Citation: | Venakatesh Archana G., Mathew Johann J., Coleman Scott, Yang Longqiu, Liu Geoffrey L., Li Marilyn M., Liu Henry. Effects of milrinone on inflammatory response-related gene expressions in cultured rat cardiomyocytes[J]. The Journal of Biomedical Research, 2019, 33(4): 258-263. DOI: 10.7555/JBR.32.20170085 |
[1] |
Shipley JB, Hess ML. Inotropic therapy for the failing myocardium[J]. Clin Cardiol, 1995, 18(11): 615–619. doi: 10.1002/clc.v18:11
|
[2] |
Hunt SA, Abraham WT, Chin MH, et al. Focused update incorporated into the ACC/AHA 2005 guidelines for the diagnosis and management of heart failure in adults task force members[J]. JAC, 2009, 53(15): e1–e90.
|
[3] |
Belletti A, Castro ML, Silvetti S, et al. The effect of inotropes and vasopressors on mortality: a meta-analysis of randomized clinical trials[J]. Br J Anaesth, 2015, 115(5): 656–675. doi: 10.1093/bja/aev284
|
[4] |
Jaiswal A, Nguyen VQ, Le Jemtel TH, et al. Novel role of phosphodiesterase inhibitors in the management of end-stage heart failure[J]. World J Cardiol, 2016, 8(7): 401–412. doi: 10.4330/wjc.v8.i7.401
|
[5] |
Tang X, Liu P, Li R, et al. Milrinone for the treatment of acute heart failure after acute myocardial infarction: a systematic review and meta-analysis[J]. Basic Clin Pharmacol Toxicol, 2015, 117(3): 186–194. doi: 10.1111/bcpt.2015.117.issue-3
|
[6] |
Zangrillo A, Biondi-Zoccai G, Ponschab M, et al. Milrinone and mortality in adult cardiac surgery: a meta-analysis[J]. J Cardiothorac Vasc Anesth, 2012, 26(1): 70–77. doi: 10.1053/j.jvca.2011.06.022
|
[7] |
Packer M, Carver JR, Rodeheffer RJ, et al. Effect of oral milrinone on mortality in severe chronic heart failure[J]. N Engl J Med, 1991, 325(21): 1468–1475. doi: 10.1056/NEJM199111213252103
|
[8] |
Chanani NK, Cowan DB, Takeuchi K, et al. Differential effects of amrinone and milrinone upon myocardial inflammatory signaling[J]. Circulation, 2002, 106(12 Suppl 1): I284–I289.
|
[9] |
Liu H, Sangkum L, Liu G, et al. Effects of epinephrine on angiogenesis-related gene expressions in cultured rat cardiomyocytes[J]. J Biomed Res, 2016, 30(5): 380–385.
|
[10] |
Chen S, Liu GL, Li MM, et al. Effects of epinephrine on inflammation-related gene expressions in cultured rat cardiomyocytes[J]. Transl Perioper Pain Med, 2017, 2(1): 13–19.
|
[11] |
Zhao F, Li B, Wei YZ, et al. MicroRNA-34a regulates high glucose-induced apoptosis in H9c2 cardiomyocytes[J]. J Huazhong Univ Sci Technolog Med Sci, 2013, 33(6): 834–839. doi: 10.1007/s11596-013-1207-7
|
[12] |
Merten KE, Jiang Y, Feng W, et al. Calcineurin activation is not necessary for doxorubicin-induced hypertrophy in H9c2 embryonic rat cardiac cells: involvement of the phosphoinositide 3-kinase-Akt pathway[J]. J Pharmacol Exp Ther, 2006, 319(2): 934–940. doi: 10.1124/jpet.106.108845
|
[13] |
Hamid T, Xu Y, Ismahil MA, et al. TNF receptor signaling inhibits cardiomyogenic differentiation of cardiac stem cells and promotes a neuroadrenergic-like fate[J]. Am J PhysiolHear Circ Physiol, 2016, 311(5): H1189–H1201. doi: 10.1152/ajpheart.00904.2015
|
[14] |
Abu El-Asrar AM, Nawaz MI, Ola MS, et al. Expression of thrombospondin-2 as a marker in proliferative diabetic retinopathy[J]. Acta Ophthalmol, 2013, 91(3): e169–e177. doi: 10.1111/aos.2013.91.issue-3
|
[15] |
Hanatani S, Izumiya Y, Takashio S, et al. Circulating thrombospondin-2 reflects disease severity and predicts outcome of heart failure with reduced ejection fraction[J]. Circ J, 2014, 78(4): 903–910. doi: 10.1253/circj.CJ-13-1221
|
[16] |
Frangogiannis NG, Ren G, Dewald O, et al. Critical role of endogenous thrombospondin-1 in preventing expansion of healing myocardial infarcts[J]. Circulation, 2005, 111(22): 2935–2942. doi: 10.1161/CIRCULATIONAHA.104.510354
|
[17] |
Schroen B, Heymans S, Sharma U, et al. Thrombospondin-2 is essential for myocardial matrix integrity: increased expression identifies failure-prone cardiac hypertrophy[J]. Circ Res, 2004, 95(5): 515–522. doi: 10.1161/01.RES.0000141019.20332.3e
|
[18] |
Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling[J]. Nat Rev Mol Cell Biol, 2007, 8(3): 221–233.
