Citation: | Marta Obara-Michlewska. The contribution of astrocytes to obesity-associated metabolic disturbances[J]. The Journal of Biomedical Research, 2022, 36(5): 299-311. doi: 10.7555/JBR.36.20200020 |
[1] |
Afshin A, Sur PJ, Fay KA, et al. Health effects of dietary risks in 195 countries, 1990–2017: a systematic analysis for the global burden of disease study 2017[J]. Lancet, 2019, 393(10184): 1958–1972. doi: 10.1016/S0140-6736(19)30041-8
|
[2] |
Albuquerque D, Nóbrega C, Manco L, et al. The contribution of genetics and environment to obesity[J]. Brit Med Bull, 2017, 123(1): 159–173. doi: 10.1093/bmb/ldx022
|
[3] |
Golden A, Kessler C. Obesity and genetics[J]. J Am Assoc Nurse Pract, 2020, 32(7): 493–496. doi: 10.1097/JXX.0000000000000447
|
[4] |
Liu T, Xu Y, Yi C, et al. The hypothalamus for whole-body physiology: from metabolism to aging[J]. Protein Cell, 2022, 13(6): 394–421. doi: 10.1007/s13238-021-00834-x
|
[5] |
Vettori A, Pompucci G, Paolini B, et al. Genetic background, nutrition and obesity: a review[J]. Eur Rev Med Pharmacol Sci, 2019, 23(4): 1751–1761. doi: 10.26355/eurrev_201902_17137
|
[6] |
Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans[J]. Nature, 1997, 387(6636): 903–908. doi: 10.1038/43185
|
[7] |
Argente-Arizón P, Freire-Regatillo A, Argente J, et al. Role of non-neuronal cells in body weight and appetite control[J]. Front Endocrinol, 2015, 6: 42. doi: 10.3389/fendo.2015.00042
|
[8] |
Plog BA, Nedergaard M. The glymphatic system in central nervous system health and disease: past, present, and future[J]. Annu Rev Pathol, 2018, 13: 379–394. doi: 10.1146/annurev-pathol-051217
|
[9] |
Lyon KA, Allen NJ. From synapses to circuits, astrocytes regulate behavior[J]. Front Neural Circuits, 2022, 15: 786293. doi: 10.3389/fncir.2021.786293
|
[10] |
Cunnane SC, Trushina E, Morland C, et al. Brain energy rescue: an emerging therapeutic concept for neurodegenerative disorders of ageing[J]. Nat Rev Drug Discov, 2020, 19(9): 609–633. doi: 10.1038/s41573-020-0072-x
|
[11] |
Browning KN, Verheijden S, Boeckxstaens GE. The Vagus nerve in appetite regulation, mood, and intestinal inflammation[J]. Gastroenterology, 2017, 152(4): 730–744. doi: 10.1053/j.gastro.2016.10.046
|
[12] |
Yoo ES, Yu J, Sohn JW. Neuroendocrine control of appetite and metabolism[J]. Exp Mol Med, 2021, 53(4): 505–516. doi: 10.1038/s12276-021-00597-9
|
[13] |
González-Jiménez, E. Molecular mechanisms involved in the regulation of food intake[M]//Nóbrega C, Rodriguez-López R. Molecular Mechanisms Underpinning the Development of Obesity. Cham: Springer, 2014: 87–100.
