Citation: | Wang Lei, Zhang Kun, Ding Xin, Wang Yan, Bai Hui, Yang Qing, Ben Jingjing, Zhang Hanwen, Li Xiaoyu, Chen Qi, Zhu Xudong. Fucoidan antagonizes diet-induced obesity and inflammation in mice[J]. The Journal of Biomedical Research, 2021, 35(3): 197-205. DOI: 10.7555/JBR.34.20200153 |
[1] |
Wang YC, McPherson K, Marsh T, et al. Health and economic burden of the projected obesity trends in the USA and the UK[J]. Lancet, 2011, 378(9793): 815–825. doi: 10.1016/S0140-6736(11)60814-3
|
[2] |
Chu DT, Nguyet NTM, Dinh TC, et al. An update on physical health and economic consequences of overweight and obesity[J]. Diabetes Metab Syndr Clin Res Rev, 2018, 12(6): 1095–1100. doi: 10.1016/j.dsx.2018.05.004
|
[3] |
NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19•2 million participants[J]. Lancet, 2016, 387(10026): 1377–1396. doi: 10.1016/S0140-6736(16)30054-X
|
[4] |
Zatterale F, Longo M, Naderi J, et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes[J]. Front Physiol, 2020, 10: 1607. doi: 10.3389/fphys.2019.01607
|
[5] |
Ni YH, Ni LY, Zhuge F, et al. Adipose tissue macrophage phenotypes and characteristics: the key to insulin resistance in obesity and metabolic disorders[J]. Obesity, 2020, 28(2): 225–234. doi: 10.1002/oby.22674
|
[6] |
Guilherme A, Henriques F, Bedard AH, et al. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus[J]. Nat Rev Endocrinol, 2019, 15(4): 207–225. doi: 10.1038/s41574-019-0165-y
|
[7] |
Faraj M. LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue[J]. J Biomed Res, 2020, 34(4): 251–259. doi: 10.7555/JBR.34.20190124
|
[8] |
Kan JT, Hood M, Burns C, et al. A novel combination of wheat peptides and fucoidan attenuates ethanol-induced gastric mucosal damage through anti-oxidant, anti-inflammatory, and pro-survival mechanisms[J]. Nutrients, 2017, 9(9): 978. doi: 10.3390/nu9090978
|
[9] |
Yu HH, Ko EC, Chang CL, et al. Fucoidan inhibits radiation-induced pneumonitis and lung fibrosis by reducing inflammatory cytokine expression in lung tissues[J]. Mar Drugs, 2018, 16(10): 392. doi: 10.3390/md16100392
|
[10] |
Kim MJ, Jeon J, Lee JS. Fucoidan prevents high-fat diet-induced obesity in animals by suppression of fat accumulation[J]. Phytother Res, 2014, 28(1): 137–143. doi: 10.1002/ptr.4965
|
[11] |
Sim SY, Shin YE, Kim HK. Fucoidan from Undaria pinnatifida has anti-diabetic effects by stimulation of glucose uptake and reduction of basal lipolysis in 3T3-L1 adipocytes[J]. Nutr Res, 2019, 65: 54–62. doi: 10.1016/j.nutres.2019.02.002
|
[12] |
Zhu XD, Wang Y, Zhu L, et al. Class A1 scavenger receptor prevents obesity-associated blood pressure elevation through suppressing overproduction of vascular endothelial growth factor B in macrophages[J]. Cardiovasc Res, 2020, cvaa030. doi: 10.1093/cvr/cvaa030
|
[13] |
Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue[J]. J Clin Invest, 2003, 112(12): 1796–1808. doi: 10.1172/JCI200319246
|
[14] |
Chawla A, Nguyen KD, Goh YPS. Macrophage-mediated inflammation in metabolic disease[J]. Nat Rev Immunol, 2011, 11(11): 738–749. doi: 10.1038/nri3071
|
[15] |
The GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years[J]. N Engl J Med, 2017, 377(1): 13–27. doi: 10.1056/NEJMoa1614362
|
[16] |