|
[19] |
Hori Y, Kashimoto T, Yonezawa T, et al. Matrix metalloproteinase-2 stimulates collagen-I expression through phosphorylation of focal adhesion kinase in rat cardiac fibroblasts[J]. Am J Physiol Cell Physiol, 2012, 303(9): C947–C953. doi: 10.1152/ajpcell.00401.2011
|
[20] |
Nepomnyashchikh LM, Lushnikova EL, Bakarev MA, et al. Immunohistochemical analysis of MMP-2 expression in the myocardium during the postinfarction period[J]. Bull Exp Biol Med, 2015, 159(4): 505–510. doi: 10.1007/s10517-015-3004-8
|
[21] |
Gao L, Zheng YJ, Gu SS, et al. Degradation of cardiac myosin Milrinone alters inflammation-related gene expression 5light chain kinase by matrix metalloproteinase-2 contributes to myocardial contractile dysfunction during ischemia/reperfusion[J]. J Mol Cell Cardiol, 2014, 77: 102–112. doi: 10.1016/j.yjmcc.2014.10.004
|
[22] |
Libby P. Collagenases and cracks in the plaque[J]. J Clin Invest, 2013, 123(8): 3201–3203. doi: 10.1172/JCI67526
|
[23] |
Newby AC. Metalloproteinase production from macrophages- a perfect storm leading to atherosclerotic plaque rupture and myocardial infarction[J]. Exp Physiol, 2016, 101(11): 1327–1337. doi: 10.1113/EP085567
|
[24] |
Kostov K, Blazhev A, Atanasova M, et al. Serum concentrations of endothelin-1 and matrix metalloproteinases-2, -9 in prehypertensive and hypertensive patients with type 2 diabetes[J]. Int J Mol Sci, 2016, 17(8): 1–13.
|
[25] |
Jiang L, Zhang J, Monticone RE, et al. Calpain-1 regulation of matrix metalloproteinase 2 activity in vascular smooth muscle cells facilitates age-associated aortic wall calcification and fibrosis[J]. Hypertension, 2012, 60(5): 1192–1199. doi: 10.1161/HYPERTENSIONAHA.112.196840
|
[26] |
Qian J, Chen Z, Lin J, et al. Decreased expression of CCAAT/ enhancer binding protein zeta (C/EBPzeta) in patients with different myeloid diseases[J]. Leuk Res, 2005, 29(12): 1435–1441. doi: 10.1016/j.leukres.2005.05.020
|
[27] |
Lin J, Wang YL, Qian J, et al. Aberrant methylation of DNAdamage-inducible transcript 3 promoter is a common event in patients with myelodysplastic syndrome[J]. Leuk Res, 2010, 34(8): 991–994. doi: 10.1016/j.leukres.2010.01.003
|
[28] |
Xu Y, Chen Z, Zhang G, et al. HSP90B1 overexpression predicts poor prognosis in NSCLC patients[J]. Tumour Biol, 2016, 37(10): 14321–14328. doi: 10.1007/s13277-016-5304-7
|
[29] |
Shneyvays V, Zinman T, Shainberg A. Analysis of calcium responses mediated by the A3 adenosine receptor in cultured newborn rat cardiac myocytes[J]. Cell Calcium, 2004, 36(5): 387–396. doi: 10.1016/j.ceca.2004.03.004
|
[30] |
Galal A, El-Bakly WM, Al Haleem EN, et al. Selective A3 adenosine receptor agonist protects against doxorubicininduced cardiotoxicity[J]. Cancer Chemother Pharmacol, 2016, 77(2): 309–322. doi: 10.1007/s00280-015-2937-y
|
[31] |
Lu Z, Fassett J, Xu X, et al. Adenosine A3 receptor deficiency exerts unanticipated protective effects on the pressure overloaded left ventricle[J]. Circulation, 2008, 118(17): 1713–1721. doi: 10.1161/CIRCULATIONAHA.108.788307
|
[32] |
Kahles F, Findeisen HM, Bruemmer D. Osteopontin: A novel regulator at the cross roads of inflammation, obesity and diabetes[J]. Mol Metab, 2014, 3(4): 384–393. doi: 10.1016/j.molmet.2014.03.004
|
[33] |
Meng C, Liu Z, Liu GL, et al. Ketamine promotes inflammation through increasing TLR4 expression in RAW264.7 cells[J]. J Huazhong Univ Sci Technolog Med Sci, 2015, 35(3): 419–425. doi: 10.1007/s11596-015-1447-9
|
[34] |
Lund H, Boysen P, Åkesson CP, et al. Transient migration of large numbers of CD14(++) CD16(+) monocytes to the draining lymph node after onset of inflammation[J]. Front Immunol, 2016, 7: 322.
|
[35] |
Krasity BC, Troll JV, Lehnert EM, et al. Structural and functional features of a developmentally regulated lipopolysaccharide-binding protein[J]. MBio, 2015, 6(5): e01193–15.
|
[36] |
Friedrich K, Smit M, Brune M, et al. CD14 is associated with biliary stricture formation[J]. Hepatology, 2016, 64(3): 843–852. doi: 10.1002/hep.v64.3
|
[37] |
Guillou C, Fréret M, Fondard E, et al. Soluble alpha-enolase activates monocytes by CD14-dependent TLR4 signalling pathway and exhibits a dual function[J]. Sci Rep, 2016, 6: 23796. doi: 10.1038/srep23796
|