|
[14] |
Pu S, Dube MG, Edwards TG, et al. Disruption of neural signaling within the hypothalamic ventromedial nucleus upregulates galanin gene expression in association with hyperphagia: an in situ hybridization analysis[J]. Mol Brain Res, 1999, 64(1): 85–91. doi: 10.1016/s0169-328x(98)00309-x
|
[15] |
Timper K, Brüning JC. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity[J]. Dis Models Mech, 2017, 10(6): 679–689. doi: 10.1242/dmm.026609
|
[16] |
Caruso C, Durand D, Schiöth HB, et al. Activation of melanocortin 4 receptors reduces the inflammatory response and prevents apoptosis induced by lipopolysaccharide and interferon-γ in astrocytes[J]. Endocrinology, 2007, 148(10): 4918–4926. doi: 10.1210/en.2007-0366
|
[17] |
Zhang L, Hernandez-Sanchez D, Herzog H. Regulation of feeding-related behaviors by arcuate neuropeptide Y neurons[J]. Endocrinology, 2019, 160(6): 1411–1420. doi: 10.1210/en.2019-00056
|
[18] |
Wolak ML, DeJoseph MR, Cator AD, et al. Comparative distribution of neuropeptide Y Y1 and Y5 receptors in the rat brain by using immunohistochemistry[J]. J Comp Neurol, 2003, 464(3): 285–311. doi: 10.1002/cne.10823
|
[19] |
Kreutzer C, Peters S, Schulte DM, et al. Hypothalamic inflammation in human obesity is mediated by environmental and genetic factors[J]. Diabetes, 2017, 66(9): 2407–2415. doi: 10.2337/db17-0067
|
[20] |
Lau J, Herzog H. CART in the regulation of appetite and energy homeostasis[J]. Front Neurosci, 2014, 8: 313. doi: 10.3389/fnins.2014.00313
|
[21] |
Macvicar BA, Newman EA. Astrocyte regulation of blood flow in the brain[J]. Cold Spring Harb Perspect Biol, 2015, 7(5): a020388. doi: 10.1101/cshperspect.a020388
|
[22] |
Koepsell H. Glucose transporters in brain in health and disease[J]. Pflügers Arch Eur J Physiol, 2020, 472(9): 1299–1343. doi: 10.1007/s00424-020-02441-x
|
[23] |
Chari M, Yang CS, Lam CKL, et al. Glucose transporter-1 in the hypothalamic glial cells mediates glucose sensing to regulate glucose production in vivo[J]. Diabetes, 2011, 60(7): 1901–1906. doi: 10.2337/db11-0120
|
[24] |
Allard C, Carneiro L, Grall S, et al. Hypothalamic astroglial connexins are required for brain glucose sensing-induced insulin secretion[J]. J Cereb Blood Flow Metab, 2014, 34(2): 339–346. doi: 10.1038/jcbfm.2013.206
|
[25] |
Camandola S, Mattson MP. Brain metabolism in health, aging, and neurodegeneration[J]. EMBO J, 2017, 36(11): 1474–1492. doi: 10.15252/embj.201695810
|
[26] |
Magistretti PJ, Allaman I. Lactate in the brain: from metabolic end-product to signaling molecule[J]. Nat Rev Neurosci, 2018, 19(4): 235–249. doi: 10.1038/nrn.2018.19
|
[27] |
Falkowska A, Gutowska I, Goschorska M, et al. Energy metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism[J]. Int J Mol Sci, 2015, 16(11): 25959–25981. doi: 10.3390/ijms161125939
|
[28] |
Freire-Regatillo A, Argente-Arizón P, Argente J, et al. Non-neuronal cells in the hypothalamic adaptation to metabolic signals[J]. Front Endocrinol, 2017, 8: 51. doi: 10.3389/fendo.2017.00051
|
[29] |
Wang Q, Hu Y, Wan J, et al. Lactate: a novel signaling molecule in synaptic plasticity and drug addiction[J]. BioEssays, 2019, 41(8): 1900008. doi: 10.1002/bies.201900008
|
[30] |
Parsons MP, Hirasawa M. ATP-sensitive potassium channel-mediated lactate effect on orexin neurons: implications for brain energetics during arousal[J]. J Neurosci, 2010, 30(24): 8061–8070. doi: 10.1523/JNEUROSCI.5741-09.2010
|
[31] |
Morita M, Ikeshima-Kataoka H, Kreft M, et al. Metabolic plasticity of astrocytes and aging of the brain[J]. Int J Mol Sci, 2019, 20(4): 941. doi: 10.3390/ijms20040941
