Citation: | Min Shi, Xiangcheng Zhang, Ridong Zhang, Hong Zhang, Dalong Zhu, Xiao Han. Glycyrrhizic acid promotes sciatic nerves recovery in type 1 diabetic rats and protects Schwann cells from high glucose-induced cytotoxicity[J]. The Journal of Biomedical Research, 2022, 36(3): 181-194. doi: 10.7555/JBR.36.20210198 |
[1] |
Deli G, Bosnyak E, Pusch G, et al. Diabetic neuropathies: diagnosis and management[J]. Neuroendocrinology, 2013, 98(4): 267–280. doi: 10.1159/000358728
|
[2] |
Jin HY, Moon SS, Calcutt NA. Lost in translation? Measuring diabetic neuropathy in humans and animals[J]. Diabetes Metab J, 2021, 45(1): 27–42. doi: 10.4093/dmj.2020.0216
|
[3] |
Gonçalves NP, Vægter CB, Andersen H, et al. Schwann cell interactions with axons and microvessels in diabetic neuropathy[J]. Nat Rev Neurol, 2017, 13(3): 135–147. doi: 10.1038/nrneurol.2016.201
|
[4] |
Xi C, Zhang Y, Yan M, et al. Exogenous neuritin treatment improves survivability and functions of Schwann cells with improved outgrowth of neurons in rat diabetic neuropathy[J]. J Cell Mol Med, 2020, 24(17): 10166–10176. doi: 10.1111/jcmm.15627
|
[5] |
Feldman EL, Nave KA, Jensen TS, et al. New horizons in diabetic neuropathy: mechanisms, bioenergetics, and pain[J]. Neuron, 2017, 93(6): 1296–1313. doi: 10.1016/j.neuron.2017.02.005
|
[6] |
Wang L, Chopp M, Szalad A, et al. Exosomes derived from Schwann cells ameliorate peripheral neuropathy in type 2 diabetic mice[J]. Diabetes, 2020, 69(4): 749–759. doi: 10.2337/db19-0432
|
[7] |
Cinci L, Corti F, Di Cesare Mannelli L, et al. Oxidative, metabolic, and apoptotic responses of Schwann cells to high glucose levels[J]. J Biochem Mol Toxicol, 2015, 29(6): 274–279. doi: 10.1002/jbt.21695
|
[8] |
Liu Y, Shao S, Guo H. Schwann cells apoptosis is induced by high glucose in diabetic peripheral neuropathy[J]. Life Sci, 2020, 248: 117459. doi: 10.1016/j.lfs.2020.117459
|
[9] |
Naruse K. Schwann cells as crucial players in diabetic neuropathy[M]//Sango K, Yamauchi J, Ogata T, et al. Myelin. Singapore: Springer, 2019: 345–356.
|
[10] |
Shi X, Chen Y, Nadeem L, et al. Beneficial effect of TNF-α inhibition on diabetic peripheral neuropathy[J]. J Neuroinflammation, 2013, 10: 836. doi: 10.1186/1742-2094-10-69
|
[11] |
Zhou J, Zhou S. Inflammation: therapeutic targets for diabetic neuropathy[J]. Mol Neurobiol, 2014, 49(1): 536–546. doi: 10.1007/s12035-013-8537-0
|
[12] |
Colavita L, Ciprandi G, Salpietro A, et al. HMGB1: a pleiotropic activity[J]. Pediatr Allergy Immunol, 2020, 31(Suppl 26): 63–65. doi: 10.1111/pai.13358
|
[13] |
Andersson U, Yang H, Harris H. High-mobility group box 1 protein (HMGB1) operates as an alarmin outside as well as inside cells[J]. Semin Immunol, 2018, 38: 40–48. doi: 10.1016/j.smim.2018.02.011
|
[14] |
Faraco G, Fossati S, Bianchi ME, et al. High mobility group box 1 protein is released by neural cells upon different stresses and worsens ischemic neurodegeneration in vitro and in vivo[J]. J Neurochem, 2007, 103(2): 590–603. doi: 10.1111/j.1471-4159.2007.04788.x
|
[15] |
Chen Y, Qiao F, Zhao Y, et al. HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose[J]. Int J Clin Exp Pathol, 2015, 8(6): 6683–6691. https://pubmed.ncbi.nlm.nih.gov/26261550/
|
[16] |
Robinson AP, Caldis MW, Harp CT, et al. High-mobility group box 1 protein (HMGB1) neutralization ameliorates experimental autoimmune encephalomyelitis[J]. J Autoimmun, 2013, 43: 32–43. doi: 10.1016/j.jaut.2013.02.005
|
[17] |
Wu B, Guo Y, Chen Q, et al. MicroRNA-193a downregulates HMGB1 to alleviate diabetic neuropathic pain in a mouse model[J]. Neuroimmunomodulation, 2019, 26(5): 250–257. doi: 10.1159/000503325
|
[18] |
