4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Jianming Wu, Ling Li. Autoantibodies in Alzheimer's disease: potential biomarkers, pathogenic roles, and therapeutic implications[J]. The Journal of Biomedical Research, 2016, 30(5): 361-372. DOI: 10.7555/JBR.30.20150131
Citation: Jianming Wu, Ling Li. Autoantibodies in Alzheimer's disease: potential biomarkers, pathogenic roles, and therapeutic implications[J]. The Journal of Biomedical Research, 2016, 30(5): 361-372. DOI: 10.7555/JBR.30.20150131

Autoantibodies in Alzheimer's disease: potential biomarkers, pathogenic roles, and therapeutic implications

Funds: 

This work was supported in part by grants from the National Institute of Health (HL117652) (to JW) and the Academic Health Center (Faculty Research Development Program) of the University of Minnesota(to LL and JW).

More Information
  • Received Date: September 14, 2015
  • Alzheimer's disease (AD) is a prevalent and debilitating neurodegenerative disorder in the elderly. The etiology of AD has not been fully defined and currently there is no cure for this devastating disease. Compelling evidence sug-gests that the immune system plays a critical role in the pathophysiology of AD. Autoantibodies against a variety- of molecules have been associated with AD. The roles of these autoantibodies in AD, however, are not well -understood.This review attempts to summarize recent findings on these autoantibodies and explore their potential as diagnostic/ prognostic biomarkers for AD, their roles in the pathogenesis of AD, and their implications in the development of effective immunotherapies for AD.
  • Related Articles

    [1]Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387
    [2]Vitaly Chasov, Ekaterina Zmievskaya, Irina Ganeeva, Elvina Gilyazova, Damir Davletshin, Maria Filimonova, Aygul Valiullina, Anna Kudriaeva, Emil Bulatov. Systemic lupus erythematosus therapeutic strategy: From immunotherapy to gut microbiota modulation[J]. The Journal of Biomedical Research, 2024, 38(6): 531-546. DOI: 10.7555/JBR.38.20240009
    [3]Wenting He, Xiuyu Shi, Zhifang Dong. The roles of RACK1 in the pathogenesis of Alzheimer's disease[J]. The Journal of Biomedical Research, 2024, 38(2): 137-148. DOI: 10.7555/JBR.37.20220259
    [4]Tiwari-Heckler Shilpa, Jiang Z. Gordon, Popov Yury, J. Mukamal Kenneth. Daily high-dose aspirin does not lower APRI in the Aspirin-Myocardial Infarction Study[J]. The Journal of Biomedical Research, 2020, 34(2): 139-142. DOI: 10.7555/JBR.33.20190041
    [5]Huan Liu, Shijiang Zhang, Yongfeng Shao, Xiaohu Lu, Weidong Gu, Buqing Ni, Qun Gu, Junjie Du. Biomechanical characterization of a novel ring connector for sutureless aortic anastomosis[J]. The Journal of Biomedical Research, 2018, 32(6): 454-460. DOI: 10.7555/JBR.31.20170011
    [6]Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023
    [7]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [8]Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045
    [9]Peter Metrakos, Tommy Nilsson. Non-alcoholic fatty liver disease–a chronic disease of the 21st century[J]. The Journal of Biomedical Research, 2018, 32(5): 327-335. DOI: 10.7555/JBR.31.20160153
    [10]Sundeep?S.?Tumber, Hong?Liu. Epidural abscess after multiple lumbar punctures for labour epidural catheter placement[J]. The Journal of Biomedical Research, 2010, 24(4): 332-335. DOI: 10.1016/S1674-8301(10)60046-2
  • Cited by

    Periodical cited type(41)

