Citation: | Tao Dang, Wen-Jing Cao, Rong Zhao, Ming Lu, Gang Hu, Chen Qiao. ATP13A2 protects dopaminergic neurons in Parkinson's disease: from biology to pathology[J]. The Journal of Biomedical Research, 2022, 36(2): 98-108. DOI: 10.7555/JBR.36.20220001 |
[1] |
Shen T, Pu J, Lai H, et al. Genetic analysis of ATP13A2, PLA2G6 and FBXO7 in a cohort of Chinese patients with early-onset Parkinson's disease[J]. Sci Rep, 2018, 8(1): 14028. doi: 10.1038/s41598-018-32217-4
|
[2] |
Palmgren MG, Nissen P. P-type ATPases[J]. Annu Rev Biophys, 2011, 40: 243–266. doi: 10.1146/annurev.biophys.093008.131331
|
[3] |
Wan S, Pan X, Qian J, et al. Downregulation of ATP13A2 in midbrain dopaminergic neurons is related to defective autophagy in a mouse model of Parkinson's disease[J]. Int J Clin Exp Pathol, 2020, 13(7): 1853–1858. https://pubmed.ncbi.nlm.nih.gov/32782714/
|
[4] |
Rai SN, Singh P, Varshney R, et al. Promising drug targets and associated therapeutic interventions in Parkinson's disease[J]. Neural Regen Res, 2021, 16(9): 1730–1739. doi: 10.4103/1673-5374.306066
|
[5] |
Rai SN, Chaturvedi VK, Singh P, et al. Mucuna pruriens in Parkinson's and in some other diseases: recent advancement and future prospective[J]. 3 Biotech, 2020, 10(12): 522. doi: 10.1007/s13205-020-02532-7
|
[6] |
Kwasnicka-Crawford DA, Carson AR, Roberts W, et al. Characterization of a novel cation transporter ATPase gene (ATP13A4) interrupted by 3q25-q29 inversion in an individual with language delay[J]. Genomics, 2005, 86(2): 182–194. doi: 10.1016/j.ygeno.2005.04.002
|
[7] |
Toyoshima C, Nakasako M, Nomura H, et al. Crystal structure of the calcium pump of sarcoplasmic reticulum at 2.6 Å resolution[J]. Nature, 2000, 405(6787): 647–655. doi: 10.1038/35015017
|
[8] |
Morth JP, Pedersen BP, Toustrup-Jensen MS, et al. Crystal structure of the sodium-potassium pump[J]. Nature, 2007, 450(7172): 1043–1049. doi: 10.1038/nature06419
|
[9] |
Pedersen BP, Buch-Pedersen MJ, Morth JP, et al. Crystal structure of the plasma membrane proton pump[J]. Nature, 2007, 450(7172): 1111–1114. doi: 10.1038/nature06417
|
[10] |
Sørensen DM, Buch-Pedersen MJ, Palmgren MG. Structural divergence between the two subgroups of P5 ATPases[J]. Biochim Biophys Acta (BBA)-Bioenerg, 2010, 1797(6-7): 846–855. doi: 10.1016/j.bbabio.2010.04.010
|
[11] |
Holemans T, Sørensen DM, van Veen S, et al. A lipid switch unlocks Parkinson's disease-associated ATP13A2[J]. Proc Natl Acad Sci U S A, 2015, 112(29): 9040–9045. doi: 10.1073/pnas.1508220112
|
[12] |
Sørensen DM, Holemans T, van Veen S, et al. Parkinson disease related ATP13A2 evolved early in animal evolution[J]. PLoS One, 2018, 13(3): e0193228. doi: 10.1371/journal.pone.0193228
|
[13] |
Moller AB, Asp T, Holm PB, et al. Phylogenetic analysis of P5 P-type ATPases, a eukaryotic lineage of secretory pathway pumps[J]. Mol Phylogenet Evol, 2008, 46(2): 619–634. doi: 10.1016/j.ympev.2007.10.023
|
[14] |
Li P, Wang K, Salustros N, et al. Structure and transport mechanism of P5B-ATPases[J]. Nat Commun, 2021, 12(1): 3973. doi: 10.1038/s41467-021-24148-y
|
[15] |
Ugolino J, Dziki KM, Kim A, et al. Overexpression of human Atp13a2Isoform-1 protein protects cells against manganese and starvation-induced toxicity[J]. PLoS One, 2019, 14(8): e0220849. doi: 10.1371/journal.pone.0220849
