4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
McKay Alexander, Burgio Gaetan. Harnessing CRISPR-Cas system diversity for gene editing technologies[J]. The Journal of Biomedical Research, 2021, 35(2): 91-106. DOI: 10.7555/JBR.35.20200184
Citation: McKay Alexander, Burgio Gaetan. Harnessing CRISPR-Cas system diversity for gene editing technologies[J]. The Journal of Biomedical Research, 2021, 35(2): 91-106. DOI: 10.7555/JBR.35.20200184

Harnessing CRISPR-Cas system diversity for gene editing technologies

More Information
  • Corresponding author:

    Gaetan Burgio, Department of Immunology and Infectious Diseases, John Curtin School of Medical Research, Australian National University, 131 Garran Road, Canberra, ACT 2601, Australia. Tel/Fax: +61-2-6125-9428/+61-2-6247-4823, E-mail: gaetan.burgio@anu.edu.au

  • Received Date: November 11, 2020
  • Revised Date: February 04, 2021
  • Accepted Date: February 18, 2021
  • Available Online: March 25, 2021
  • The discovery and utilization of RNA-guided surveillance complexes, such as CRISPR-Cas9, for sequence-specific DNA or RNA cleavage, has revolutionised the process of gene modification or knockdown. To optimise the use of this technology, an exploratory race has ensued to discover or develop new RNA-guided endonucleases with the most flexible sequence targeting requirements, coupled with high cleavage efficacy and specificity. Here we review the constraints of existing gene editing and assess the merits of exploiting the diversity of CRISPR-Cas effectors as a methodology for surmounting these limitations.
  • [1]
    Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816–821. doi: 10.1126/science.1225829
    [2]
    Wang T, Wei JJ, Sabatini DM, et al. Genetic screens in human cells using the CRISPR-Cas9 system[J]. Science, 2014, 343(6166): 80–84. doi: 10.1126/science.1246981
    [3]
    Chen SD, Sanjana N, Zheng KJ, et al. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis[J]. Cell, 2015, 160(6): 1246–1260. doi: 10.1016/j.cell.2015.02.038
    [4]
    Wang HX, Song ZY, Lao YH, et al. Nonviral gene editing via CRISPR/Cas9 delivery by membrane-disruptive and endosomolytic helical polypeptide[J]. Proc Natl Acad Sci U S A, 2018, 115(19): 4903–4908. doi: 10.1073/pnas.1712963115
    [5]
    Teixeira M, Py BF, Bosc C, et al. Electroporation of mice zygotes with dual guide RNA/Cas9 complexes for simple and efficient cloning-free genome editing[J]. Sci Rep, 2018, 8(1): 474. doi: 10.1038/s41598-017-18826-5
    [6]
    Del'Guidice T, Lepetit-Stoffaes JP, Bordeleau LJ, et al. Membrane permeabilizing amphiphilic peptide delivers recombinant transcription factor and CRISPR-Cas9/Cpf1 ribonucleoproteins in hard-to-modify cells[J]. PLoS One, 2018, 13(4): e0195558. doi: 10.1371/journal.pone.0195558
    [7]
    Takeuchi R, Choi M, Stoddard BL. Redesign of extensive protein-DNA interfaces of meganucleases using iterative cycles of in vitro compartmentalization[J]. Proc Natl Acad Sci U S A, 2014, 111(11): 4061–4066. doi: 10.1073/pnas.1321030111
    [8]
    Makarova KS, Grishin NV, Shabalina SA, et al. A putative RNA-interference-based immune system in prokaryotes: computational analysis of the predicted enzymatic machinery, functional analogies with eukaryotic RNAi, and hypothetical mechanisms of action[J]. Biol Direct, 2006, 1(1): 7. doi: 10.1186/1745-6150-1-7
    [9]
    Barrangou R, Fremaux C, Deveau H, et al. CRISPR provides acquired resistance against viruses in prokaryotes[J]. Science, 2007, 315(5819): 1709–1712. doi: 10.1126/science.1138140
    [10]
    Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants[J]. Nat Rev Microbiol, 2020, 18(2): 67–83. doi: 10.1038/s41579-019-0299-x
    [11]