    1. Friberg S, Lindblad C, Zeiler FA, et al. Fluid biomarkers of chronic traumatic brain injury. Nat Rev Neurol, 2024. DOI:10.1038/s41582-024-01024-z. Online ahead of print
    2. Staabs F, Foverskov Rasmussen H, Buthut M, et al. Brain-targeting autoantibodies in patients with dementia. Front Neurol, 2024, 15: 1412813. DOI:10.3389/fneur.2024.1412813
    3. Garmendia JV, De Sanctis CV, Das V, et al. Inflammation, Autoimmunity and Neurodegenerative Diseases, Therapeutics and Beyond. Curr Neuropharmacol, 2024, 22(6): 1080-1109. DOI:10.2174/1570159X22666231017141636
    4. Ehtewish H, Mesleh A, Ponirakis G, et al. Profiling the autoantibody repertoire reveals autoantibodies associated with mild cognitive impairment and dementia. Front Neurol, 2023, 14: 1256745. DOI:10.3389/fneur.2023.1256745
    5. de Geus MB, Leslie SN, Lam T, et al. Mass spectrometry in cerebrospinal fluid uncovers association of glycolysis biomarkers with Alzheimer's disease in a large clinical sample. Sci Rep, 2023, 13(1): 22406. DOI:10.1038/s41598-023-49440-3
    6. Marsili L, Marcucci S, LaPorta J, et al. Paraneoplastic Neurological Syndromes of the Central Nervous System: Pathophysiology, Diagnosis, and Treatment. Biomedicines, 2023, 11(5): 1406. DOI:10.3390/biomedicines11051406
    7. Rizzo MG, De Plano LM, Palermo N, et al. A Novel Serum-Based Diagnosis of Alzheimer's Disease Using an Advanced Phage-Based Biochip. Adv Sci (Weinh), 2023, 10(21): e2301650. DOI:10.1002/advs.202301650
    8. Pingle SC, Lin F, Anekoji MS, et al. Exploring the role of cerebrospinal fluid as analyte in neurologic disorders. Future Sci OA, 2023, 9(4): FSO851. DOI:10.2144/fsoa-2023-0006
    9. Poppell M, Hammel G, Ren Y. Immune Regulatory Functions of Macrophages and Microglia in Central Nervous System Diseases. Int J Mol Sci, 2023, 24(6): 5925. DOI:10.3390/ijms24065925
    10. Giannoccaro MP, Verde F, Morelli L, et al. Neural Surface Antibodies and Neurodegeneration: Clinical Commonalities and Pathophysiological Relationships. Biomedicines, 2023, 11(3): 666. DOI:10.3390/biomedicines11030666
    11. Gu D, Wang L, Zhang N, et al. Decrease in naturally occurring antibodies against epitopes of Alzheimer's disease (AD) risk gene products is associated with cognitive decline in AD. J Neuroinflammation, 2023, 20(1): 74. DOI:10.1186/s12974-023-02750-9
    12. Pocevičiūtė D, Roth B, Schultz N, et al. Plasma IAPP-Autoantibody Levels in Alzheimer's Disease Patients Are Affected by APOE4 Status. Int J Mol Sci, 2023, 24(4): 3776. DOI:10.3390/ijms24043776
    13. Saavedra J, Nascimento M, Liz MA, et al. Key brain cell interactions and contributions to the pathogenesis of Alzheimer's disease. Front Cell Dev Biol, 2022, 10: 1036123. DOI:10.3389/fcell.2022.1036123
    14. Sutter PA, Crocker SJ. Glia as antigen-presenting cells in the central nervous system. Curr Opin Neurobiol, 2022, 77: 102646. DOI:10.1016/j.conb.2022.102646
    15. Stahr N, Galkina EV. Immune Response at the Crossroads of Atherosclerosis and Alzheimer's Disease. Front Cardiovasc Med, 2022, 9: 870144. DOI:10.3389/fcvm.2022.870144
    16. Zhang X, Zhang X, Gao H, et al. Phage display derived peptides for Alzheimer's disease therapy and diagnosis. Theranostics, 2022, 12(5): 2041-2062. DOI:10.7150/thno.68636
    17. Morozova A, Zorkina Y, Abramova O, et al. Neurobiological Highlights of Cognitive Impairment in Psychiatric Disorders. Int J Mol Sci, 2022, 23(3): 1217. DOI:10.3390/ijms23031217
    18. Shim SM, Koh YH, Kim JH, et al. A combination of multiple autoantibodies is associated with the risk of Alzheimer's disease and cognitive impairment. Sci Rep, 2022, 12(1): 1312. DOI:10.1038/s41598-021-04556-2
    19. Pirovich DB, Da'dara AA, Skelly PJ. Multifunctional Fructose 1, 6-Bisphosphate Aldolase as a Therapeutic Target. Front Mol Biosci, 2021, 8: 719678. DOI:10.3389/fmolb.2021.719678
    20. Perez DM. Current Developments on the Role of α1-Adrenergic Receptors in Cognition, Cardioprotection, and Metabolism. Front Cell Dev Biol, 2021, 9: 652152. DOI:10.3389/fcell.2021.652152
    21. Hansen N, Malchow B, Zerr I, et al. Neural cell-surface and intracellular autoantibodies in patients with cognitive impairment from a memory clinic cohort. J Neural Transm (Vienna), 2021, 128(3): 357-369. DOI:10.1007/s00702-021-02316-0