|
[16] |
Baesler J, Kopp JF, Pohl G, et al. Zn homeostasis in genetic models of Parkinson's disease in Caenorhabditis elegans[J]. J Trace Elem Med Biol, 2019, 55: 44–49. doi: 10.1016/j.jtemb.2019.05.005
|
[17] |
Marcos AL, Corradi GR, Mazzitelli LR, et al. The Parkinson-associated human P5B-ATPase ATP13A2 modifies lipid homeostasis[J]. Biochim Biophys Acta (BBA) -Biomembr, 2019, 1861(10): 182993. doi: 10.1016/j.bbamem.2019.05.015
|
[18] |
Heins-Marroquin U, Jung PP, Cordero-Maldonado ML, et al. Phenotypic assays in yeast and zebrafish reveal drugs that rescue ATP13A2 deficiency[J]. Brain Commun, 2019, 1(1): fcz019. doi: 10.1093/braincomms/fcz019
|
[19] |
Kong SMY, Chan BKK, Park JS, et al. Parkinson's disease-linked human PARK9/ATP13A2 maintains zinc homeostasis and promotes α-Synuclein externalization via exosomes[J]. Hum Mol Genet, 2014, 23(11): 2816–2833. doi: 10.1093/hmg/ddu099
|
[20] |
Anand N, Holcom A, Broussalian M, et al. Dysregulated iron metabolism in C. elegans catp-6/ATP13A2 mutant impairs mitochondrial function[J]. Neurobiol Dis, 2020, 139: 104786. doi: 10.1016/j.nbd.2020.104786
|
[21] |
Tsunemi T, Perez-Rosello T, Ishiguro Y, et al. Increased lysosomal exocytosis induced by lysosomal Ca2+ channel agonists protects human dopaminergic neurons from α-synuclein toxicity[J]. J Neurosci, 2019, 39(29): 5760–5772. doi: 10.1523/JNEUROSCI.3085-18.2019
|
[22] |
Olatunji OJ, Feng Y, Olatunji OO, et al. Neuroprotective effects of adenosine isolated from Cordyceps cicadae against oxidative and ER stress damages induced by glutamate in PC12 cells[J]. Environ Toxicol Pharmacol, 2016, 44: 53–61. doi: 10.1016/j.etap.2016.02.009
|
[23] |
Rinaldi DE, Corradi GR, Cuesta LM, et al. The Parkinson-associated human P5B-ATPase ATP13A2 protects against the iron-induced cytotoxicity[J]. Biochim Biophys Acta (BBA)- Biomembr, 2015, 1848(8): 1646–1655. doi: 10.1016/j.bbamem.2015.04.008
|
[24] |
Ganguly U, Banerjee A, Chakrabarti SS, et al. Interaction of α-synuclein and Parkin in iron toxicity on SH-SY5Y cells: implications in the pathogenesis of Parkinson's disease[J]. Biochem J, 2020, 477(6): 1109–1122. doi: 10.1042/BCJ20190676
|
[25] |
Medici S, Peana M, Delogu LG, et al. Mn(II) and Zn(II) interactions with peptide fragments from Parkinson's disease genes[J]. Dalton Trans, 2012, 41(15): 4378–4388. doi: 10.1039/c2dt12168a
|
[26] |
Liu J, Li J, Lu Y, et al. Impulse control disorder, lysosomal malfunction and ATP13A2 insufficiency in Parkinsonism[J]. Clin Exp Pharmacol Physiol, 2017, 44(2): 172–179. doi: 10.1111/1440-1681.12714
|
[27] |
Hamouda NN, Van den Haute C, Vanhoutte R, et al. ATP13A3 is a major component of the enigmatic mammalian polyamine transport system[J]. J Biol Chem, 2021, 296: 100182. doi: 10.1074/jbc.RA120.013908
|
[28] |
Rivero-Rios P, Madero-Pérez J, Fernández B, et al. Targeting the autophagy/lysosomal degradation pathway in Parkinson's disease[J]. Curr Neuropharmacol, 2016, 14(3): 238–249. doi: 10.2174/1570159X13666151030103027
|
[29] |
Lopes da Fonseca T, Pinho R, Outeiro TF. A familial ATP13A2 mutation enhances alpha-synuclein aggregation and promotes cell death[J]. Hum Mol Genet, 2016, 25(14): 2959–2971. doi: 10.1093/hmg/ddw147
|
[30] |
