4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Jiang-Jiang Qin, Sushanta Sarkar, Sukesh Voruganti, Rajesh Agarwal, Wei Wang, Ruiwen Zhang. Identification of lineariifolianoid A as a novel dual NFAT1 and MDM2 inhibitor for human cancer therapy[J]. The Journal of Biomedical Research, 2016, 30(4): 322-333. DOI: 10.7555/JBR.30.20160018
Citation: Jiang-Jiang Qin, Sushanta Sarkar, Sukesh Voruganti, Rajesh Agarwal, Wei Wang, Ruiwen Zhang. Identification of lineariifolianoid A as a novel dual NFAT1 and MDM2 inhibitor for human cancer therapy[J]. The Journal of Biomedical Research, 2016, 30(4): 322-333. DOI: 10.7555/JBR.30.20160018

Identification of lineariifolianoid A as a novel dual NFAT1 and MDM2 inhibitor for human cancer therapy

Funds: 

the National Institutes of Health (NIH) grant R01 CA186662 (to R.Z.) , CA102514 (to R.A.),and American Cancer Society (ACS) grant RSG-15-009-01-CDD (to W.W.)

More Information
  • Received Date: January 28, 2016
  • Revised Date: February 21, 2016
  • There is an increasing interest in development of novel anticancer agents that target oncogenes. We have recently discovered that nuclear factor of activated T cells 1 (NFAT1) is a novel regulator of the Mouse Double Minute 2 (MDM2) oncogene and the NFAT1-MDM2 pathway has been implicated in human cancer development and progression, justifying that targeting the NFAT1-MDM2 pathway could be a novel strategy for discovery and development of novel cancer therapeutics. The present study was designed to examine the anticancer activity and underlying mechanisms of action of lineariifolianoid A (LinA), a novel natural product inhibitor of the NFAT1-MDM2 pathway. The cytotoxicity of LinA was first tested in various human cancer cell lines in comparison with normal cell lines. The results showed that the breast cancer cells were highly sensitive to LinA treatment. We next demonstrated the effects of LinA on cell proliferation, colony formation, cell cycle progression, and apoptosis in breast cancer MCF7 and MDA-MB-231 cells, in dose-dependent and p53-independent manners. LinA also inhibited the migration and invasion of these cancer cells. Our mechanistic studies further indicated that its anticancer activities were attributed to its inhibitory effects on the NFAT1-MDM2 pathway and modulatory effects on the expression of key proteins involved in cell cycle progression, apoptosis, and DNA damage. In summary, LinA is a novel NFAT1-MDM2 inhibitor and may be developed as a preventive and therapeutic agent against human cancer.
  • Related Articles

    [1]Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387
    [2]Wang Siwan, Jiang Hui, Wang Jia, Wu Haisi, Wu Ting, Ni Mengnan, Zhao Qianqian, Ji You, Zhang Ziting, Tang Chunming, Xu Huae. Superior in vitro anticancer effect of biomimetic paclitaxel and triptolide co-delivery system in gastric cancer[J]. The Journal of Biomedical Research, 2021, 35(4): 327-338. DOI: 10.7555/JBR.35.20210102
    [3]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [4]Ahmad R. Safa, Mohammad Reza Saadatzadeh, Aaron A. Cohen-Gadol, Karen E. Pollok, Khadijeh Bijangi-Vishehsaraei. Emerging targets for glioblastoma stem cell therapy[J]. The Journal of Biomedical Research, 2016, 30(1): 19-31. DOI: 10.7555/JBR.30.20150100
    [5]Lintao Wang, Yanyan Peng, Kaikai Shi, Haixiao Wang, Jianlei Lu, Yanli Li, Changyan Ma. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis[J]. The Journal of Biomedical Research, 2015, 29(2): 132-138. DOI: 10.7555/JBR.27.20120115
    [6]Di Liu, Peng Xia, Dongmei Diao, Yao Cheng, Hao Zhang, Dawei Yuan, Chen Huang, Chengxue Dang. MiRNA-429 suppresses the growth of gastric cancer cells in vitro[J]. The Journal of Biomedical Research, 2012, 26(5): 389-393. DOI: 10.7555/JBR.26.20120029
    [7]Tian Tian, Yajie Zhang, Shouyu Wang, Jianwei Zhou, Shan Xua. Sox2 enhances the tumorigenicity and chemoresistance of cancer stem-like cells derived from gastric cancer[J]. The Journal of Biomedical Research, 2012, 26(5): 336-345. DOI: 10.7555/JBR.26.20120045
    [8]Xiaoyan Wang, Guozhu Wang, Yi Zhao, Xiaoan Liu, Qiang Ding, Jingping Shi, Yin Ding, Shui Wang. STAT3 mediates resistance of CD44+CD24-/low breast cancer stem cells to tamoxifen in vitro[J]. The Journal of Biomedical Research, 2012, 26(5): 325-335. DOI: 10.7555/JBR.26.20110050
    [9]Bo Cui, Stewart P. Johnson, Nancy Bullock, Francis Ali-Osman, Darell D. Bigner, Henry S. Friedman. Decoupling of DNA damage response signaling from DNA damages underlies temozolomide resistance in glioblastoma cells[J]. The Journal of Biomedical Research, 2010, 24(6): 424-435. DOI: 10.1016/S1674-8301(10)60057-7
    [10]Guixia?Tang, Minjun?Ji, Haiwei?Wu, Guanling?Wu. Antigen?presenting?cells?may?be?able?to?distinguish?between?normal?and?radiated?Schistosoma?japonicum?cercaria:?an?in?vitro?observation[J]. The Journal of Biomedical Research, 2010, 24(4): 285-291. DOI: 10.1016/S1674-8301(10)60040-1
  • Cited by

    Periodical cited type(1)

    1. Gawel AM, Betkowska A, Gajda E, et al. Current Non-Metal Nanoparticle-Based Therapeutic Approaches for Glioblastoma Treatment. Biomedicines, 2024, 12(8): 1822. DOI:10.3390/biomedicines12081822

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3397) PDF downloads (563) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return