    Hajizadeh Dastjerdi A, Newman A, Burgio G. The expanding class 2 CRISPR toolbox: diversity, applicability, and targeting drawbacks[J]. BioDrugs, 2019, 33(5): 503–513. doi: 10.1007/s40259-019-00369-y
    [12]
    Makarova KS, Wolf YI, Alkhnbashi OS, et al. An updated evolutionary classification of CRISPR-cas systems[J]. Nat Rev Microbiol, 2015, 13(11): 722–736. doi: 10.1038/nrmicro3569
    [13]
    Shmakov S, Smargon A, Scott D, et al. Diversity and evolution of class 2 CRISPR-Cas systems[J]. Nat Rev Microbiol, 2017, 15(3): 169–182. doi: 10.1038/nrmicro.2016.184
    [14]
    Yan WX, Chong SR, Zhang HB, et al. Cas13d is a compact RNA-targeting Type VI CRISPR effector positively modulated by a WYL-domain-containing accessory protein[J]. Mol Cell, 2018, 70(2): 327–339.e5. doi: 10.1016/j.molcel.2018.02.028
    [15]
    Shmakov SA, Faure G, Makarova KS, et al. Systematic prediction of functionally linked genes in bacterial and archaeal genomes[J]. Nat Protoc, 2019, 14(10): 3013–3031. doi: 10.1038/s41596-019-0211-1
    [16]
    Horvath P, Romero DA, Coûté-Monvoisin A, et al. Diversity, activity, and evolution of CRISPR loci in Streptococcus thermophilus[J]. J Bacteriol, 2008, 190(4): 1401–1412. doi: 10.1128/JB.01415-07
    [17]
    Pourcel C, Salvignol G, Vergnaud G. CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies[J]. Microbiology, 2005, 151(3): 653–663. doi: 10.1099/mic.0.27437-0
    [18]
    Brouns SJJ, Jore MM, Lundgren M, et al. Small CRISPR RNAs guide antiviral defense in prokaryotes[J]. Science, 2008, 321(5891): 960–964. doi: 10.1126/science.1159689
    [19]
    Liu L, Li XY, Ma J, et al. The molecular architecture for RNA-Guided RNA cleavage by Cas13a[J]. Cell, 2017, 170(4): 714–726.e10. doi: 10.1016/j.cell.2017.06.050
    [20]
    Marraffini LA, Sontheimer EJ. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA[J]. Science, 2008, 322(5909): 1843–1845. doi: 10.1126/science.1165771
    [21]
    Newman A, Starrs L, Burgio G. Cas9 cuts and consequences; detecting, predicting, and mitigating CRISPR/Cas9 on‐ and off‐target damage[J]. BioEssays, 2020, 42(9): 2000047. doi: 10.1002/bies.202000047
    [22]
    Liang F, Han MG, Romanienko PJ, et al. Homology-directed repair is a major double-strand break repair pathway in mammalian cells[J]. Proc Natl Acad Sci U S A, 1998, 95(9): 5172–5177. doi: 10.1073/pnas.95.9.5172
    [23]
    White MF, Allers T. DNA repair in the archaea—an emerging picture[J]. FEMS Microbiol Rev, 2018, 42(4): 514–526. doi: 10.1093/femsre/fuy020
    [24]
    Ayora S, Carrasco B, Cárdenas PP, et al. Double-strand break repair in bacteria: a view from Bacillus subtilis[J]. FEMS Microbiol Rev, 2011, 35(6): 1055–1081. doi: 10.1111/j.1574-6976.2011.00272.x
    [25]
    Wiktor J, van der Does M, Büller L, et al. Direct observation of end resection by RecBCD during double-stranded DNA break repair in vivo[J]. Nucleic Acids Res, 2018, 46(4): 1821–1833. doi: 10.1093/nar/gkx1290
    [26]
    van der Heijden T, Modesti M, Hage S, et al. Homologous recombination in real time: DNA strand exchange by RecA[J]. Mol Cell, 2008, 30(4): 530–538. doi: 10.1016/j.molcel.2008.03.010
    [27]
    Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819–823. doi: 10.1126/science.1231143
    [28]
    Mali P, Yang L, Esvelt KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823–826. doi: 10.1126/science.1232033
    [29]
    Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining[J]. Transl Cancer Res, 2013, 2(3): 130–143. doi: 10.3978/j.issn.2218-676X.2013.04.02
    [30]
    Shuman S, Glickman MS. Bacterial DNA repair by non-homologous end joining[J]. Nat Rev Microbiol, 2007, 5(11): 852–861. doi: 10.1038/nrmicro1768
    [31]