    22. Severini C, Barbato C, Di Certo MG, et al. Alzheimer's Disease: New Concepts on the Role of Autoimmunity and NLRP3 Inflammasome in the Pathogenesis of the Disease. Curr Neuropharmacol, 2021, 19(4): 498-512. DOI:10.2174/1570159X18666200621204546
    23. Nielsen AK, Folke J, Owczarek S, et al. TDP-43-specific Autoantibody Decline in Patients With Amyotrophic Lateral Sclerosis. Neurol Neuroimmunol Neuroinflamm, 2020, 8(2): e937. DOI:10.1212/NXI.0000000000000937. Print 2021 Mar
    24. Barbé-Tuana F, Funchal G, Schmitz CRR, et al. The interplay between immunosenescence and age-related diseases. Semin Immunopathol, 2020, 42(5): 545-557. DOI:10.1007/s00281-020-00806-z
    25. Sim KY, Im KC, Park SG. The Functional Roles and Applications of Immunoglobulins in Neurodegenerative Disease. Int J Mol Sci, 2020, 21(15): 5295. DOI:10.3390/ijms21155295
    26. Jagadeesh A, Maroun LE, Van Es LM, et al. Autoimmune Mechanisms of Interferon Hypersensitivity and Neurodegenerative Diseases: Down Syndrome. Autoimmune Dis, 2020, 2020: 6876920. DOI:10.1155/2020/6876920
    27. Huang P, Yang YH, Chang YH, et al. Association of early-onset Alzheimer's disease with germline-generated high affinity self-antigen load. Transl Psychiatry, 2020, 10(1): 146. DOI:10.1038/s41398-020-0826-6
    28. Beutgen VM, Schmelter C, Pfeiffer N, et al. Autoantigens in the trabecular meshwork and glaucoma-specific alterations in the natural autoantibody repertoire. Clin Transl Immunology, 2020, 9(3): e01101. DOI:10.1002/cti2.1101
    29. Giannoni P, Claeysen S, Noe F, et al. Peripheral Routes to Neurodegeneration: Passing Through the Blood-Brain Barrier. Front Aging Neurosci, 2020, 12: 3. DOI:10.3389/fnagi.2020.00003
    30. Yu ZY, Li WW, Yang HM, et al. Naturally Occurring Antibodies to Tau Exists in Human Blood and Are Not Changed in Alzheimer's Disease. Neurotox Res, 2020, 37(4): 1029-1035. DOI:10.1007/s12640-020-00161-9
    31. Montero-Calle A, San Segundo-Acosta P, Garranzo-Asensio M, et al. The Molecular Misreading of APP and UBB Induces a Humoral Immune Response in Alzheimer's Disease Patients with Diagnostic Ability. Mol Neurobiol, 2020, 57(2): 1009-1020. DOI:10.1007/s12035-019-01809-0
    32. Lim B, Tsolaki M, Batruch I, et al. Putative autoantibodies in the cerebrospinal fluid of Alzheimer's disease patients. F1000Res, 2019, 8: 1900. DOI:10.12688/f1000research.21140.1
    33. Behrman S, Lennox B. Autoimmune encephalitis in the elderly: who to test and what to test for. Evid Based Ment Health, 2019, 22(4): 172-176. DOI:10.1136/ebmental-2019-300110
    34. Giau VV, Bagyinszky E, An SSA. Potential Fluid Biomarkers for the Diagnosis of Mild Cognitive Impairment. Int J Mol Sci, 2019, 20(17): 4149. DOI:10.3390/ijms20174149
    35. Xu ML, Kim HJ, Kim SC, et al. Serum anti-GAPDH autoantibody levels reflect the severity of cervical lesions: A potential serum biomarker for cervical cancer screening. Oncol Lett, 2019, 18(1): 255-264. DOI:10.3892/ol.2019.10326
    36. Vegh C, Stokes K, Ma D, et al. A Bird's-Eye View of the Multiple Biochemical Mechanisms that Propel Pathology of Alzheimer's Disease: Recent Advances and Mechanistic Perspectives on How to Halt the Disease Progression Targeting Multiple Pathways. J Alzheimers Dis, 2019, 69(3): 631-649. DOI:10.3233/JAD-181230
    37. Sim KY, Park SH, Choi KY, et al. High-throughput epitope profiling of antibodies in the plasma of Alzheimer's disease patients using random peptide microarrays. Sci Rep, 2019, 9(1): 4587. DOI:10.1038/s41598-019-40976-x
    38. Tiiman A, Jelić V, Jarvet J, et al. Amyloidogenic Nanoplaques in Blood Serum of Patients with Alzheimer's Disease Revealed by Time-Resolved Thioflavin T Fluorescence Intensity Fluctuation Analysis. J Alzheimers Dis, 2019, 68(2): 571-582. DOI:10.3233/JAD-181144
    39. Sfera A, Gradini R, Cummings M, et al. Rusty Microglia: Trainers of Innate Immunity in Alzheimer's Disease. Front Neurol, 2018, 9: 1062. DOI:10.3389/fneur.2018.01062
    40. Kotecha AM, Corrêa ADC, Fisher KM, et al. Olfactory Dysfunction as a Global Biomarker for Sniffing out Alzheimer's Disease: A Meta-Analysis. Biosensors (Basel), 2018, 8(2): 41. DOI:10.3390/bios8020041
    41. Wallukat G, Prüss H, Müller J, et al. Functional autoantibodies in patients with different forms of dementia. PLoS One, 2018, 13(3): e0192778. DOI:10.1371/journal.pone.0192778

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3859) PDF downloads (692) Cited by(41)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return