Flegal KM, Kruszon-Moran D, Carroll MD, et al. Trends in obesity among adults in the United States, 2005 to 2014[J]. JAMA, 2016, 315(21): 2284–2291. doi: 10.1001/jama.2016.6458
|
[17] |
Luthuli S, Wu SY, Cheng Y, et al. Therapeutic effects of fucoidan: a review on recent studies[J]. Mar Drugs, 2019, 17(9): 487. doi: 10.3390/md17090487
|
[18] |
Huang H, Li X, Zhuang Y, et al. Class A scavenger receptor activation inhibits endoplasmic reticulum stress-induced autophagy in macrophage[J]. J Biomed Res, 2014, 28(3): 213–221. doi: 10.7555/JBR.28.20130105
|
[19] |
Aleissa MS, Alkahtani S, Eldaim MAA, et al. Fucoidan ameliorates oxidative stress, inflammation, DNA damage, and hepatorenal injuries in diabetic rats intoxicated with aflatoxin B1[J]. Oxid Med Cell Longev, 2020, 2020: 9316751. doi: 10.1155/2020/9316751
|
[20] |
Cuong HD, Thuy TTT, Huong TT, et al. Structure and hypolipidaemic activity of fucoidan extracted from brown seaweed Sargassum henslowianum[J]. Nat Prod Res, 2015, 29(5): 411–415. doi: 10.1080/14786419.2014.948436
|
[21] |
Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation[J]. Nat Rev Endocrinol, 2017, 13(11): 633–643. doi: 10.1038/nrendo.2017.90
|
[22] |
Hotamisligil GS. Inflammation and metabolic disorders[J]. Nature, 2006, 444(7121): 860–867. doi: 10.1038/nature05485
|
[23] |
Metrakos P, Nilsson T. Non-alcoholic fatty liver disease--a chronic disease of the 21st century[J]. J Biomed Res, 2018, 32(5): 327–335. doi: 10.7555/JBR.31.20160153
|
[24] |
Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease[J]. J Clin Invest, 2011, 121(6): 2111–2117. doi: 10.1172/JCI57132
|
[25] |
Park J, Cha JD, Choi KM, et al. Fucoidan inhibits LPS-induced inflammation in vitro and during the acute response in vivo[J]. Int Immunopharmacol, 2017, 43: 91–98. doi: 10.1016/j.intimp.2016.12.006
|
[26] |
Park HY, Han MH, Park C, et al. Anti-inflammatory effects of fucoidan through inhibition of NF-κB, MAPK and Akt activation in lipopolysaccharide-induced BV2 microglia cells[J]. Food Chem Toxicol, 2011, 49(8): 1745–1752. doi: 10.1016/j.fct.2011.04.020
|
[27] |
Xu HY, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance[J]. J Clin Invest, 2003, 112(12): 1821–1830. doi: 10.1172/JCI200319451
|
[28] |
Han MS, Jung DY, Morel C, et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation[J]. Science, 2013, 339(6116): 218–222. doi: 10.1126/science.1227568
|
[29] |
Lee YS, Kim JW, Osborne O, et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity[J]. Cell, 2014, 157(6): 1339–1352. doi: 10.1016/j.cell.2014.05.012
|
[30] |
Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity[J]. Physiol Rev, 2013, 93(1): 1–21. doi: 10.1152/physrev.00017.2012
|
[31] |
Nguyen MTA, Favelyukis S, Nguyen AK, et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways[J]. J Biol Chem, 2007, 282(48): 35279–35292. doi: 10.1074/jbc.M706762200
|
[32] |
Cui XB, Chen SY. White adipose tissue browning and obesity[J]. J Biomed Res, 2016, 31(1): 1–2. doi: 10.7555/JBR.31.20160101
|
[33] |
Wang N, Zhao TT, Li SM, et al. Fibroblast growth factor 21 exerts its anti-inflammatory effects on multiple cell types of adipose tissue in obesity[J]. Obesity, 2019, 27(3): 399–408. doi: 10.1002/oby.22376
|
[34] |