|
[32] |
Qiu J, Zhang C, Borgquist A, et al. Insulin excites anorexigenic proopiomelanocortin neurons via activation of canonical transient receptor potential channels[J]. Cell Metab, 2014, 19(4): 682–693. doi: 10.1016/j.cmet.2014.03.004
|
[33] |
García-Cáceres C, Fuente-Martín E, Argente J, et al. Emerging role of glial cells in the control of body weight[J]. Mol Metab, 2012, 1(1–2): 37–46. doi: 10.1016/j.molmet.2012.07.001
|
[34] |
Gray SM, Meijer RI, Barrett EJ. Insulin regulates brain function, but how does it get there?[J]. Diabetes, 2014, 63(12): 3992–3997. doi: 10.2337/db14-0340
|
[35] |
Pomytkin I, Costa-Nunes JP, Kasatkin V, et al. Insulin receptor in the brain: mechanisms of activation and the role in the CNS pathology and treatment[J]. CNS Neurosci Ther, 2018, 24(9): 763–774. doi: 10.1111/cns.12866
|
[36] |
Fernandez AM, Hernandez-Garzón E, Perez-Domper P, et al. Insulin regulates astrocytic glucose handling through cooperation with IGF-I[J]. Diabetes, 2017, 66(1): 64–74. doi: 10.2337/db16-0861
|
[37] |
Logan S, Pharaoh GA, Marlin MC, et al. Insulin-like growth factor receptor signaling regulates working memory, mitochondrial metabolism, and amyloid-β uptake in astrocytes[J]. Mol Metab, 2018, 9: 141–155. doi: 10.1016/j.molmet.2018.01.013
|
[38] |
Ratcliffe LE, Villaseñor IV, Jennings L, et al. Loss of IGF1R in human astrocytes alters complex I activity and support for neurons[J]. Neuroscience, 2018, 390: 46–59. doi: 10.1016/J.NEUROSCIENCE.2018.07.029
|
[39] |
Vicente-Gutierrez C, Bonora N, Bobo-Jimenez V, et al. Astrocytic mitochondrial ROS modulate brain metabolism and mouse behavior[J]. Nat Metab, 2019, 1(2): 201–211. doi: 10.1038/s42255-018-0031-6
|
[40] |
Manaserh IH, Chikkamenahalli L, Ravi S, et al. Ablating astrocyte insulin receptors leads to delayed puberty and hypogonadism in mice[J]. PLoS Biol, 2019, 17(3): e3000189. doi: 10.1371/journal.pbio.3000189
|
[41] |
Cai W, Xue C, Sakaguchi M, et al. Insulin regulates astrocyte gliotransmission and modulates behavior[J]. J Clin Invest, 2018, 128(7): 2914–2926. doi: 10.1172/JCI99366
|
[42] |
Bruce KD, Zsombok A, Eckel RH. Lipid processing in the brain: a key regulator of systemic metabolism[J]. Front Endocrinol, 2017, 8: 60. doi: 10.3389/fendo.2017.00060
|
[43] |
Wang H, Eckel RH. What are lipoproteins doing in the brain?[J]. Trends Endocrinol Metab, 2014, 25(1): 8–14. doi: 10.1016/j.tem.2013.10.003
|
[44] |
Rhea EM, Banks WA. Interactions of lipids, lipoproteins, and apolipoproteins with the blood-brain barrier[J]. Pharm Res, 2021, 38(9): 1469–1475. doi: 10.1007/s11095-021-03098-6
|
[45] |
Shen L, Tso P, Woods SC, et al. Brain apolipoprotein E: an important regulator of food intake in rats[J]. Diabetes, 2008, 57(8): 2092–2098. doi: 10.2337/db08-0291
|
[46] |
Ebrahimi M, Yamamoto Y, Sharifi K, et al. Astrocyte-expressed FABP7 regulates dendritic morphology and excitatory synaptic function of cortical neurons[J]. GLIA, 2016, 64(1): 48–62. doi: 10.1002/glia.22902
|
[47] |
Castellanos DB, Martín-Jiménez CA, Pinzón A, et al. Metabolomic analysis of human astrocytes in lipotoxic condition: potential biomarker identification by machine learning modelling[J]. Biomolecules, 2022, 12(7): 986. doi: 10.3390/biom12070986
|
[48] |
Heni M, Eckstein SS, Schittenhelm J, et al. Ectopic fat accumulation in human astrocytes impairs insulin action[J]. Roy Soc Open Sci, 2020, 7(9): 200701. doi: 10.1098/rsos.200701
|
[49] |
Gao Y, Layritz C, Legutko B, et al. Disruption of lipid uptake in astroglia exacerbates diet-induced obesity[J]. Diabetes, 2017, 66(10): 2555–2563. doi: 10.2337/db16-1278
