1. |
Ling J, Li B, Yuan X, et al. Intermittent Hypoxia Impairs Cognitive Function and Promotes Mitophagy and Lysophagy in Obstructive Sleep Apnea-Hypopnea Syndrome Rat Model. Mol Biotechnol, 2024.
DOI:10.1007/s12033-024-01319-y. Online ahead of print
|
2. |
Wang M, Wen W, Chen Y, et al. TRPC5 channel participates in myocardial injury in chronic intermittent hypoxia. Clinics (Sao Paulo), 2024, 79: 100368.
DOI:10.1016/j.clinsp.2024.100368
|
3. |
Song R, Baker TL, Watters JJ, et al. Obstructive Sleep Apnea-Associated Intermittent Hypoxia-Induced Immune Responses in Males, Pregnancies, and Offspring. Int J Mol Sci, 2024, 25(3): 1852.
DOI:10.3390/ijms25031852
|
4. |
Wester M, Arzt M, Sinha F, et al. Insights into the Interaction of Heart Failure with Preserved Ejection Fraction and Sleep-Disordered Breathing. Biomedicines, 2023, 11(11): 3038.
DOI:10.3390/biomedicines11113038
|
5. |
Zhao Y, Xiong W, Li C, et al. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther, 2023, 8(1): 431.
DOI:10.1038/s41392-023-01652-9
|
6. |
Liang X, Wang W, Liu Y, et al. CircRNA_0263 and circRNA_1507 are dysregulated in a rat model of atrial fibrosis induced by chronic intermittent hypoxia. Am J Transl Res, 2023, 15(1): 63-81.
|
7. |
Naryzhnaya NV, Maslov LN, Derkachev IA, et al. The effect of an adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion. J Biomed Res, 2022, 37(4): 230-254.
DOI:10.7555/JBR.36.20220125
|
8. |
Chu H, Qin Z, Ma J, et al. Calcium-Sensing Receptor (CaSR)-Mediated Intracellular Communication in Cardiovascular Diseases. Cells, 2022, 11(19): 3075.
DOI:10.3390/cells11193075
|
9. |
Regev D, Etzion S, Haddad H, et al. Obstructive Sleep Apnea Syndrome In Vitro Model: Controlled Intermittent Hypoxia Stimulation of Human Stem Cells-Derived Cardiomyocytes. Int J Mol Sci, 2022, 23(18): 10272.
DOI:10.3390/ijms231810272
|
10. |
Miao M, Wu M, Li Y, et al. Clinical Potential of Hypoxia Inducible Factors Prolyl Hydroxylase Inhibitors in Treating Nonanemic Diseases. Front Pharmacol, 2022, 13: 837249.
DOI:10.3389/fphar.2022.837249
|
11. |
Chuang LP, Pang JS, Lin SW, et al. Elevated serum matrix metalloproteinase-2 levels in heart failure patients with reduced ejection fraction and Cheyne-Stokes respiration. J Clin Sleep Med, 2022, 18(5): 1365-1373.
DOI:10.5664/jcsm.9870
|
12. |
Wang W, Gu H, Li W, et al. SRC-3 Knockout Attenuates Myocardial Injury Induced by Chronic Intermittent Hypoxia in Mice. Oxid Med Cell Longev, 2021, 2021: 6372430.
DOI:10.1155/2021/6372430
|
13. |
Taghizadeh M, Maghsoudi N, Manaheji H, et al. Noopept; a nootropic dipeptide, modulates persistent inflammation by effecting spinal microglia dependent Brain Derived Neurotropic Factor (BDNF) and pro-BDNF expression throughout apoptotic process. Heliyon, 2021, 7(2): e06219.
DOI:10.1016/j.heliyon.2021.e06219
|
14. |
Franczak A, Skomro R, Sawicka J, et al. Serum matrix metalloproteinase-2 as a predictor of level of hypoxemia and severity of obstructive sleep apnea. Sleep Breath, 2021, 25(2): 877-886.
