1. |
Hou Y, Lv B, Du J, et al. Sulfide regulation and catabolism in health and disease. Signal Transduct Target Ther, 2025, 10(1): 174.
DOI:10.1038/s41392-025-02231-w
|
2. |
Jin YQ, Yuan H, Liu YF, et al. Role of hydrogen sulfide in health and disease. MedComm (2020), 2024, 5(9): e661.
DOI:10.1002/mco2.661
|
3. |
Pan S, Yan H, Zhu J, et al. GYY4137, as a slow-releasing H2S donor, ameliorates sodium deoxycholate-induced chronic intestinal barrier injury and gut microbiota dysbiosis. Front Pharmacol, 2024, 15: 1476407.
DOI:10.3389/fphar.2024.1476407
|
4. |
Pagliaro P, Weber NC, Femminò S, et al. Gasotransmitters and noble gases in cardioprotection: unraveling molecular pathways for future therapeutic strategies. Basic Res Cardiol, 2024, 119(4): 509-544.
DOI:10.1007/s00395-024-01061-1
|
5. |
Dugbartey GJ, Juriasingani S, Richard-Mohamed M, et al. Static Cold Storage with Mitochondria-Targeted Hydrogen Sulfide Donor Improves Renal Graft Function in an Ex Vivo Porcine Model of Controlled Donation-after-Cardiac-Death Kidney Transplantation. Int J Mol Sci, 2023, 24(18): 14017.
DOI:10.3390/ijms241814017
|
6. |
Zhou M, Chen JY, Chao ML, et al. S-nitrosylation of c-Jun N-terminal kinase mediates pressure overload-induced cardiac dysfunction and fibrosis. Acta Pharmacol Sin, 2022, 43(3): 602-612.
DOI:10.1038/s41401-021-00674-9
|
7. |
Khattak S, Rauf MA, Khan NH, et al. Hydrogen Sulfide Biology and Its Role in Cancer. Molecules, 2022, 27(11): 3389.
DOI:10.3390/molecules27113389
|
8. |
McCook O, Denoix N, Radermacher P, et al. H2S and Oxytocin Systems in Early Life Stress and Cardiovascular Disease. J Clin Med, 2021, 10(16): 3484.
DOI:10.3390/jcm10163484
|
9. |
McCook O, Denoix N, Radermacher P, et al. H2S and Oxytocin Systems in Early Life Stress and Cardiovascular Disease. J Clin Med, 2021, 10(16): 3484.
DOI:10.3390/jcm10163484
|
10. |
McCook O, Denoix N, Radermacher P, et al. H2S and Oxytocin Systems in Early Life Stress and Cardiovascular Disease. J Clin Med, 2021, 10(16): 3484.
DOI:10.3390/jcm10163484
|
11. |
Zhang Y, Gong W, Xu M, et al. Necroptosis Inhibition by Hydrogen Sulfide Alleviated Hypoxia-Induced Cardiac Fibroblasts Proliferation via Sirtuin 3. Int J Mol Sci, 2021, 22(21): 11893.
DOI:10.3390/ijms222111893
|
12. |
Denoix N, McCook O, Ecker S, et al. The Interaction of the Endogenous Hydrogen Sulfide and Oxytocin Systems in Fluid Regulation and the Cardiovascular System. Antioxidants (Basel), 2020, 9(8): 748.
DOI:10.3390/antiox9080748
|
13. |
Soo E, Marsh C, Steiner R, et al. Optimizing organs for transplantation; advancements in perfusion and preservation methods. Transplant Rev (Orlando), 2020, 34(1): 100514.
DOI:10.1016/j.trre.2019.100514
|
14. |
Soo E, Marsh C, Steiner R, et al. Optimizing organs for transplantation; advancements in perfusion and preservation methods. Transplant Rev (Orlando), 2020, 34(1): 100514.
DOI:10.1016/j.trre.2019.100514
|
15. |
Soo E, Marsh C, Steiner R, et al. Optimizing organs for transplantation; advancements in perfusion and preservation methods. Transplant Rev (Orlando), 2020, 34(1): 100514.
