Citation: | Yujuan Su, Xinghui Guo, Min Zang, Zhengyao Xie, Tingting Zhao, Eugene Yujun Xu. RNA binding protein BOULE forms aggregates in mammalian testis[J]. The Journal of Biomedical Research, 2022, 36(4): 255-268. doi: 10.7555/JBR.36.20220072 |
[1] |
Berchowitz LE, Kabachinski G, Walker MR, et al. Regulated formation of an amyloid-like translational repressor governs gametogenesis[J]. Cell, 2015, 163(2): 406–418. doi: 10.1016/j.cell.2015.08.060
|
[2] |
Carpenter K, Bell RB, Yunus J, et al. Phosphorylation-mediated clearance of amyloid-like assemblies in meiosis[J]. Dev Cell, 2018, 45(3): 392–405.e6. doi: 10.1016/j.devcel.2018.04.001
|
[3] |
Fowler DM, Koulov AV, Alory-Jost C, et al. Functional amyloid formation within mammalian tissue[J]. PLoS Biol, 2006, 4(1): e6. doi: 10.1371/journal.pbio.0040006
|
[4] |
Hewetson A, Do HQ, Myers C, et al. Functional amyloids in reproduction[J]. Biomolecules, 2017, 7(3): 46. doi: 10.3390/biom7030046
|
[5] |
Hewetson A, Khan NH, Dominguez MJ, et al. Maturation of the functional mouse CRES amyloid from globular form[J]. Proc Natl Acad Sci U S A, 2020, 117(28): 16363–16372. doi: 10.1073/pnas.2006887117
|
[6] |
Nott TJ, Petsalaki E, Farber P, et al. Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles[J]. Mol Cell, 2015, 57(5): 936–947. doi: 10.1016/j.molcel.2015.01.013
|
[7] |
Shin Y, Brangwynne CP. Liquid phase condensation in cell physiology and disease[J]. Science, 2017, 357(6357): eaaf4382. doi: 10.1126/science.aaf4382
|
[8] |
Matzuk MM, Burns KH. Genetics of mammalian reproduction: modeling the end of the germline[J]. Annu Rev Physiol, 2012, 74: 503–528. doi: 10.1146/annurev-physiol-020911-153248
|
[9] |
Alberti S, Halfmann R, King O, et al. A systematic survey identifies prions and illuminates sequence features of prionogenic proteins[J]. Cell, 2009, 137(1): 146–158. doi: 10.1016/j.cell.2009.02.044
|
[10] |
Shah C, VanGompel MJM, Naeem V, et al. Widespread presence of human BOULE homologs among animals and conservation of their ancient reproductive function[J]. PLoS Genet, 2010, 6(7): e1001022. doi: 10.1371/journal.pgen.1001022
|
[11] |
Xu EY, Moore FL, Pera RAR. A gene family required for human germ cell development evolved from an ancient meiotic gene conserved in metazoans[J]. Proc Natl Acad Sci U S A, 2001, 98(13): 7414–7419. doi: 10.1073/pnas.131090498
|
[12] |
VanGompel MJW, Xu EY. The roles of the DAZ family in spermatogenesis: more than just translation?[J]. Spermatogenesis, 2011, 1(1): 36–46. doi: 10.4161/spmg.1.1.14659
|
[13] |
Couthouis J, Hart MP, Shorter J, et al. A yeast functional screen predicts new candidate ALS disease genes[J]. Proc Natl Acad Sci U S A, 2011, 108(52): 20881–20890. doi: 10.1073/pnas.1109434108
|
[14] |
King OD, Gitler AD, Shorter J. The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease[J]. Brain Res, 2012, 1462: 61–80. doi: 10.1016/j.brainres.2012.01.016
|
[15] |
Xu EY, Lee DF, Klebes A, et al. Human BOULE gene rescues meiotic defects in infertile flies[J]. Hum Mol Genet, 2003, 12(2): 169–175. doi: 10.1093/hmg/ddg017
|
[16] |
VanGompel MJW, Xu EY. A novel requirement in mammalian spermatid differentiation for the DAZ-family protein Boule[J]. Hum Mol Genet, 2010, 19(12): 2360–2369. doi: 10.1093/hmg/ddq109
|
[17] |
Bellvé AR. Purification, culture, and fractionation of spermatogenic cells[J]. Methods Enzymol, 1993, 225: 84–113. doi: 10.1016/0076-6879(93)25009-q
