3.8

CiteScore

2.4

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Iyaswamy Ashok, Rathinasamy Sheeladevi, Dapkupar Wankhar. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain[J]. The Journal of Biomedical Research, 2015, 29(5): 390-396. DOI: 10.7555/JBR.28.20120118
Citation: Iyaswamy Ashok, Rathinasamy Sheeladevi, Dapkupar Wankhar. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain[J]. The Journal of Biomedical Research, 2015, 29(5): 390-396. DOI: 10.7555/JBR.28.20120118

Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain

More Information
  • Received Date: October 05, 2012
  • Revised Date: November 12, 2012
  • The present study was carried out to investigate the acute effect of aspartame on oxidative stress in the Wistar albino rat brain. We sought to investigate whether acute administration of aspartame (75 mg/kg) could release methanol and induce oxidative stress in the rat brain 24 hours after administration. To mimic human methanol metabolism, methotrexate treated rats were used to study aspartame effects. Wistar strain male albino rats were administered with aspartame orally as a single dose and studied along with controls and methotrexate treated controls. Blood methanol and formate level were estimated after 24 hours and rats were sacrificed and free radical changes were observed in discrete regions by assessing the scavenging enzymes, reduce dglutathione (GSH), lipid peroxidation and protein thiol levels. There was a significant increase in lipid peroxidation levels, superoxide dismutase activity (SOD), glutathione peroxidase levels (GPx), and catalase activity (CAT) with a significant decrease in GSH and protein thiol. Aspartame exposure resulted in detectable methanol even after 24 hours. Methanol and its metabolites may be responsible for the generation of oxidative stress in brain regions. The observed alteration in aspartame fed animals may be due to its metabolite methanol and elevated formate. The elevated free radicals due to methanol induced oxidative stress.
  • Related Articles

    [1]Natalia V. Naryzhnaya, Leonid N. Maslov, Sergey V. Popov, Alexandr V. Mukhomezyanov, Vyacheslav V. Ryabov, Boris K. Kurbatov, Alexandra E. Gombozhapova, Nirmal Singh, Feng Fu, Jian-Ming Pei, Sergey V. Logvinov. Pyroptosis is a drug target for prevention of adverse cardiac remodeling: The crosstalk between pyroptosis, apoptosis, and autophagy[J]. The Journal of Biomedical Research, 2022, 36(6): 375-389. DOI: 10.7555/JBR.36.20220123
    [2]Yong-Dae Kim, Dong-Hyuk Yim, Sang-Yong Eom, Ji Yeoun Lee, Heon Kim. The effect of sunblock against oxidative stress in farmers: a pilot study[J]. The Journal of Biomedical Research, 2017, 31(4): 344-349. DOI: 10.7555/JBR.31.20160092
    [3]Iyaswamy Ashok, Rathinasamy Sheeladevi, Dapkupar Wankhar. Acute effect of aspartame-induced oxidative stress in Wistar albino rat brain[J]. The Journal of Biomedical Research, 2015, 29(5): 390-396. DOI: 10.7555/JBR.28.20120118
    [4]Xiaofan Yang, Bin Sun, Huijuan Wang, Cheng Yin, Xiaole Wang, Xiaohui Ji. Increased serum IL-10 in lupus patients promotes apoptosis of T cell subsets via the caspase 8 pathway initiated by Fas signaling[J]. The Journal of Biomedical Research, 2015, 29(3): 232-240. DOI: 10.7555/JBR.29.20130037
    [5]Lintao Wang, Yanyan Peng, Kaikai Shi, Haixiao Wang, Jianlei Lu, Yanli Li, Changyan Ma. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis[J]. The Journal of Biomedical Research, 2015, 29(2): 132-138. DOI: 10.7555/JBR.27.20120115
    [6]Pengpeng Jin, Xiaoli Wang, Fei Chang, Yinyang Bai, Yingchun Li, Rong Zhou, Ling Chen. Low dose bisphenol A impairs spermatogenesis by suppressing reproductive hormone production and promoting germ cell apoptosis in adult rats[J]. The Journal of Biomedical Research, 2013, 27(2): 135-144. DOI: 10.7555/JBR.27.20120076
    [7]Yan Li, Yi Jiang, Yicong Wan, Lin Zhang, Weiwei Tang, Jingjing Ma, Shan Wu, Wenjun Cheng. Medroxyprogestogen enhances apoptosis of SKOV-3 cells via inhibition of the PI3K/Akt signaling pathway[J]. The Journal of Biomedical Research, 2013, 27(1): 43-50. DOI: 10.7555/JBR.27.20120051
    [8]Danyang Ren, Quan Zhu, Jiantao Li, Tuanzhu Ha, Xiaohui Wang, Yuehua Li. Overexpression of angiopoietin-1 reduces doxorubicin-induced apoptosis in cardiomyocytes[J]. The Journal of Biomedical Research, 2012, 26(6): 432-438. DOI: 10.7555/JBR.26.20120006
    [9]Xiaozheng Zhong, Xiaoyu Li, Lingling Qian, Yiming Xu, Yan Lu, Jing Zhang, Nan Li, Xudong Zhu, Jingjing Ben, Qing Yang, Qi Chen. Glycine attenuates myocardial ischemia-reperfusion injury by inhibiting myocardial apoptosis in rats[J]. The Journal of Biomedical Research, 2012, 26(5): 346-354. DOI: 10.7555/JBR.26.20110124
    [10]Lingyun Li, Jing Chi, Feng Zhou, Dandan Guo, Fang Wang, Genyan Liu, Chun Zhang, Kun Yao. Human herpesvirus 6A induces apoptosis of HSB-2 cells via a mitochondrion-related caspase pathway[J]. The Journal of Biomedical Research, 2010, 24(6): 444-451. DOI: 10.1016/S1674-8301(10)60059-0

Catalog

    Dapkupar Wankhar

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Article Metrics

    Article views (3291) PDF downloads (555) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return