Petrus P, Lecoutre S, Dollet L, et al. Glutamine links obesity to inflammation in human white adipose tissue[J]. Cell Metab, 2020, 31(2): 375–390. doi: 10.1016/j.cmet.2019.11.019
|
[35] |
Veena CK, Josephine A, Preetha SP, et al. Mitochondrial dysfunction in an animal model of hyperoxaluria: a prophylactic approach with fucoidan[J]. Eur J Pharmacol, 2008, 579(1-3): 330–336. doi: 10.1016/j.ejphar.2007.09.044
|
[36] |
Skurk T, Alberti-Huber C, Herder C, et al. Relationship between adipocyte size and adipokine expression and secretion[J]. J Clin Endocrinol Metab, 2007, 92(3): 1023–1033. doi: 10.1210/jc.2006-1055
|
[37] |
Ghaben AL, Scherer PE. Adipogenesis and metabolic health[J]. Nat Rev Mol Cell Biol, 2019, 20(4): 242–258. doi: 10.1038/s41580-018-0093-z
|
[1] | Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387 |
[2] | Song Jun, Zhang Jifeng, Xu Jie, Garcia-Barrio Minerva, Chen Y. Eugene, Yang Dongshan. Genome engineering technologies in rabbits[J]. The Journal of Biomedical Research, 2021, 35(2): 135-147. DOI: 10.7555/JBR.34.20190133 |
[3] | Choe Dongwook C., Musunuru Kiran. Base editing: a brief review and a practical example[J]. The Journal of Biomedical Research, 2021, 35(2): 107-114. DOI: 10.7555/JBR.34.20200003 |
[4] | Ma Hongxia, Shen Hongbing. From human genome epidemiology to systems epidemiology: current progress and future perspective[J]. The Journal of Biomedical Research, 2020, 34(5): 323-327. DOI: 10.7555/JBR.34.20200027 |
[5] | Tiwari-Heckler Shilpa, Jiang Z. Gordon, Popov Yury, J. Mukamal Kenneth. Daily high-dose aspirin does not lower APRI in the Aspirin-Myocardial Infarction Study[J]. The Journal of Biomedical Research, 2020, 34(2): 139-142. DOI: 10.7555/JBR.33.20190041 |
[6] | Sang-Yong Eom, Dong-Hyuk Yim, Jung-Hyun Kim, Joo-Byung Chae, Yong-Dae Kim, Heon Kim. A pilot exome-wide association study of age-related cataract in Koreans[J]. The Journal of Biomedical Research, 2016, 30(3): 186-190. DOI: 10.7555/JBR.30.2016K0002 |
[7] | Honggang Yi, Hongmei Wo, Yang Zhao, Ruyang Zhang, Junchen Dai, Guangfu Jin, Hongxia Ma, Tangchun Wu, Zhibin Hu, Dongxin Lin, Hongbing Shen, Feng Chen. Comparison of dimension reduction-based logistic regression models forcase-control genome-wide association study: principal components analysis vs. partial least squares[J]. The Journal of Biomedical Research, 2015, 29(4): 298-307. DOI: 10.7555/JBR.29.20140043 |
[8] | Ping Zeng, Yang Zhao, Cheng Qian, Liwei Zhang, Ruyang Zhang, Jianwei Gou, Jin Liu, Liya Liu, Feng Chen. Statistical analysis for genome-wide association study[J]. The Journal of Biomedical Research, 2015, 29(4): 285-297. DOI: 10.7555/JBR.29.20140007 |
[9] | Cheng Wang, Zhengfeng Xu, Guangfu Jin, Zhibin Hu, Juncheng Dai, Hongxia Ma, Yue Jiang, Lingmin Hu, Minjie Chu, Songyu Cao, Hongbing Shen. Genome-wide analysis of runs of homozygosity identifies new susceptibility regions of lung cancer in Han Chinese[J]. The Journal of Biomedical Research, 2013, 27(3): 208-214. DOI: 10.7555/JBR.27.20130017 |
[10] | Bingbing Wei, Yunyun Zhang, Bo Xi, Junkai Chang, Jinming Bai, Jiantang Su. CYP17 T27C polymorphism and prostate cancer risk:a meta-analysis based on 31 studies[J]. The Journal of Biomedical Research, 2010, 24(3): 233-241. |