DOI:10.1016/j.trre.2019.100514
|
16. |
Pieretti JC, Junho CVC, Carneiro-Ramos MS, et al. H2S- and NO-releasing gasotransmitter platform: A crosstalk signaling pathway in the treatment of acute kidney injury. Pharmacol Res, 2020, 161: 105121.
DOI:10.1016/j.phrs.2020.105121
|
17. |
Yurinskaya MM, Krasnov GS, Kulikova DA, et al. H2S counteracts proinflammatory effects of LPS through modulation of multiple pathways in human cells. Inflamm Res, 2020, 69(5): 481-495.
DOI:10.1007/s00011-020-01329-x
|
18. |
Kang SC, Sohn EH, Lee SR. Hydrogen Sulfide as a Potential Alternative for the Treatment of Myocardial Fibrosis. Oxid Med Cell Longev, 2020, 2020: 4105382.
DOI:10.1155/2020/4105382
|
19. |
Chen LJ, Ning JZ, Cheng F, et al. Comparison of Intraperitoneal and Intratesticular GYY4137 Therapy for the Treatment of Testicular Ischemia Reperfusion Injury in Rats. Curr Med Sci, 2020, 40(2): 332-338.
DOI:10.1007/s11596-020-2180-6
|
20. |
Wang W, Liu H, Lu Y, et al. Controlled-releasing hydrogen sulfide donor based on dual-modal iron oxide nanoparticles protects myocardial tissue from ischemia-reperfusion injury. Int J Nanomedicine, 2019, 14: 875-888.
DOI:10.2147/IJN.S186225
|
21. |
Cao X, Ding L, Xie ZZ, et al. A Review of Hydrogen Sulfide Synthesis, Metabolism, and Measurement: Is Modulation of Hydrogen Sulfide a Novel Therapeutic for Cancer?. Antioxid Redox Signal, 2019, 31(1): 1-38.
DOI:10.1089/ars.2017.7058
|
22. |
Zheng Q, Pan L, Ji Y. H 2S protects against diabetes-accelerated atherosclerosis by preventing the activation of NLRP3 inflammasome. J Biomed Res, 2019, 34(2): 94-102.
DOI:10.7555/JBR.33.20190071
|
23. |
Newton TD, Pluth MD. Development of a hydrolysis-based small-molecule hydrogen selenide (H2Se) donor. Chem Sci, 2019, 10(46): 10723-10727.
DOI:10.1039/c9sc04616j
|
24. |
Van Dingenen J, Pieters L, Vral A, et al. The H2S-Releasing Naproxen Derivative ATB-346 and the Slow-Release H2S Donor GYY4137 Reduce Intestinal Inflammation and Restore Transit in Postoperative Ileus. Front Pharmacol, 2019, 10: 116.
DOI:10.3389/fphar.2019.00116
|
25. |
Zheng W, Liu C. The cystathionine γ-lyase/hydrogen sulfide pathway mediates the trimetazidine-induced protection of H9c2 cells against hypoxia/reoxygenation-induced apoptosis and oxidative stress. Anatol J Cardiol, 2019, 22(3): 102-111.
DOI:10.14744/AnatolJCardiol.2019.83648
|
26. |
Luo H, Song S, Chen Y, et al. Inhibitor 1 of Protein Phosphatase 1 Regulates Ca2+/Calmodulin-Dependent Protein Kinase II to Alleviate Oxidative Stress in Hypoxia-Reoxygenation Injury of Cardiomyocytes. Oxid Med Cell Longev, 2019, 2019: 2193019.
DOI:10.1155/2019/2193019
|
27. |
Cao X, Zhang W, Moore PK, et al. Protective Smell of Hydrogen Sulfide and Polysulfide in Cisplatin-Induced Nephrotoxicity. Int J Mol Sci, 2019, 20(2): 313.
DOI:10.3390/ijms20020313
|
28. |
Zhang Y, Liu X, Zhang L, et al. Metformin Protects against H2O2-Induced Cardiomyocyte Injury by Inhibiting the miR-1a-3p/GRP94 Pathway. Mol Ther Nucleic Acids, 2018, 13: 189-197.
