima TC, et al. Anticonvulsant Essential Oils and Their Relationship with Oxidative Stress in Epilepsy. Biomolecules, 2019, 9(12): 835. DOI:10.3390/biom9120835 |
8. | Peng T, Jiang Y, Farhan M, et al. Anti-inflammatory Effects of Traditional Chinese Medicines on Preclinical in vivo Models of Brain Ischemia-Reperfusion-Injury: Prospects for Neuroprotective Drug Discovery and Therapy. Front Pharmacol, 2019, 10: 204. DOI:10.3389/fphar.2019.00204 |
9. | Abdel-Fattah MM, Messiha BAS, Mansour AM. Modulation of brain ACE and ACE2 may be a promising protective strategy against cerebral ischemia/reperfusion injury: an experimental trial in rats. Naunyn Schmiedebergs Arch Pharmacol, 2018, 391(9): 1003-1020. DOI:10.1007/s00210-018-1523-3 |
10. | Lu X, Gu R, Hu W, et al. Upregulation of heme oxygenase-1 protected against brain damage induced by transient cerebral ischemia-reperfusion injury in rats. Exp Ther Med, 2018, 15(6): 4629-4636. DOI:10.3892/etm.2018.6049 |
Tables(3)