4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Yong Ji, Mingfeng Zheng, Shugao Ye, Jingyu Chen, Yijiang Chen. PTEN and Ki67 expression is associated with clinicopathologic features of non-small cell lung cancer[J]. The Journal of Biomedical Research, 2014, 28(6): 462-467. DOI: 10.7555/JBR.27.20130084
Citation: Yong Ji, Mingfeng Zheng, Shugao Ye, Jingyu Chen, Yijiang Chen. PTEN and Ki67 expression is associated with clinicopathologic features of non-small cell lung cancer[J]. The Journal of Biomedical Research, 2014, 28(6): 462-467. DOI: 10.7555/JBR.27.20130084

PTEN and Ki67 expression is associated with clinicopathologic features of non-small cell lung cancer

More Information
  • Received Date: May 24, 2013
  • Revised Date: July 15, 2013
  • PTEN and the proliferating antigen Ki67 have been widely studied in several tumors. However, their role as indicator in non-small cell lung cancer (NSCLC) remains unknown. Here, we investigated the expression of PTEN and Ki67 in NSCLC tissues and paired normal lung tissues to identify whether these proteins are associ?ated with lung cancer development and survival. Immunohistochemistry for PTEN and Ki67 was performed on 67 lung cancer tissues and 41 paired adjacent normal lung tissues to detect the expression of these two proteins. The expression of PTEN in NSCLC tissues (32.8%) was significantly lower than that in normal tissues (82.9%) (P < 0.05). In contrast, the expression of Ki67 in NSCLC tissues (76.1%) was significantly higher than that in normal tissues (27.3%) (P < 0.05). Expression of both PTEN and Ki67 were strongly associated with tumor histology, clinical stage, lymph node metastasis, differentiation and 4-year postoperative survival rate (P < 0.05). However, PTEN expression was negatively correlated with Ki67 expression (r = -0.279, P < 0.05). In conclusion, low PTEN expression and Ki67 overexpression seem to promote malignant invasion and lymph node metastasis of NSCLC, hence, accounting for a poor 4-year survival rate. These proteins may serve as diagnostic and prognostic biomark?ers of NSCLC.
  • Related Articles

    [1]Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387
    [2]Anastasia V. Poznyak, Alexey A. Yakovlev, Mikhail А. Popov, Elena B. Zhigmitova, Vasily N. Sukhorukov, Alexander N. Orekhov. Atherosclerosis originating from childhood: Specific features[J]. The Journal of Biomedical Research, 2024, 38(3): 233-240. DOI: 10.7555/JBR.37.20230198
    [3]Min Shi, Xiangcheng Zhang, Ridong Zhang, Hong Zhang, Dalong Zhu, Xiao Han. Glycyrrhizic acid promotes sciatic nerves recovery in type 1 diabetic rats and protects Schwann cells from high glucose-induced cytotoxicity[J]. The Journal of Biomedical Research, 2022, 36(3): 181-194. DOI: 10.7555/JBR.36.20210198
    [4]Wang Lei, Zhang Kun, Ding Xin, Wang Yan, Bai Hui, Yang Qing, Ben Jingjing, Zhang Hanwen, Li Xiaoyu, Chen Qi, Zhu Xudong. Fucoidan antagonizes diet-induced obesity and inflammation in mice[J]. The Journal of Biomedical Research, 2021, 35(3): 197-205. DOI: 10.7555/JBR.34.20200153
    [5]Hiyoshi Toru, Fujiwara Mutsunori, Yao Zemin. Postprandial hyperglycemia and postprandial hypertriglyceridemia in type 2 diabetes[J]. The Journal of Biomedical Research, 2019, 33(1): 1-16. DOI: 10.7555/JBR.31.20160164
    [6]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [7]Mingming Gao, Guo Xin, Xu Qiu, Yuhui Wang, George Liu. Establishment of a rat model with diet-induced coronary atherosclerosis[J]. The Journal of Biomedical Research, 2017, 31(1): 47-55. DOI: 10.7555/JBR.31.20160020
    [8]Yang Pan, Bo Shen, Qin Gao, Jun Zhu, Jingde Dong, Li Zhang, Yingdong Zhang. Caspase-1 inhibition attenuates activation of BV2 microglia induced by LPS-treated RAW264.7 macrophages[J]. The Journal of Biomedical Research, 2016, 30(3): 225-233. DOI: 10.7555/JBR.30.20150141
    [9]Shangyong Feng, Yan Zhu, Caifeng Yan, Yan Wang, Zhenweng Zhang. Retinol binding protein 4 correlates with and is an early predictor of carotid atherosclerosis in type 2 diabetes mellitus patients[J]. The Journal of Biomedical Research, 2015, 29(6): 451-455. DOI: 10.7555/JBR.29.20140087
    [10]Yong Xu. Transcriptional regulation of endothelial dysfunction in atherosclerosis: an epigenetic perspective[J]. The Journal of Biomedical Research, 2014, 28(1): 47-52. DOI: 10.7555/JBR.27.20130055
  • Cited by

    Periodical cited type(23)