DOI:10.1007/s11325-020-02200-3
|
15. |
Packer M. Mutual Antagonism of Hypoxia-Inducible Factor Isoforms in Cardiac, Vascular, and Renal Disorders. JACC Basic Transl Sci, 2020, 5(9): 961-968.
DOI:10.1016/j.jacbts.2020.05.006
|
16. |
Ma Z, Zhang K, Wang Y, et al. Doxycycline Improves Fibrosis-Induced Abnormalities in Atrial Conduction and Vulnerability to Atrial Fibrillation in Chronic Intermittent Hypoxia Rats. Med Sci Monit, 2020, 26: e918883.
DOI:10.12659/MSM.918883
|
17. |
Bao Q, Zhang B, Suo Y, et al. Intermittent hypoxia mediated by TSP1 dependent on STAT3 induces cardiac fibroblast activation and cardiac fibrosis. Elife, 2020, 9: e49923.
DOI:10.7554/eLife.49923
|
18. |
Assallum H, Song TY, Aronow WS, et al. Obstructive sleep apnoea and cardiovascular disease: a literature review. Arch Med Sci, 2019, 17(5): 1200-1212.
DOI:10.5114/aoms.2019.88558
|
19. |
AlMarabeh S, Abdulla MH, O'Halloran KD. Is Aberrant Reno-Renal Reflex Control of Blood Pressure a Contributor to Chronic Intermittent Hypoxia-Induced Hypertension?. Front Physiol, 2019, 10: 465.
DOI:10.3389/fphys.2019.00465
|
20. |
Yang X, Zhang L, Liu H, et al. Cardiac Sympathetic Denervation Suppresses Atrial Fibrillation and Blood Pressure in a Chronic Intermittent Hypoxia Rat Model of Obstructive Sleep Apnea. J Am Heart Assoc, 2019, 8(4): e010254.
DOI:10.1161/JAHA.118.010254
|
21. |
Zhang C, Dong H, Chen F, et al. The HMGB1-RAGE/TLR-TNF-α signaling pathway may contribute to kidney injury induced by hypoxia. Exp Ther Med, 2019, 17(1): 17-26.
DOI:10.3892/etm.2018.6932
|
22. |
Yang X, Shi Y, Zhang L, et al. Overexpression of filamin c in chronic intermittent hypoxia-induced cardiomyocyte apoptosis is a potential cardioprotective target for obstructive sleep apnea. Sleep Breath, 2019, 23(2): 493-502.
DOI:10.1007/s11325-018-1712-9
|
23. |
Yang JJ, Wang SJ, Gao X, et al. Toll-Like Receptor 4 (TLR-4) Pathway Promotes Pulmonary Inflammation in Chronic Intermittent Hypoxia-Induced Obstructive Sleep Apnea. Med Sci Monit, 2018, 24: 7152-7161.
DOI:10.12659/MSM.910632
|
24. |
Farré N, Otero J, Falcones B, et al. Intermittent Hypoxia Mimicking Sleep Apnea Increases Passive Stiffness of Myocardial Extracellular Matrix. A Multiscale Study. Front Physiol, 2018, 9: 1143.
DOI:10.3389/fphys.2018.01143
|
25. |
Zhou X, Tang S, Hu K, et al. DL-Propargylglycine protects against myocardial injury induced by chronic intermittent hypoxia through inhibition of endoplasmic reticulum stress. Sleep Breath, 2018, 22(3): 853-863.
DOI:10.1007/s11325-018-1656-0
|
26. |
Zhang XB, Zeng YM, Chen XY, et al. Decreased expression of hepatic cytochrome P450 1A2 (CYP1A2) in a chronic intermittent hypoxia mouse model. J Thorac Dis, 2018, 10(2): 825-834.
DOI:10.21037/jtd.2017.12.106
|
27. |
Khalyfa A, Kheirandish-Gozal L, Gozal D. Circulating exosomes in obstructive sleep apnea as phenotypic biomarkers and mechanistic messengers of end-organ morbidity. Respir Physiol Neurobiol, 2018, 256: 143-156.
DOI:10.1016/j.resp.2017.06.004
|