    Chang HHY, Watanabe G, Gerodimos CA, et al. Different DNA end configurations dictate which NHEJ components are most important for joining efficiency[J]. J Biol Chem, 2016, 291(47): 24377–24389. doi: 10.1074/jbc.M116.752329
    [32]
    Truong LN, Li YJ, Shi LZ, et al. Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells[J]. Proc Natl Acad Sci U S A, 2013, 110(19): 7720–7725. doi: 10.1073/pnas.1213431110
    [33]
    Burgio G, Teboul L. Anticipating and identifying collateral damage in genome editing[J]. Trends Genet, 2020, 36(12): 905–914. doi: 10.1016/j.tig.2020.09.011
    [34]
    Shmakov S, Abudayyeh OO, Makarova KS, et al. Discovery and functional characterization of diverse class 2 CRISPR-cas systems[J]. Mol Cell, 2015, 60(3): 385–397. doi: 10.1016/j.molcel.2015.10.008
    [35]
    Burstein D, Harrington LB, Strutt SC, et al. New CRISPR–Cas systems from uncultivated microbes[J]. Nature, 2016, 542(7640): 237–241. doi: 10.1038/nature21059
    [36]
    Yan WX, Hunnewell P, Alfonse L, et al. Functionally diverse type V CRISPR-Cas systems[J]. Science, 2019, 363(6422): 88–91. doi: 10.1126/science.aav7271
    [37]
    Smargon AA, Cox DBT, Pyzocha NK, et al. Cas13b is a type VI-B CRISPR-associated RNA-guided RNase differentially regulated by accessory proteins Csx27 and Csx28[J]. Mol Cell, 2017, 65(4): 618–630.e7. doi: 10.1016/j.molcel.2016.12.023
    [38]
    Konermann S, Lotfy P, Brideau NJ, et al. Transcriptome engineering with RNA-targeting type VI-D CRISPR effectors[J]. Cell, 2018, 173(3): 665–676.e14. doi: 10.1016/j.cell.2018.02.033
    [39]
    Harrington LB, Burstein D, Chen JS, et al. Programmed DNA destruction by miniature CRISPR-Cas14 enzymes[J]. Science, 2018, 362(6416): 839–842. doi: 10.1126/science.aav4294
    [40]
    Shmakov SA, Makarova KS, Wolf YI, et al. Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis[J]. Proc Natl Acad Sci U S A, 2018, 115(23): E5307–E5316. doi: 10.1073/pnas.1803440115
    [41]
    Levy A, Goren MG, Yosef I, et al. CRISPR adaptation biases explain preference for acquisition of foreign DNA[J]. Nature, 2015, 520(7548): 505–510. doi: 10.1038/nature14302
    [42]
    Radovčić M, Killelea T, Savitskaya E, et al. CRISPR–Cas adaptation in Escherichia coli requires RecBCD helicase but not nuclease activity, is independent of homologous recombination, and is antagonized by 5′ ssDNA exonucleases[J]. Nucleic Acids Res, 2018, 46(19): 10173–10183. doi: 10.1093/nar/gky799
    [43]
    Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340): 602–607. doi: 10.1038/nature09886
    [44]
    Al-Shayeb B, Sachdeva R, Chen LX, et al. Clades of huge phages from across Earth's ecosystems[J]. Nature, 2020, 578(7795): 425–431. doi: 10.1038/s41586-020-2007-4
    [45]
    Chatterjee P, Jakimo N, Jacobson JM. Minimal PAM specificity of a highly similar SpCas9 ortholog[J]. Sci Adv, 2018, 4(10): eaau0766. doi: 10.1126/sciadv.aau0766
    [46]
    Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9[J]. Nature, 2015, 520(7546): 186–191. doi: 10.1038/nature14299
    [47]
    Sampson TR, Saroj SD, Llewellyn AC, et al. A CRISPR/Cas system mediates bacterial innate immune evasion and virulence[J]. Nature, 2013, 497(7448): 254–257. doi: 10.1038/nature12048
    [48]
    Dugar G, Leenay RT, Eisenbart SK, et al. CRISPR RNA-dependent binding and cleavage of endogenous RNAs by the Campylobacter jejuni Cas9[J]. Mol Cell, 2018, 69(5): 893–905.e7. doi: 10.1016/j.molcel.2018.01.032
    [49]
    Yamada M, Watanabe Y, Gootenberg JS, et al. Crystal structure of the minimal Cas9 from Campylobacter jejuni reveals the molecular diversity in the CRISPR-Cas9 systems[J]. Mol Cell, 2017, 65(6): 1109–1121.e3. doi: 10.1016/j.molcel.2017.02.007
    [50]
    Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets[J]. Nat Biotechnol, 2017, 35(11): 1026–1028. doi: 10.1038/nbt.3988