|
[18] |
Halfmann R, Lindquist S. Screening for amyloid aggregation by semi-denaturing detergent-agarose gel electrophoresis[J]. J Vis Exp, 2008, (17): 838. doi: 10.3791/838
|
[19] |
Ji S, Luo Y, Cai Q, et al. LC domain-mediated coalescence is essential for otu enzymatic activity to extend Drosophila lifespan[J]. Mol Cell, 2019, 74(2): 363–377.e5. doi: 10.1016/j.molcel.2019.02.004
|
[20] |
Van Nostrand EL, Pratt GA, Shishkin AA, et al. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP)[J]. Nat Methods, 2016, 13(6): 508–514. doi: 10.1038/nmeth.3810
|
[21] |
Bagriantsev SN, Kushnirov VV, Liebman SW. Analysis of amyloid aggregates using agarose gel electrophoresis[J]. Methods Enzymol, 2006, 412: 33–48. doi: 10.1016/S0076-6879(06)12003-0
|
[22] |
Berchowitz LE, Gajadhar AS, van Werven FJ, et al. A developmentally regulated translational control pathway establishes the meiotic chromosome segregation pattern[J]. Genes Dev, 2013, 27(19): 2147–2163. doi: 10.1101/gad.224253.113
|
[23] |
Adiutori R, Aarum J, Zubiri I, et al. The proteome of neurofilament-containing protein aggregates in blood[J]. Biochem Biophys Rep, 2018, 14: 168–177. doi: 10.1016/j.bbrep.2018.04.010
|
[24] |
Pani I, Madhu P, Najiya N, et al. Differentiating conformationally distinct Alzheimer's amyloid-β oligomers using liquid crystals[J]. J Phys Chem Lett, 2020, 11(21): 9012–9018. doi: 10.1021/acs.jpclett.0c01867
|
[25] |
Molliex A, Temirov J, Lee J, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization[J]. Cell, 2015, 163(1): 123–133. doi: 10.1016/j.cell.2015.09.015
|
[26] |
Pak CW, Kosno M, Holehouse AS, et al. Sequence determinants of intracellular phase separation by complex coacervation of a disordered protein[J]. Mol Cell, 2016, 63(1): 72–85. doi: 10.1016/j.molcel.2016.05.042
|
[27] |
Kim B, Cooke HJ, Rhee K. DAZL is essential for stress granule formation implicated in germ cell survival upon heat stress[J]. Development, 2012, 139(3): 568–578. doi: 10.1242/dev.075846
|
[28] |
Van Nostrand EL, Freese P, Pratt GA, et al. A large-scale binding and functional map of human RNA-binding proteins[J]. Nature, 2020, 583(7818): 711–719. doi: 10.1038/s41586-020-2077-3
|
[29] |
Protter DSW, Parker R. Principles and properties of stress granules[J]. Trends Cell Biol, 2016, 26(9): 668–679. doi: 10.1016/j.tcb.2016.05.004
|
[30] |
Youn JY, Dyakov BJA, Zhang J, et al. Properties of stress granule and P-body proteomes[J]. Mol Cell, 2019, 76(2): 286–294. doi: 10.1016/j.molcel.2019.09.014
|
[31] |
Lin Y, Protter DSW, Rosen MK, et al. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins[J]. Mol Cell, 2015, 60(2): 208–219. doi: 10.1016/j.molcel.2015.08.018
|
[32] |
Kato M, Han TW, Xie S, et al. Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels[J]. Cell, 2012, 149(4): 753–767. doi: 10.1016/j.cell.2012.04.017
|
[33] |
Vaquer-Alicea J, Diamond MI. Propagation of protein aggregation in neurodegenerative diseases[J]. Annu Rev Biochem, 2019, 88: 785–810. doi: 10.1146/annurev-biochem-061516-045049
|
[34] |
Kayed R, Head E, Thompson JL, et al. Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis[J]. Science, 2003, 300(5618): 486–489. doi: 10.1126/science.1079469
|
[35] |
Boke E, Ruer M, Wühr M, et al. Amyloid-like self-assembly of a cellular compartment[J]. Cell, 2016, 166(3): 637–650. doi: 10.1016/j.cell.2016.06.051
|
![]() |
![]() |