|
[50] |
Jensen NJ, Wodschow HZ, Nilsson M, et al. Effects of ketone bodies on brain metabolism and function in neurodegenerative diseases[J]. Int J Mol Sci, 2020, 21(22): 8767. doi: 10.3390/ijms21228767
|
[51] |
Le Foll C, Levin BE. Fatty acid-induced astrocyte ketone production and the control of food intake[J]. Am J Physiol Regul Integr Comp Physiol, 2016, 310(11): R1186–R1192. doi: 10.1152/ajpregu.00113.2016
|
[52] |
Ferris HA, Perry RJ, Moreira GV, et al. Loss of astrocyte cholesterol synthesis disrupts neuronal function and alters whole-body metabolism[J]. Proc Natl Acad Sci U S A, 2017, 114(5): 1189–1194. doi: 10.1073/pnas.1620506114
|
[53] |
Suzuki R, Ferris HA, Chee MJ, et al. Reduction of the cholesterol sensor SCAP in the brains of mice causes impaired synaptic transmission and altered cognitive function[J]. PLoS Biol, 2013, 11(4): e1001532. doi: 10.1371/journal.pbio.1001532
|
[54] |
Govindarajulu M, Pinky PD, Bloemer J, et al. Signaling mechanisms of selective PPAR γ modulators in alzheimer's disease[J]. PPAR Res, 2018, 2018: 2010675. doi: 10.1155/2018/2010675
|
[55] |
Lu M, Sarruf DA, Talukdar S, et al. Brain PPAR-γ promotes obesity and is required for the insuling-sensitizing effect of thiazolidinediones[J]. Nat Med, 2011, 17(5): 618–622. doi: 10.1038/nm.2332
|
[56] |
Fernandez MO, Hsueh K, Park HT, et al. Astrocyte-specific deletion of peroxisome-proliferator activated receptor-γ impairs glucose metabolism and estrous cycling in female mice[J]. J Endocr Soc, 2017, 1(11): 1332–1350. doi: 10.1210/js.2017-00242
|
[57] |
Lam YY, Tsai SF, Chen P, et al. Pioglitazone rescues high-fat diet-induced depression-like phenotypes and hippocampal astrocytic deficits in mice[J]. Biomed Pharmacother, 2021, 140: 111734. doi: 10.1016/j.biopha.2021.111734
|
[58] |
Xu J, Chavis JA, Racke MK, et al. Peroxisome proliferator-activated receptor-α and retinoid X receptor agonists inhibit inflammatory responses of astrocytes[J]. J Neuroimmunol, 2006, 176(1-2): 95–105. doi: 10.1016/j.jneuroim.2006.04.019
|
[59] |
Chistyakov DV, Aleshin SE, Astakhova AA, et al. Regulation of peroxisome proliferator-activated receptors (PPAR) α and -γ of rat brain astrocytes in the course of activation by toll-like receptor agonists[J]. J Neurochem, 2015, 134(1): 113–124. doi: 10.1111/jnc.13101
|
[60] |
Lee SJ, Verma S, Simonds SE, et al. Leptin stimulates neuropeptide Y and cocaine amphetamine-regulated transcript coexpressing neuronal activity in the dorsomedial hypothalamus in diet-induced obese mice[J]. J Neurosci, 2013, 33(38): 15306–15317. doi: 10.1523/JNEUROSCI.0837-13.2013
|
[61] |
Elias CF, Lee C, Kelly J, et al. Leptin activates hypothalamic CART neurons projecting to the spinal cord[J]. Neuron, 1998, 21(6): 1375–1385. doi: 10.1016/s0896-6273(00)80656-x
|
[62] |
Cui H, López M, Rahmouni K. The cellular and molecular bases of leptin and ghrelin resistance in obesity[J]. Nat Rev Endocrinol, 2017, 13(6): 338–351. doi: 10.1038/nrendo.2016.222
|
[63] |
Hsuchou H, He Y, Kastin AJ, et al. Obesity induces functional astrocytic leptin receptors in hypothalamus[J]. Brain, 2009, 132(4): 889–902. doi: 10.1093/brain/awp029
|
[64] |
Kim JG, Suyama S, Koch M, et al. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding[J]. Nat Neurosci, 2014, 17(7): 908–910. doi: 10.1038/nn.3725
|
[65] |
Gruber T, Pan C, Contreras RE, et al. Obesity-associated hyperleptinemia alters the gliovascular interface of the hypothalamus to promote hypertension[J]. Cell Metab, 2021, 33(6): 1155–1170.e10. doi: 10.1016/j.cmet.2021.04.007