    1. Jia Z, Zhang X, Li Z, et al. Hydrogen sulfide mitigates ox‑LDL‑induced NLRP3/caspase‑1/GSDMD dependent macrophage pyroptosis by S‑sulfhydrating caspase‑1. Mol Med Rep, 2024, 30(2): 135. DOI:10.3892/mmr.2024.13259
    2. Flori L, Benedetti G, Calderone V, et al. Hydrogen Sulfide and Irisin, Potential Allies in Ensuring Cardiovascular Health. Antioxidants (Basel), 2024, 13(5): 543. DOI:10.3390/antiox13050543
    3. Gonzalez AL, Dungan MM, Smart CD, et al. Inflammation Resolution in the Cardiovascular System: Arterial Hypertension, Atherosclerosis, and Ischemic Heart Disease. Antioxid Redox Signal, 2024, 40(4-6): 292-316. DOI:10.1089/ars.2023.0284
    4. Andrés CMC, Pérez de la Lastra JM, Andrés Juan C, et al. Chemistry of Hydrogen Sulfide-Pathological and Physiological Functions in Mammalian Cells. Cells, 2023, 12(23): 2684. DOI:10.3390/cells12232684
    5. Bechelli C, Macabrey D, Deglise S, et al. Clinical Potential of Hydrogen Sulfide in Peripheral Arterial Disease. Int J Mol Sci, 2023, 24(12): 9955. DOI:10.3390/ijms24129955
    6. Munteanu C. Hydrogen Sulfide and Oxygen Homeostasis in Atherosclerosis: A Systematic Review from Molecular Biology to Therapeutic Perspectives. Int J Mol Sci, 2023, 24(9): 8376. DOI:10.3390/ijms24098376
    7. Star BS, van der Slikke EC, Ransy C, et al. GYY4137-Derived Hydrogen Sulfide Donates Electrons to the Mitochondrial Electron Transport Chain via Sulfide: Quinone Oxidoreductase in Endothelial Cells. Antioxidants (Basel), 2023, 12(3): 587. DOI:10.3390/antiox12030587
    8. Zhang X, Wang Z, Zheng Y, et al. Inhibitors of the NLRP3 inflammasome pathway as promising therapeutic candidates for inflammatory diseases (Review). Int J Mol Med, 2023, 51(4): 35. DOI:10.3892/ijmm.2023.5238
    9. Liu J, Mesfin FM, Hunter CE, et al. Recent Development of the Molecular and Cellular Mechanisms of Hydrogen Sulfide Gasotransmitter. Antioxidants (Basel), 2022, 11(9): 1788. DOI:10.3390/antiox11091788
    10. Zhu C, Liu Q, Li X, et al. Hydrogen sulfide: A new therapeutic target in vascular diseases. Front Endocrinol (Lausanne), 2022, 13: 934231. DOI:10.3389/fendo.2022.934231
    11. Munteanu C, Rotariu M, Turnea M, et al. Recent Advances in Molecular Research on Hydrogen Sulfide (H2S) Role in Diabetes Mellitus (DM)-A Systematic Review. Int J Mol Sci, 2022, 23(12): 6720. DOI:10.3390/ijms23126720
    12. Zhao H, Liu H, Yang Y, et al. The Role of H2S Regulating NLRP3 Inflammasome in Diabetes. Int J Mol Sci, 2022, 23(9): 4818. DOI:10.3390/ijms23094818
    13. Guo Z, Du X, Zhang Y, et al. Diosmin Alleviates Venous Injury and Muscle Damage in a Mouse Model of Iliac Vein Stenosis. Front Cardiovasc Med, 2022, 8: 785554. DOI:10.3389/fcvm.2021.785554
    14. Doran AC. Inflammation Resolution: Implications for Atherosclerosis. Circ Res, 2022, 130(1): 130-148. DOI:10.1161/CIRCRESAHA.121.319822
    15. Wu W, Tan QY, Xi FF, et al. NLRP3 inflammasome activation in gestational diabetes mellitus placentas is associated with hydrogen sulfide synthetase deficiency. Exp Ther Med, 2022, 23(1): 94. DOI:10.3892/etm.2021.11017
    16. Zhou M, Chen JY, Chao ML, et al. S-nitrosylation of c-Jun N-terminal kinase mediates pressure overload-induced cardiac dysfunction and fibrosis. Acta Pharmacol Sin, 2022, 43(3): 602-612. DOI:10.1038/s41401-021-00674-9
    17. Rose P, Zhu YZ, Moore PK. Hydrogen Sulfide and the Immune System. Adv Exp Med Biol, 2021, 1315: 99-128. DOI:10.1007/978-981-16-0991-6_5
    18. Wang YZ, Ngowi EE, Wang D, et al. The Potential of Hydrogen Sulfide Donors in Treating Cardiovascular Diseases. Int J Mol Sci, 2021, 22(4): 2194. DOI:10.3390/ijms22042194
    19. Gáll T, Pethő D, Nagy A, et al. Therapeutic Potential of Carbon Monoxide (CO) and Hydrogen Sulfide (H2S) in Hemolytic and Hemorrhagic Vascular Disorders-Interaction between the Heme Oxygenase and H2S-Producing Systems. Int J Mol Sci, 2020, 22(1): 47. DOI:10.3390/ijms22010047
    20. Mohammad G, Radhakrishnan R, Kowluru RA. Hydrogen Sulfide: A Potential Therapeutic Target in the Development of Diabetic Retinopathy. Invest Ophthalmol Vis Sci, 2020, 61(14): 35. DOI:10.1167/iovs.61.14.35
    21. Rahman MA, Glasgow JN, Nadeem S, et al. The Role of Host-Generated H2S in Microbial Pathogenesis: New Perspectives on Tuberculosis. Front Cell Infect Microbiol, 2020, 10: 586923. DOI:10.3389/fcimb.2020.586923
    22. Wang H, Shi X, Qiu M, et al. Hydrogen Sulfide Plays an Important Role by Influencing NLRP3 inflammasome. Int J Biol Sci, 2020, 16(14): 2752-2760. DOI:10.7150/ijbs.47595
    23. Tian Y, Song H, Qin W, et al. Mammalian STE20-Like Kinase 2 Promotes Lipopolysaccharides-Mediated Cardiomyocyte Inflammation and Apoptosis by Enhancing Mitochondrial Fission. Front Physiol, 2020, 11: 897. DOI:10.3389/fphys.2020.00897

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3341) PDF downloads (683) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return