Ganguly U, Chakrabarti SS, Kaur U, et al. Alpha-synuclein, proteotoxicity and Parkinson's disease: search for neuroprotective therapy[J]. Curr Neuropharmacol, 2018, 16(7): 1086–1097. doi: 10.2174/1570159X15666171129100944
|
[31] |
Tsunemi T, Hamada K, Krainc D. ATP13A2/PARK9 regulates secretion of exosomes and α-synuclein[J]. J Neurosci, 2014, 34(46): 15281–15287. doi: 10.1523/JNEUROSCI.1629-14.2014
|
[32] |
Demirsoy S, Martin S, Motamedi S, et al. ATP13A2/PARK9 regulates endo-/lysosomal cargo sorting and proteostasis through a novel PI(3, 5)P2-mediated scaffolding function[J]. Hum Mol Genet, 2017, 26(9): 1656–1669. doi: 10.1093/hmg/ddx070
|
[33] |
Estrada-Cuzcano A, Martin S, Chamova T, et al. Loss-of-function mutations in the ATP13A2/PARK9 gene cause complicated hereditary spastic paraplegia (SPG78)[J]. Brain, 2017, 140(2): 287–305. doi: 10.1093/brain/aww307
|
[34] |
Si J, Van den Haute C, Lobbestael E, et al. ATP13A2 regulates cellular α-synuclein multimerization, membrane association, and externalization[J]. Int J Mol Sci, 2021, 22(5): 2689. doi: 10.3390/ijms22052689
|
[35] |
Tsunemi T, Ishiguro Y, Yoroisaka A, et al. Astrocytes protect human dopaminergic neurons from α-synuclein accumulation and propagation[J]. J Neurosci, 2020, 40(45): 8618–8628. doi: 10.1523/JNEUROSCI.0954-20.2020
|
[36] |
De La Hera DP, Corradi GR, Adamo HP, et al. Parkinson's disease-associated human P5B-ATPase ATP13A2 increases spermidine uptake[J]. Biochem J, 2013, 450(1): 47–53. doi: 10.1042/BJ20120739
|
[37] |
van Veen S, Martin S, Van den Haute C, et al. ATP13A2 deficiency disrupts lysosomal polyamine export[J]. Nature, 2020, 578(7795): 419–424. doi: 10.1038/s41586-020-1968-7
|
[38] |
Vrijsen S, Besora-Casals L, van Veen S, et al. ATP13A2-mediated endo-lysosomal polyamine export counters mitochondrial oxidative stress[J]. Proc Natl Acad Sci U S A, 2020, 117(49): 31198–31207. doi: 10.1073/pnas.1922342117
|
[39] |
Bento CF, Ashkenazi A, Jimenez-Sanchez M, et al. The Parkinson's disease-associated genes ATP13A2 and SYT11 regulate autophagy via a common pathway[J]. Nat Commun, 2016, 7: 11803. doi: 10.1038/ncomms11803
|
[40] |
Wang R, Tan J, Chen T, et al. ATP13A2 facilitates HDAC6 recruitment to lysosome to promote autophagosome-lysosome fusion[J]. J Cell Biol, 2019, 218(1): 267–284. doi: 10.1083/jcb.201804165
|
[41] |
Fleming SM, Santiago NA, Mullin EJ, et al. The effect of manganese exposure in Atp13a2-deficient mice[J]. NeuroToxicology, 2018, 64: 256–266. doi: 10.1016/j.neuro.2017.06.005
|
[42] |
Balint B, Damasio J, Magrinelli F, et al. Psychiatric manifestations of ATP13A2 mutations[J]. Mov Disord Clin Pract, 2020, 7(7): 838–841. doi: 10.1002/mdc3.13034
|
[43] |
Di Fonzo A, Chien HF, Socal M, et al. ATP13A2 missense mutations in juvenile parkinsonism and young onset Parkinson disease[J]. Neurology, 2007, 68(19): 1557–1562. doi: 10.1212/01.wnl.0000260963.08711.08
|
[44] |
Kırımtay K, Temizci B, Gultekin M, et al. Novel mutations in ATP13A2 associated with mixed neurological presentations and iron toxicity due to nonsense-mediated decay[J]. Brain Res, 2021, 1750: 147167. doi: 10.1016/j.brainres.2020.147167
|
[45] |
Anwar A, Saleem S, Akhtar A, et al. Juvenile parkinson disease[J]. Cureus, 2019, 11(8): e5409. doi: 10.7759/cureus.5409
|
[46] |