Wang X, Feng C, Qiao Y, et al. Sigma 1 receptor mediated HMGB1 expression in spinal cord is involved in the development of diabetic neuropathic pain[J]. Neurosci Lett, 2018, 668: 164–168. doi: 10.1016/j.neulet.2018.02.002
|
[19] |
Mollica L, De Marchis F, Spitaleri A, et al. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities[J]. Chem Biol, 2007, 14(4): 431–441. doi: 10.1016/j.chembiol.2007.03.007
|
[20] |
Kim SW, Jin Y, Shin JH, et al. Glycyrrhizic acid affords robust neuroprotection in the postischemic brain via anti-inflammatory effect by inhibiting HMGB1 phosphorylation and secretion[J]. Neurobiol Dis, 2012, 46(1): 147–156. doi: 10.1016/j.nbd.2011.12.056
|
[21] |
Okuma Y, Liu K, Wake H, et al. Glycyrrhizin inhibits traumatic brain injury by reducing HMGB1–RAGE interaction[J]. Neuropharmacology, 2014, 85: 18–26. doi: 10.1016/j.neuropharm.2014.05.007
|
[22] |
Mohammad G, Siddiquei MM, Othman A, et al. High-mobility group box-1 protein activates inflammatory signaling pathway components and disrupts retinal vascular-barrier in the diabetic retina[J]. Exp Eye Res, 2013, 107: 101–109. doi: 10.1016/j.exer.2012.12.009
|
[23] |
Zhang H, Zhang R, Chen J, et al. High mobility group box1 inhibitor glycyrrhizic acid attenuates kidney injury in streptozotocin-induced diabetic rats[J]. Kidney Blood Press Res, 2017, 42(5): 894–904. doi: 10.1159/000485045
|
[24] |
Ma J, Shi M, Zhang X, et al. GLP-1R agonists ameliorate peripheral nerve dysfunction and inflammation via p38 MAPK/NF-κB signaling pathways in streptozotocin-induced diabetic rats[J]. Int J Mol Med, 2018, 41(5): 2977–2985. doi: 10.3892/ijmm.2018.3509
|
[25] |
Karamoysoyli E, Burnand RC, Tomlinson DR, et al. Neuritin mediates nerve growth factor–induced axonal regeneration and is deficient in experimental diabetic neuropathy[J]. Diabetes, 2008, 57(1): 181–189. doi: 10.2337/db07-0895
|
[26] |
Tosaki T, Kamiya H, Yasuda Y, et al. Reduced NGF secretion by Schwann cells under the high glucose condition decreases neurite outgrowth of DRG neurons[J]. Exp Neurol, 2008, 213(2): 381–387. doi: 10.1016/j.expneurol.2008.06.017
|
[27] |
Li J, Zhang H, Xie M, et al. NSE, a potential biomarker, is closely connected to diabetic peripheral neuropathy[J]. Diabetes Care, 2013, 36(11): 3405–3410. doi: 10.2337/dc13-0590
|
[28] |
Dincel GC, Yildirim S. Overexpression of ADAMTS-13 and neuronal nitric oxide synthase relates with neuropathology in streptozotocin-induced type 1 diabetic rats[J]. Int J Clin Exp Pathol, 2016, 9(4): 4761–4778. https://www.researchgate.net/publication/304379452
|
[29] |
Cheng Y, Liu J, Luan Y, et al. Sarm1 gene deficiency attenuates diabetic peripheral neuropathy in mice[J]. Diabetes, 2019, 68(11): 2120–2130. doi: 10.2337/db18-1233
|
[30] |
Min S, Li J, Zhang H, et al. Neuritin is expressed in Schwann cells and down-regulated in apoptotic Schwann cells under hyperglycemia[J]. Nutr Neurosci, 2012, 15(6): 264–270. doi: 10.1179/1476830512Y.0000000022
|
[31] |
Ugrinova I, Pasheva E. HMGB1 protein: a therapeutic target inside and outside the cell[J]. Adv Protein Chem Struct Biol, 2017, 107: 37–76. doi: 10.1016/bs.apcsb.2016.10.001
|
[32] |
Andersson U, Yang H, Harris H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases[J]. Expert Opin Ther Targets, 2018, 22(3): 263–277. doi: 10.1080/14728222.2018.1439924
|
[33] |
Salo H, Qu H, Mitsiou D, et al. Disulfide and fully reduced HMGB1 induce different macrophage polarization and migration patterns[J]. Biomolecules, 2021, 11(6): 800. doi: 10.3390/biom11060800
|
[34] |
Gao T, Chen Z, Chen H, et al. Inhibition of HMGB1 mediates neuroprotection of traumatic brain injury by modulating the microglia/macrophage polarization[J]. Biochem Biophys Res Commun, 2018, 497(1): 430–436. doi: 10.1016/j.bbrc.2018.02.102