DOI:10.1016/j.omtn.2018.09.001
|
29. |
Ning JZ, Li W, Cheng F, et al. The protective effects of GYY4137 on ipsilateral testicular injury in experimentally varicocele-induced rats. Exp Ther Med, 2018, 15(1): 433-439.
DOI:10.3892/etm.2017.5417
|
30. |
Zhang L, Wang Y, Li Y, et al. Hydrogen Sulfide (H2S)-Releasing Compounds: Therapeutic Potential in Cardiovascular Diseases. Front Pharmacol, 2018, 9: 1066.
DOI:10.3389/fphar.2018.01066
|
31. |
Woods JJ, Cao J, Lippert AR, et al. Characterization and Biological Activity of a Hydrogen Sulfide-Releasing Red Light-Activated Ruthenium(II) Complex. J Am Chem Soc, 2018, 140(39): 12383-12387.
DOI:10.1021/jacs.8b08695
|
32. |
Zeng C, Jiang W, Zheng R, et al. Cardioprotection of tilianin ameliorates myocardial ischemia-reperfusion injury: Role of the apoptotic signaling pathway. PLoS One, 2018, 13(3): e0193845.
DOI:10.1371/journal.pone.0193845
|
33. |
Merz T, Lukaschewski B, Wigger D, et al. Interaction of the hydrogen sulfide system with the oxytocin system in the injured mouse heart. Intensive Care Med Exp, 2018, 6(1): 41.
DOI:10.1186/s40635-018-0207-0
|
34. |
Ning JZ, Li W, Cheng F, et al. The protective effects of GYY4137 on ipsilateral testicular injury in experimentally varicocele-induced rats. Exp Ther Med, 2018, 15(1): 433-439.
DOI:10.3892/etm.2017.5417
|
35. |
Ning JZ, Li W, Cheng F, et al. The protective effects of GYY4137 on ipsilateral testicular injury in experimentally varicocele-induced rats. Exp Ther Med, 2018, 15(1): 433-439.
DOI:10.3892/etm.2017.5417
|
36. |
Corsello T, Komaravelli N, Casola A. Role of Hydrogen Sulfide in NRF2- and Sirtuin-Dependent Maintenance of Cellular Redox Balance. Antioxidants (Basel), 2018, 7(10): 129.
DOI:10.3390/antiox7100129
|
37. |
Zhou X, Tang S, Hu K, et al. DL-Propargylglycine protects against myocardial injury induced by chronic intermittent hypoxia through inhibition of endoplasmic reticulum stress. Sleep Breath, 2018, 22(3): 853-863.
DOI:10.1007/s11325-018-1656-0
|
38. |
Merz T, Lukaschewski B, Wigger D, et al. Interaction of the hydrogen sulfide system with the oxytocin system in the injured mouse heart. Intensive Care Med Exp, 2018, 6(1): 41.
DOI:10.1186/s40635-018-0207-0
|
39. |
Yuan S, Shen X, Kevil CG. Beyond a Gasotransmitter: Hydrogen Sulfide and Polysulfide in Cardiovascular Health and Immune Response. Antioxid Redox Signal, 2017, 27(10): 634-653.
DOI:10.1089/ars.2017.7096
|
40. |
Peng Q, Wang X, Wu K, et al. Irisin attenuates H2O2-induced apoptosis in cardiomyocytes via microRNA-19b/AKT/mTOR signaling pathway. Int J Clin Exp Pathol, 2017, 10(7): 7707-7717.
|
41. |
Pang Z, Zhao W, Yao Z. Cardioprotective Effects of Nicorandil on Coronary Heart Disease Patients Undergoing Elective Percutaneous Coronary Intervention. Med Sci Monit, 2017, 23: 2924-2930.
DOI:10.12659/msm.902324
|
42. |
Sun X, Wang W, Dai J, et al. A Long-Term and Slow-Releasing Hydrogen Sulfide Donor Protects against Myocardial Ischemia/Reperfusion Injury. Sci Rep, 2017, 7(1): 3541.