Suleiman J, Hamwi N, El-Hattab AW. ATP13A2 novel mutations causing a rare form of juvenile-onset Parkinson disease[J]. Brain Dev, 2018, 40(9): 824–826. doi: 10.1016/j.braindev.2018.05.017
|
[47] |
Chen H, Jin Y, Xue Y, et al. Novel ATP13A2 and PINK1 variants identified in Chinese patients with Parkinson's disease by whole-exome sequencing[J]. Neurosci Lett, 2020, 733: 135075. doi: 10.1016/j.neulet.2020.135075
|
[48] |
Ramirez A, Heimbach A, Gründemann J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase[J]. Nat Genet, 2006, 38(10): 1184–1191. doi: 10.1038/ng1884
|
[49] |
Sato S, Li Y, Hattori N. Lysosomal defects in ATP13A2 and GBA associated familial Parkinson's disease[J]. J Neural Transm (Vienna), 2017, 124(11): 1395–1400. doi: 10.1007/s00702-017-1779-7
|
[50] |
Park JS, Blair NF, Sue CM. The role of ATP13A2 in Parkinson's disease: clinical phenotypes and molecular mechanisms[J]. Mov Disord, 2015, 30(6): 770–779. doi: 10.1002/mds.26243
|
[51] |
Usenovic M, Tresse E, Mazzulli JR, et al. Deficiency of ATP13A2 leads to lysosomal dysfunction, α-synuclein accumulation, and neurotoxicity[J]. J Neurosci, 2012, 32(12): 4240–4246. doi: 10.1523/JNEUROSCI.5575-11.2012
|
[52] |
Cooper JF, Spielbauer KK, Senchuk MM, et al. α-synuclein expression from a single copy transgene increases sensitivity to stress and accelerates neuronal loss in genetic models of Parkinson's disease[J]. Exp Neurol, 2018, 310: 58–69. doi: 10.1016/j.expneurol.2018.09.001
|
[53] |
Martin S, Holemans T, Vangheluwe P. Unlocking ATP13A2/PARK9 activity[J]. Cell Cycle, 2015, 14(21): 3341–3342. doi: 10.1080/15384101.2015.1093420
|
[54] |
Martin S, van Veen S, Holemans T, et al. Protection against mitochondrial and metal toxicity depends on functional lipid binding sites in ATP13A2[J]. Parkinson's Dis, 2016, 2016: 9531917. doi: 10.1155/2016/9531917
|
[55] |
Park JS, Koentjoro B, Davis RL, et al. Loss of ATP13A2 impairs glycolytic function in Kufor-Rakeb syndrome patient-derived cell models[J]. Parkinsonism Relat Disord, 2016, 27: 67–73. doi: 10.1016/j.parkreldis.2016.03.018
|
[56] |
Ugolino J, Fang S, Kubisch C, et al. Mutant Atp13a2 proteins involved in parkinsonism are degraded by ER-associated degradation and sensitize cells to ER-stress induced cell death[J]. Hum Mol Genet, 2011, 20(18): 3565–3577. doi: 10.1093/hmg/ddr274
|
[57] |
Zhu S, Dong Y, Tu J, et al. Silybum marianum oil attenuates oxidative stress and ameliorates mitochondrial dysfunction in mice treated with D-galactose[J]. Pharmacogn Mag, 2014, 10(S1): S92–S99. doi: 10.4103/0973-1296.127353
|
[58] |
Matsui H, Ito J, Matsui N, et al. Cytosolic dsDNA of mitochondrial origin induces cytotoxicity and neurodegeneration in cellular and zebrafish models of Parkinson's disease[J]. Nat Commun, 2021, 12(1): 3101. doi: 10.1038/s41467-021-23452-x
|
[59] |
Kwon HS, Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes[J]. Transl Neurodegener, 2020, 9(1): 42. doi: 10.1186/s40035-020-00221-2
|
[60] |
Guo Y, Wei X, Yan H, et al. TREM2 deficiency aggravates α-synuclein-induced neurodegeneration and neuroinflammation in Parkinson's disease models[J]. FASEB J, 2019, 33(11): 12164–12174. doi: 10.1096/fj.201900992R
|
[61] |