|
[66] |
Worker CJ, Li W, Feng C, et al. The neuronal (pro)renin receptor and astrocyte inflammation in the central regulation of blood pressure and blood glucose in mice fed a high-fat diet[J]. Am J Physiol Endocrinol Metab, 2020, 318(5): E765–E778. doi: 10.1152/ajpendo.00406.2019
|
[67] |
Domingues JT, Wajima CS, Cesconetto PA, et al. Experimentally-induced maternal hypothyroidism alters enzyme activities and the sensorimotor cortex of the offspring rats[J]. Mol Cell Endocrinol, 2018, 478: 62–76. doi: 10.1016/j.mce.2018.07.008
|
[68] |
Stepien BK, Huttner WB. Transport, metabolism, and function of thyroid hormones in the developing mammalian brain[J]. Front Endocrinol, 2019, 10: 209. doi: 10.3389/fendo.2019.00209
|
[69] |
Noda M. Glioendocrine system: effects of thyroid hormones in glia and their functions in the central nervous system[J]. Med Univ, 2020, 3(1): 1–11. doi: 10.2478/medu-2020-0001
|
[70] |
Fuente-Martín E, García-Cáceres C, Argente-Arizón P, et al. Ghrelin regulates glucose and glutamate transporters in hypothalamic astrocytes[J]. Sci Rep, 2016, 6: 23673. doi: 10.1038/srep23673
|
[71] |
Varela L, Stutz B, Song JE, et al. Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward autoactivation loop in mice[J]. J Clin Invest, 2021, 131(10): e144239. doi: 10.1172/JCI144239
|
[72] |
Arruda AP, Milanski M, Coope A, et al. Low-grade hypothalamic inflammation leads to defective thermogenesis, insulin resistance, and impaired insulin secretion[J]. Endocrinology, 2011, 152(4): 1314–1326. doi: 10.1210/en.2010-0659
|
[73] |
Douglass JD, Dorfman MD, Thaler JP. Glia: silent partners in energy homeostasis and obesity pathogenesis[J]. Diabetologia, 2017, 60(2): 226–236. doi: 10.1007/s00125-016-4181-3
|
[74] |
Dionysopoulou S, Charmandari E, Bargiota A, et al. The role of hypothalamic inflammation in diet-induced obesity and its association with cognitive and mood disorders[J]. Nutrients, 2021, 13(2): 498. doi: 10.3390/nu13020498
|
[75] |
Horvath TL, Sarman B, García-Cáceres C, et al. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity[J]. Proc Natl Acad Sci U S A, 2010, 107(33): 14875–14880. doi: 10.1073/pnas.1004282107
|
[76] |
Bondan EF, Cardoso CV, De Fátima Monteiro Martins M, et al. Memory impairments and increased GFAP expression in hippocampal astrocytes following hypercaloric diet in rats[J]. Arq Neuro-Psiquiat, 2019, 77(9): 601–608. doi: 10.1590/0004-282X20190091
|
[77] |
Huang H, Tsai SF, Wu HT, et al. Chronic exposure to high fat diet triggers myelin disruption and interleukin-33 upregulation in hypothalamus[J]. BMC Neurosci, 2019, 20(1): 33. doi: 10.1186/s12868-019-0516-6
|
[78] |
Thaler JP, Yi C, Schur EA, et al. Obesity is associated with hypothalamic injury in rodents and humans[J]. J Clin Invest, 2012, 122(1): 153–162. doi: 10.1172/JCI59660
|
[79] |
Jin S, Kim KK, Park BS, et al. Function of astrocyte MyD88 in high-fat-diet-induced hypothalamic inflammation[J]. J Neuroinflammation, 2020, 17(1): 195. doi: 10.1186/s12974-020-01846-w
|
[80] |
Tsai SF, Wu HT, Chen P, et al. High-fat diet suppresses the astrocytic process arborization and downregulates the glial glutamate transporters in the hippocampus of mice[J]. Brain Res, 2018, 1700: 66–77. doi: 10.1016/j.brainres.2018.07.017
|
[81] |
Fuente-Martín E, García-Cáceres C, Díaz F, et al. Hypothalamic inflammation without Astrogliosis in response to high sucrose intake is modulated by neonatal nutrition in male rats[J]. Endocrinology, 2013, 154(7): 2318–2330. doi: 10.1210/en.2012-2196
