Citation: | Choe Dongwook C., Musunuru Kiran. Base editing: a brief review and a practical example[J]. The Journal of Biomedical Research, 2021, 35(2): 107-114. doi: 10.7555/JBR.34.20200003 |
[1] |
Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes[J]. Nat Biotechnol, 2014, 32(4): 347–355. doi: 10.1038/nbt.2842
|
[2] |
Adli M. The CRISPR tool kit for genome editing and beyond[J]. Nat Commun, 2018, 9(1): 1911. doi: 10.1038/s41467-018-04252-2
|
[3] |
Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420–424. doi: 10.1038/nature17946
|
[4] |
Rees HA, Komor AC, Yeh WH, et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery[J]. Nat Commun, 2017, 8(1): 15790. doi: 10.1038/ncomms15790
|
[5] |
Kim YB, Komor AC, Levy JM, et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions[J]. Nat Biotechnol, 2017, 35(4): 371–376. doi: 10.1038/nbt.3803
|
[6] |
Nishida K, Arazoe T, Yachie N, et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems[J]. Science, 2016, 353(6305): aaf8729. doi: 10.1126/science.aaf8729
|
[7] |
Li XS, Wang Y, Liu YJ, et al. Base editing with a Cpf1-cytidine deaminase fusion[J]. Nat Biotechnol, 2018, 36(4): 324–327. doi: 10.1038/nbt.4102
|
[8] |
Komor AC, Zhao KT, Packer MS, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity[J]. Sci Adv, 2017, 3(8): eaao4774. doi: 10.1126/sciadv.aao4774
|
[9] |
Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464–471. doi: 10.1038/nature24644
|
[10] |
Koblan LW, Doman JL, Wilson C, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J]. Nat Biotechnol, 2018, 36(9): 843–846. doi: 10.1038/nbt.4172
|
[11] |
Huang TP, Zhao KT, Miller SM, et al. Circularly permuted and PAM-modified Cas9 variants broaden the targeting scope of base editors[J]. Nat Biotechnol, 2019, 37(6): 626–631. doi: 10.1038/s41587-019-0134-y
|
[12] |
Kim D, Lim K, Kim ST, et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases[J]. Nat Biotechnol, 2017, 35(5): 475–480. doi: 10.1038/nbt.3852
|
[13] |
Liang PP, Xie XW, Zhi SY, et al. Genome-wide profiling of adenine base editor specificity by EndoV-seq[J]. Nat Commun, 2019, 10(1): 67. doi: 10.1038/s41467-018-07988-z
|
[14] |
Kim D, Kim DE, Lee G, et al. Genome-wide target specificity of CRISPR RNA-guided adenine base editors[J]. Nat Biotechnol, 2019, 37(4): 430–435. doi: 10.1038/s41587-019-0050-1
|
[15] |
Zuo EW, Sun YD, Wei W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019, 364(6437): 289–292. doi: 10.1126/science.aav9973
|
[16] |
Jin S, Zong Y, Gao Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice[J]. Science, 2019, 364(6437): 292–295. doi: 10.1126/science.aaw7166
|
[17] |
Grünewald J, Zhou RH, Garcia SP, et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors[J]. Nature, 2019, 569(7756): 433–437. doi: 10.1038/s41586-019-1161-z
|
[18] |
Grünewald J, Zhou RH, Iyer S, et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities[J]. Nat Biotechnol, 2019, 37(9): 1041–1048. doi: 10.1038/s41587-019-0236-6
|
[19] |
Zhou CY, Sun YD, Yan R, et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis[J]. Nature, 2019, 571(7764): 275–278. doi: 10.1038/s41586-019-1314-0
|
[20] |
Ma YQ, Zhang JY, Yin WJ, et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells[J]. Nat Methods, 2016, 13(12): 1029–1035. doi: 10.1038/nmeth.4027
|
[21] |
Hess GT, Frésard L, Han K, et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells[J]. Nat Methods, 2016, 13(12): 1036–1042. doi: 10.1038/nmeth.4038
|
[22] |
Chadwick AC, Wang X, Musunuru K. In vivo base editing of PCSK9 (proprotein convertase subtilisin/kexin type 9) as a therapeutic alternative to genome editing[J]. Arterioscler Thromb Vasc Biol, 2017, 37(9): 1741–1747. doi: 10.1161/ATVBAHA.117.309881
|
[23] |
Chadwick AC, Evitt NH, Lv WJ, et al. Reduced blood lipid levels with in vivo CRISPR-Cas9 base editing of ANGPTL3[J]. Circulation, 2018, 137(9): 975–977. doi: 10.1161/CIRCULATIONAHA.117.031335
|
[24] |
Rossidis AC, Stratigis JD, Chadwick AC, et al. In utero CRISPR-mediated therapeutic editing of metabolic genes[J]. Nat Med, 2018, 24(10): 1513–1518. doi: 10.1038/s41591-018-0184-6
|
[25] |
Yeh WH, Chiang H, Rees HA, et al. In vivo base editing of post-mitotic sensory cells[J]. Nat Commun, 2018, 9(1): 2184. doi: 10.1038/s41467-018-04580-3
|
[26] |
Villiger L, Grisch-Chan HM, Lindsay H, et al. Treatment of a metabolic liver disease by in vivo genome base editing in adult mice[J]. Nat Med, 2018, 24(10): 1519–1525. doi: 10.1038/s41591-018-0209-1
|
[27] |
Ryu SM, Koo T, Kim K, et al. Adenine base editing in mouse embryos and an adult mouse model of Duchenne muscular dystrophy[J]. Nat Biotechnol, 2018, 36(6): 536–539. doi: 10.1038/nbt.4148
|
[28] |
Song CQ, Jiang TT, Richter M, et al. Adenine base editing in an adult mouse model of tyrosinaemia[J]. Nat Biomed Eng, 2020, 4(1): 125–130. doi: 10.1038/s41551-019-0357-8
|
[29] |
Liang PP, Ding CH, Sun HW, et al. Correction of β-thalassemia mutant by base editor in human embryos[J]. Protein Cell, 2017, 8(11): 811–822. doi: 10.1007/s13238-017-0475-6
|
[30] |
Morrow G, Tanguay RM. Biochemical and clinical aspects of hereditary tyrosinemia type 1[M]//Tanguay RM. Hereditary Tyrosinemia: Pathogenesis, Screening and Management. Cham: Springer, 2017: 9–21.
|
[31] |
De Braekeleer M, Larochelle J. Genetic epidemiology of hereditary tyrosinemia in Quebec and in Saguenay-Lac-St-Jean[J]. Am J Hum Genet, 1990, 47(2): 302–307. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1683702/
|
[32] |
Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149–157. doi: 10.1038/s41586-019-1711-4
|