Mammadova N, Summers CM, Kokemuller RD, et al. Accelerated accumulation of retinal α-synuclein (pSer129) and tau, neuroinflammation, and autophagic dysregulation in a seeded mouse model of Parkinson's disease[J]. Neurobiol Dis, 2019, 121: 1–16. doi: 10.1016/j.nbd.2018.09.013
|
[62] |
Cheng J, Liao Y, Dong Y, et al. Microglial autophagy defect causes parkinson disease-like symptoms by accelerating inflammasome activation in mice[J]. Autophagy, 2020, 16(12): 2193–2205. doi: 10.1080/15548627.2020.1719723
|
[63] |
Chen CM, Yen CY, Chen W, et al. Pathomechanism characterization and potential therapeutics identification for Parkinson's disease targeting neuroinflammation[J]. Int J Mol Sci, 2021, 22(3): 1062. doi: 10.3390/ijms22031062
|
[64] |
Liu H, Wang X. Correlation of iron deposition and change of gliocyte metabolism in the basal ganglia region evaluated using magnetic resonance imaging techniques: an in vivo study[J]. Arch Med Sci, 2016, 12(1): 163–171. doi: 10.5114/aoms.2016.57593
|
[65] |
Hu Y, Guo P, Lian T, et al. Clinical characteristics, iron metabolism and neuroinflammation: new insight into excessive daytime sleepiness in Parkinson's Disease[J]. Neuropsychiatr Dis Treat, 2021, 17: 2041–2051. doi: 10.2147/NDT.S272110
|
[66] |
Qiao C, Yin N, Gu H, et al. Atp13a2 deficiency aggravates astrocyte-mediated neuroinflammation via NLRP3 inflammasome activation[J]. CNS Neurosci Ther, 2016, 22(6): 451–460. doi: 10.1111/cns.12514
|
[67] |
Miao S, Sun H, Ye Y, et al. Astrocytic JWA expression is essential to dopaminergic neuron survival in the pathogenesis of Parkinson's disease[J]. CNS Neurosci Ther, 2014, 20(8): 754–762. doi: 10.1111/cns.12249
|
[68] |
Estiar MA, Leveille E, Spiegelman D, et al. Clinical and genetic analysis of ATP13A2 in hereditary spastic paraplegia expands the phenotype[J]. Mol Genet Genomic Med, 2020, 8(3): e1052. doi: 10.1002/mgg3.1052
|
[69] |
Odake Y, Koh K, Takiyama Y, et al. Identification of a novel mutation in ATP13A2 associated with a complicated form of hereditary spastic paraplegia[J]. Neurol Genet, 2020, 6(5): e514. doi: 10.1212/NXG.0000000000000514
|
[70] |
Wang Z, Liu J, Xu X, et al. Neurodegeneration with brain iron accumulation: Insights into the mitochondria dysregulation[J]. Biomed Pharmacother, 2019, 118: 109068. doi: 10.1016/j.biopha.2019.109068
|
[71] |
Hinarejos I, Machuca-Arellano C, Sancho P, et al. Mitochondrial dysfunction, oxidative stress and neuroinflammation in Neurodegeneration with Brain Iron Accumulation (NBIA)[J]. Antioxidants (Basel), 2020, 9(10): 1020. doi: 10.3390/antiox9101020
|
[72] |
Rayaprolu S, Seven YB, Howard J, et al. Partial loss of ATP13A2 causes selective gliosis independent of robust lipofuscinosis[J]. Mol Cell Neurosci, 2018, 92: 17–26. doi: 10.1016/j.mcn.2018.05.009
|
[73] |
Bademkiran F, Nalcaci S, Eraslan C, et al. The first Turkish family with the diagnosis of retinal vasculopathy with cerebral leukodystrophy (RVCL) where a new mutation was found[J]. J Neurol Sci, 2017, 381: 378–379. doi: 10.1016/j.jns.2017.08.3284
|
[74] |
Schultheis PJ, Fleming SM, Clippinger AK, et al. Atp13a2-deficient mice exhibit neuronal ceroid lipofuscinosis, limited α-synuclein accumulation and age-dependent sensorimotor deficits[J]. Hum Mol Genet, 2013, 22(10): 2067–2082. doi: 10.1093/hmg/ddt057
|