|
[35] |
Kigerl KA, Lai W, Wallace LM, et al. High mobility group box-1 (HMGB1) is increased in injured mouse spinal cord and can elicit neurotoxic inflammation[J]. Brain Behav Immun, 2018, 72: 22–33. doi: 10.1016/j.bbi.2017.11.018
|
[36] |
Venereau E, De Leo F, Mezzapelle R, et al. HMGB1 as biomarker and drug target[J]. Pharmacol Res, 2016, 111: 534–544. doi: 10.1016/j.phrs.2016.06.031
|
[37] |
Yan S, Fang C, Cao L, et al. Protective effect of glycyrrhizic acid on cerebral ischemia/reperfusion injury via inhibiting HMGB1-mediated TLR4/NF-κB pathway[J]. Biotechnol Appl Biochem, 2019, 66(6): 1024–1030. doi: 10.1002/bab.1825
|
[38] |
Kamiya H, Zhangm W, Sima AAF. Apoptotic stress is counterbalanced by survival elements preventing programmed cell death of dorsal root ganglions in subacute type 1 diabetic BB/Wor rats[J]. Diabetes, 2005, 54(11): 3288–3295. doi: 10.2337/diabetes.54.11.3288
|
[39] |
Mnich K, Carleton LA, Kavanagh ET, et al. Nerve growth factor-mediated inhibition of apoptosis post-caspase activation is due to removal of active caspase-3 in a lysosome-dependent manner[J]. Cell Death Dis, 2014, 5(5): e1202. doi: 10.1038/cddis.2014.173
|
[40] |
Guo X, Shi Y, Du P, et al. HMGB1/TLR4 promotes apoptosis and reduces autophagy of hippocampal neurons in diabetes combined with OSA[J]. Life Sci, 2019, 239: 117020. doi: 10.1016/j.lfs.2019.117020
|
[41] |
Ma Y, Du Y, Xu Q, et al. Inhibiting MiR-34α reduces retinal cell apoptosis and downstream NF-κB pathway in diabetic retinopathy rats through regulating HMGB1 expression[J]. Minerva Med, 2020. doi: 10.23736/S0026-4806.20.06625-2. [Epub ahead of print
|
[42] |
Hudson BI, Lippman ME. Targeting RAGE signaling in inflammatory disease[J]. Annu Rev Med, 2018, 69: 349–364. doi: 10.1146/annurev-med-041316-085215
|
[43] |
Paudel YN, Angelopoulou E, Piperi C, et al. Impact of HMGB1, RAGE, and TLR4 in Alzheimer's disease (AD): from risk factors to therapeutic targeting[J]. Cells, 2020, 9(2): 383. doi: 10.3390/cells9020383
|
[44] |
Purves T, Middlemas A, Agthong S, et al. A role for mitogen-activated protein kinases in the etiology of diabetic neuropathy[J]. Faseb J, 2001, 15(13): 2508–2514. doi: 10.1096/fj.01-0253hyp
|
[45] |
Yang DP, Kim J, Syed N, et al. p38 MAPK activation promotes denervated Schwann cell phenotype and functions as a negative regulator of Schwann cell differentiation and myelination[J]. J Neurosci, 2012, 32(21): 7158–7168. doi: 10.1523/JNEUROSCI.5812-11.2012
|
[46] |
Stavniichuk R, Obrosov AA, Drel VR, et al. 12/15-Lipoxygenase inhibition counteracts MAPK phosphorylation in mouse and cell culture models of diabetic peripheral neuropathy[J]. J Diabetes Mellitus, 2013, 3(3): 101–110. doi: 10.4236/jdm.2013.33015
|
[47] |
Li L, Ling Y, Huang M, et al. Heparin inhibits the inflammatory response induced by LPS and HMGB1 by blocking the binding of HMGB1 to the surface of macrophages[J]. Cytokine, 2015, 72(1): 36–42. doi: 10.1016/j.cyto.2014.12.010
|
[48] |
Tan J, Zhao F, Deng S, et al. Glycyrrhizin affects monocyte migration and apoptosis by blocking HMGB1 signaling[J]. Mol Med Rep, 2018, 17(4): 5970–5975. doi: 10.3892/mmr.2018.8598
|
[49] |
Xie W, Zhu T, Dong X, et al. HMGB1-triggered inflammation inhibition of notoginseng leaf triterpenes against cerebral ischemia and reperfusion injury via MAPK and NF-κB signaling pathways[J]. Biomolecules, 2019, 9(10): 512. doi: 10.3390/biom9100512
|
[50] |
Chu Y, Wang Y, Zheng Z, et al. Proinflammatory effect of high glucose concentrations on HMrSV5 cells via the autocrine effect of HMGB1[J]. Front Physiol, 2017, 8: 762. doi: 10.3389/fphys.2017.00762
|
![]() |
![]() |