DOI:10.1038/s41598-017-03941-0
|
43. |
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H2S Levels: H2S Donors and H2S Biosynthesis Inhibitors. Pharmacol Rev, 2017, 69(4): 497-564.
DOI:10.1124/pr.117.014050
|
44. |
Pang Z, Zhao W, Yao Z. Cardioprotective Effects of Nicorandil on Coronary Heart Disease Patients Undergoing Elective Percutaneous Coronary Intervention. Med Sci Monit, 2017, 23: 2924-2930.
DOI:10.12659/msm.902324
|
45. |
Bazhanov N, Escaffre O, Freiberg AN, et al. Broad-Range Antiviral Activity of Hydrogen Sulfide Against Highly Pathogenic RNA Viruses. Sci Rep, 2017, 7: 41029.
DOI:10.1038/srep41029
|
46. |
Magierowski M, Magierowska K, Hubalewska-Mazgaj M, et al. Exogenous and Endogenous Hydrogen Sulfide Protects Gastric Mucosa against the Formation and Time-Dependent Development of Ischemia/Reperfusion-Induced Acute Lesions Progressing into Deeper Ulcerations. Molecules, 2017, 22(2): 295.
DOI:10.3390/molecules22020295
|
47. |
Wang M, Tang W, Zhu YZ. An Update on AMPK in Hydrogen Sulfide Pharmacology. Front Pharmacol, 2017, 8: 810.
DOI:10.3389/fphar.2017.00810
|
48. |
Magierowski M, Magierowska K, Hubalewska-Mazgaj M, et al. Exogenous and Endogenous Hydrogen Sulfide Protects Gastric Mucosa against the Formation and Time-Dependent Development of Ischemia/Reperfusion-Induced Acute Lesions Progressing into Deeper Ulcerations. Molecules, 2017, 22(2): 295.
DOI:10.3390/molecules22020295
|
49. |
Wang M, Tang W, Zhu YZ. An Update on AMPK in Hydrogen Sulfide Pharmacology. Front Pharmacol, 2017, 8: 810.
DOI:10.3389/fphar.2017.00810
|
50. |
Haase T, Börnigen D, Müller C, et al. Systems Medicine as an Emerging Tool for Cardiovascular Genetics. Front Cardiovasc Med, 2016, 3: 27.
DOI:10.3389/fcvm.2016.00027
|
51. |
Tian XH, Liu CL, Jiang HL, et al. Cardioprotection provided by Echinatin against ischemia/reperfusion in isolated rat hearts. BMC Cardiovasc Disord, 2016, 16: 119.
DOI:10.1186/s12872-016-0294-3
|
52. |
Xu J, Tang Y, Bei Y, et al. miR-19b attenuates H2O2-induced apoptosis in rat H9C2 cardiomyocytes via targeting PTEN. Oncotarget, 2016, 7(10): 10870-8.
DOI:10.18632/oncotarget.7678
|
53. |
Haase T, Börnigen D, Müller C, et al. Systems Medicine as an Emerging Tool for Cardiovascular Genetics. Front Cardiovasc Med, 2016, 3: 27.
DOI:10.3389/fcvm.2016.00027
|
54. |
Cao X, Bian JS. The Role of Hydrogen Sulfide in Renal System. Front Pharmacol, 2016, 7: 385.
DOI:10.3389/fphar.2016.00385
|
55. |
Haase T, Börnigen D, Müller C, et al. Systems Medicine as an Emerging Tool for Cardiovascular Genetics. Front Cardiovasc Med, 2016, 3: 27.
DOI:10.3389/fcvm.2016.00027
|
56. |
Dugbartey GJ, Peppone LJ, de Graaf IA. An integrative view of cisplatin-induced renal and cardiac toxicities: Molecular mechanisms, current treatment challenges and potential protective measures. Toxicology, 2016, 371: 58-66.
DOI:10.1016/j.tox.2016.10.001
|