    [51]
    Altschul SF, Gish W, Miller W, et al. Basic local alignment search tool[J]. J Mol Biol, 1990, 215(3): 403–410. doi: 10.1016/S0022-2836(05)80360-2
    [52]
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND[J]. Nat Methods, 2014, 12(1): 59–60. doi: 10.15496/publikation-1176
    [53]
    Zhang B, Ye YM, Ye WW, et al. Two HEPN domains dictate CRISPR RNA maturation and target cleavage in Cas13d[J]. Nat Commun, 2019, 10(1): 2544. doi: 10.1038/s41467-019-10507-3
    [54]
    Jore MM, Lundgren M, van Duijn E, et al. Structural basis for CRISPR RNA-guided DNA recognition by Cascade[J]. Nat Struct Mol Biol, 2011, 18(5): 529–536. doi: 10.1038/nsmb.2019
    [55]
    Sinkunas T, Gasiunas G, Fremaux C, et al. Cas3 is a single-stranded DNA nuclease and ATP-dependent helicase in the CRISPR/Cas immune system[J]. EMBO J, 2011, 30(7): 1335–1342. doi: 10.1038/emboj.2011.41
    [56]
    Morisaka H, Yoshimi K, Okuzaki Y, et al. CRISPR-Cas3 induces broad and unidirectional genome editing in human cells[J]. Nat Commun, 2019, 10(1): 5302. doi: 10.1038/s41467-019-13226-x
    [57]
    Dolan AE, Hou ZG, Xiao Yb, et al. Introducing a spectrum of long-range genomic deletions in human embryonic stem cells using type I CRISPR-cas[J]. Mol Cell, 2019, 74(5): 936–950.e5. doi: 10.1016/j.molcel.2019.03.014
    [58]
    Peters JE, Makarova KS, Shmakov S, et al. Recruitment of CRISPR-Cas systems by Tn7-like transposons[J]. Proc Natl Acad Sci U S A, 2017, 114(35): E7358–E7366. doi: 10.1073/pnas.1709035114
    [59]
    Klompe SE, Vo PLH, Halpin-Healy TS, et al. Transposon-encoded CRISPR–Cas systems direct RNA-guided DNA integration[J]. Nature, 2019, 571(7764): 219–225. doi: 10.1038/s41586-019-1323-z
    [60]
    Strecker J, Ladha A, Gardner Z, et al. RNA-guided DNA insertion with CRISPR-associated transposases[J]. Science, 2019, 365(6448): 48–53. doi: 10.1126/science.aax9181
    [61]
    Mogila I, Kazlauskiene M, Valinskyte S, et al. Genetic dissection of the type III-A CRISPR-Cas system csm complex reveals roles of individual subunits[J]. Cell Rep, 2019, 26(10): 2753–2765.e4. doi: 10.1016/j.celrep.2019.02.029
    [62]
    Li YJ, Pan SF, Zhang Y, et al. Harnessing Type I and Type III CRISPR-Cas systems for genome editing[J]. Nucleic Acids Res, 2016, 44(4): e34. doi: 10.1093/nar/gkv1044
    [63]
    Rahman K, Jamal M, Chen X, et al. Reprogramming the endogenous type III-A CRISPR-Cas system for genome editing, RNA interference and CRISPRi screening in Mycobacterium tuberculosis[EB/OL]. [2020-03-09]. https://www.biorxiv.org/content/10.1101/2020.03.09.983494v1.full.pdf+html.
    [64]
    Niewoehner O, Garcia-Doval C, Rostøl JT, et al. Type III CRISPR–Cas systems produce cyclic oligoadenylate second messengers[J]. Nature, 2017, 548(7669): 543–548. doi: 10.1038/nature23467
    [65]
    Lau RK, Ye QZ, Birkholz EA, et al. Structure and mechanism of a cyclic trinucleotide-activated bacterial endonuclease mediating bacteriophage immunity[J]. Mol Cell, 2020, 77(4): 723–733.e6. doi: 10.1016/j.molcel.2019.12.010
    [66]
    Kazlauskiene M, Kostiuk G, Venclovas Č, et al. A cyclic oligonucleotide signaling pathway in type III CRISPR-Cas systems[J]. Science, 2017, 357(6351): 605–609. doi: 10.1126/science.aao0100
    [67]
    Kazlauskiene M, Tamulaitis G, Kostiuk G, et al. Spatiotemporal control of Type III-A CRISPR-Cas immunity: coupling DNA degradation with the target RNA recognition[J]. Mol Cell, 2016, 62(2): 295–306. doi: 10.1016/j.molcel.2016.03.024
    [68]
    Han WY, Li YJ, Deng L, et al. A type III-B CRISPR-Cas effector complex mediating massive target DNA destruction[J]. Nucleic Acids Res, 2017, 45(4): 1983–1993. doi: 10.1093/nar/gkw1274
    [69]