[1] | Xue Zhang, Dan Zhang, Lei Huo, Xin Zhou, Jia Zhang, Min Li, Dongming Su, Peng Sun, Fang Chen, Xiubin Liang. Upregulation of α-ENaC induces pancreatic β-cell dysfunction, ER stress, and SIRT2 degradation[J]. The Journal of Biomedical Research, 2024, 38(3): 241-255. DOI: 10.7555/JBR.37.20230128 |
[2] | Adittya Arefin, Tanzila Ismail Ema, Tamnia Islam, Md. Saddam Hossen, Tariqul Islam, Salauddin Al Azad, Md. Nasir Uddin Badal, Md. Aminul Islam, Partha Biswas, Nafee Ul Alam, Enayetul Islam, Maliha Anjum, Afsana Masud, Md. Shaikh Kamran, Ahsab Rahman, Parag Kumar Paul. Target specificity of selective bioactive compounds in blocking α-dystroglycan receptor to suppress Lassa virus infection: an in silico approach[J]. The Journal of Biomedical Research, 2021, 35(6): 459-473. DOI: 10.7555/JBR.35.20210111 |
[3] | Xing Ming, Wang Na, Zeng Hanyi, Zhang Jun. α-ketoglutarate promotes the specialization of primordial germ cell-like cells through regulating epigenetic reprogramming[J]. The Journal of Biomedical Research, 2021, 35(1): 36-46. DOI: 10.7555/JBR.34.20190160 |
[4] | Huan Liu, Shijiang Zhang, Yongfeng Shao, Xiaohu Lu, Weidong Gu, Buqing Ni, Qun Gu, Junjie Du. Biomechanical characterization of a novel ring connector for sutureless aortic anastomosis[J]. The Journal of Biomedical Research, 2018, 32(6): 454-460. DOI: 10.7555/JBR.31.20170011 |
[5] | Objoon Trachoo, Paisan Jittorntam, Sarunpong Pibalyart, Saowanee Kajanachumphol, Norasak Suvachittanont, Suthep Patputthipong, Piyatida Chuengsaman, Arkom Nongnuch. Screening of Fabry disease in patients with end-stage renal disease of unknown etiology: the first Thailand study[J]. The Journal of Biomedical Research, 2017, 31(1): 17-24. DOI: 10.7555/JBR.31.20160063 |
[6] | Qiuzi Wu, Hongfei Xu, Wei Wang, Fei Chang, Yu Jiang, Yongjian Liu. Retrograde trafficking of VMAT2 and its role in protein stability in non-neuronal cells[J]. The Journal of Biomedical Research, 2016, 30(6): 502-509. DOI: 10.7555/JBR.30.20160061 |
[7] | Xu Zhao, Kang Xu, Hui Shi, Jinluo Cheng, Jianhua Ma, Yanqin Gao, Qian Li, Xinhua Ye, Ying Lu, Xiaofang Yu, Juan Du, Wencong Du, Qing Ye, Ling Zhou. Application of the back-error propagation artificial neural network (BPANN) on genetic variants in the PPAR-γ and RXR-α gene and risk of metabolic syndrome in a Chinese Han population[J]. The Journal of Biomedical Research, 2014, 28(2): 114-122. DOI: 10.7555/JBR.27.20120061 |
[8] | Li Zhang, Jingde Dong, Weiguo Liu, Yingdong Zhang. Subjective poor sleep quality in Chinese patients with Parkinson's disease without dementia[J]. The Journal of Biomedical Research, 2013, 27(4): 291-295. DOI: 10.7555/JBR.27.20120143 |
[9] | Xiangrong Zuo, Feng Zong, Hui Wang, Qiang Wang, Weiping Xie, Hong Wang. Iptakalim, a novel ATP-sensitive potassium channel opener, inhibits pulmonary arterial smooth muscle cell proliferation by downregulation of PKC-α[J]. The Journal of Biomedical Research, 2011, 25(6): 392-401. DOI: 10.1016/S1674-8301(11)60052-3 |
[10] | Juan Du, Hui Shi, Ying Lu, Wencong Du, Yuanyuan Cao, Qian Li, Jianhua Ma, Xinhua Ye, Jinluo Cheng, Xiaofang Yu, Yanqin Gao, Ling Zhou. Tagging single nucleotide polymorphisms in the PPAR-γ and RXR-α gene and type 2 diabetes risk: a case-control study of a Chinese Han population[J]. The Journal of Biomedical Research, 2011, 25(1): 33-41. DOI: 10.1016/S1674-8301(11)60004-3 |