|
[82] |
Martin-Jiménez CA, García-Vega Á, Cabezas R, et al. Astrocytes and endoplasmic reticulum stress: a bridge between obesity and neurodegenerative diseases[J]. Prog Neurobiol, 2017, 158: 45–68. doi: 10.1016/j.pneurobio.2017.08.001
|
[83] |
Chen W, Balland E, Cowley MA. Hypothalamic insulin resistance in obesity: effects on glucose homeostasis[J]. Neuroendocrinology, 2017, 104(4): 364–381. doi: 10.1159/000455865
|
[84] |
Douglass JD, Dorfman MD, Fasnacht R, et al. Astrocyte IKKβ/NF-ΚB signaling is required for diet-induced obesity and hypothalamic inflammation[J]. Mol Metab, 2017, 6(4): 366–373. doi: 10.1016/j.molmet.2017.01.010
|
[85] |
Tirou L, Russo M, Faure H, et al. Sonic hedgehog receptor patched deficiency in astrocytes enhances glucose metabolism in mice[J]. Mol Metab, 2021, 47: 101172. doi: 10.1016/j.molmet.2021.101172
|
[86] |
Kanasaki K, Koya D. Biology of obesity: lessons from animal models of obesity[J]. BioMed Res Int, 2011, 2011: 197636. doi: 10.1155/2011/197636
|
[87] |
Barrett P, Mercer JG, Morgan PJ. Preclinical models for obesity research[J]. Dis Mod Mech, 2016, 9(11): 1245–1255. doi: 10.1242/dmm.026443
|
[88] |
Tan BL, Norhaizan ME. Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function[J]. Nutrients, 2019, 11(11): 2579. doi: 10.3390/nu11112579
|
[89] |
Soontornniyomkij V, Kesby JP, Soontornniyomkij B, et al. Age and high-fat diet effects on glutamine synthetase immunoreactivity in liver and hippocampus and recognition memory in mice[J]. Curr Aging Sci, 2016, 9(4): 301–309. doi: 10.2174/1874609809666160413113311
|
[90] |
Lau BK, Murphy-Royal C, Kaur M, et al. Obesity-induced astrocyte dysfunction impairs heterosynaptic plasticity in the orbitofrontal cortex[J]. Cell Rep, 2021, 36(7): 109563. doi: 10.1016/j.celrep.2021.109563
|
[91] |
Sandoval-Salazar C, Ramírez-Emiliano J, Trejo-Bahena A, et al. A high-fat diet decreases GABA concentration in the frontal cortex and hippocampus of rats[J]. Biol Res, 2016, 49: 15. doi: 10.1186/s40659-016-0075-6
|
[92] |
Sickmann HM, Waagepetersen HS, Schousboe A, et al. Obesity and type 2 diabetes in rats are associated with altered brain glycogen and amino-acid homeostasis[J]. J Cereb Blood Flow Metab, 2010, 30(8): 1527–1537. doi: 10.1038/jcbfm.2010.61
|
[93] |
Popov A, Brazhe N, Fedotova A, et al. A high-fat diet changes astrocytic metabolism to enhance synaptic plasticity and promote exploratory behavior[J]. Acta Physiol (Oxf), 2022, 236(1): e13847. doi: 10.1111/apha.13847
|
[94] |
Lorenzo PI, Vazquez EM, López-Noriega L, et al. The metabesity factor HMG20A potentiates astrocyte survival and reactive astrogliosis preserving neuronal integrity[J]. Theranostics, 2021, 11(14): 6983–7004. doi: 10.7150/thno.57237
|
[95] |
Bobbo VC, Engel DF, Jara CP, et al. Interleukin-6 actions in the hypothalamus protects against obesity and is involved in the regulation of neurogenesis[J]. J Neuroinflammation, 2021, 18(1): 192. doi: 10.1186/s12974-021-02242-8
|
[96] |
Farr OM, Li CSR, Mantzoros CS. Central nervous system regulation of eating: insights from human brain imaging[J]. Metabolism, 2016, 65(5): 699–713. doi: 10.1016/j.metabol.2016.02.002
|
[97] |
Suleiman J, Mohamed M, Bakar A. A systematic review on different models of inducing obesity in animals: advantages and limitations[J]. J Adv Vet Anim Res, 2020, 7(1): 103–114. doi: 10.5455/javar.2020.g399
|
[98] |
Doulberis M, Papaefthymiou A, Polyzos SA, et al. Rodent models of obesity[J]. Minerva Endocrinol, 2020, 45(3): 243–263. doi: 10.23736/S0391-1977.19.03058-X
|