    Elmore JR, Sheppard NF, Ramia N, et al. Bipartite recognition of target RNAs activates DNA cleavage by the Type III-B CRISPR–Cas system[J]. Genes Dev, 2016, 30(4): 447–459. doi: 10.1101/gad.272153.115
    [70]
    Smalakyte D, Kazlauskiene M, Havelund JF, et al. Type III-A CRISPR-associated protein Csm6 degrades cyclic hexa-adenylate activator using both CARF and HEPN domains[J]. Nucleic Acids Res, 2020, 48(16): 9204–9217. doi: 10.1093/nar/gkaa634
    [71]
    Estrella MA, Kuo FT, Bailey S. RNA-activated DNA cleavage by the Type III-B CRISPR–Cas effector complex[J]. Genes Dev, 2016, 30(4): 460–470. doi: 10.1101/gad.273722.115
    [72]
    Liu TY, Liu JJ, Aditham AJ, et al. Target preference of Type III-A CRISPR-Cas complexes at the transcription bubble[J]. Nat Commun, 2019, 10(1): 3001. doi: 10.1038/s41467-019-10780-2
    [73]
    Chou-Zheng L, Hatoum-Aslan A. A type III-A CRISPR-Cas system employs degradosome nucleases to ensure robust immunity[J]. eLife, 2019, 8: e45393. doi: 10.7554/eLife.45393
    [74]
    Crowley VM, Catching A, Taylor HN, et al. A type IV-A CRISPR-Cas system in pseudomonas aeruginosa mediates RNA-guided plasmid interference in vivo[J]. CRISPR J, 2019, 2(6): 434–440. doi: 10.1089/crispr.2019.0048
    [75]
    Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, et al. Type IV CRISPR–Cas systems are highly diverse and involved in competition between plasmids[J]. Nucleic Acids Res, 2020, 48(4): 2000–2012. doi: 10.1093/nar/gkz1197
    [76]
    Jiang WZ, Zhou HB, Bi HH, et al. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice[J]. Nucleic Acids Res, 2013, 41(20): e188. doi: 10.1093/nar/gkt780
    [77]
    Ma XL, Zhu QL, Chen YL, et al. CRISPR/Cas9 Platforms for genome editing in plants: developments and applications[J]. Mol Plant, 2016, 9(7): 961–974. doi: 10.1016/j.molp.2016.04.009
    [78]
    Raper AT, Stephenson AA, Suo ZC. Functional insights revealed by the kinetic mechanism of CRISPR/Cas9[J]. J Am Chem Soc, 2018, 140(8): 2971–2984. doi: 10.1021/jacs.7b13047
    [79]
    Chen JS, Ma EB, Harrington LB, et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity[J]. Science, 2018, 360(6387): 436–439. doi: 10.1126/science.aar6245
    [80]
    Gasiunas G, Young JK, Karvelis T, et al. A catalogue of biochemically diverse CRISPR-Cas9 orthologs[J]. Nat Commun, 2020, 11(1): 5512. doi: 10.1038/s41467-020-19344-1
    [81]
    Kim E, Koo T, Park SW, et al. In vivo genome editing with a small Cas9 orthologue derived from Campylobacter jejuni[J]. Nat Commun, 2017, 8(1): 14500. doi: 10.1038/ncomms14500
    [82]
    Adli M. The CRISPR tool kit for genome editing and beyond[J]. Nat Commun, 2018, 9(1): 1911. doi: 10.1038/s41467-018-04252-2
    [83]
    Hou ZG, Zhang Y, Propson NE, et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis[J]. Proc Natl Acad Sci U S A, 2013, 110(39): 15644–15649. doi: 10.1073/pnas.1313587110
    [84]
    Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci U S A, 2012, 109(39): E2579–E2586. doi: 10.1073/pnas.1208507109
    [85]
    Globyte V, Lee SH, Bae T, et al. CRISPR/Cas9 searches for a protospacer adjacent motif by lateral diffusion[J]. EMBO J, 2019, 38(4): e99466. doi: 10.15252/embj.201899466
    [86]
    Amrani N, Gao XD, Liu PP, et al. NmeCas9 is an intrinsically high-fidelity genome-editing platform[J]. Genome Biol, 2018, 19(1): 214. doi: 10.1186/s13059-018-1591-1
    [87]
    Tang YY, Fu Y. Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing[J]. Cell Biosci, 2018, 8(1): 59. doi: 10.1186/s13578-018-0255-x
    [88]
    Li SY, Cheng QX, Liu JK, et al. CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA[J]. Cell Res, 2018, 28(4): 491–493. doi: 10.1038/s41422-018-0022-x
    [89]
    Zhang LJ, Sun RR, Yang MY, et al. Conformational dynamics and cleavage sites of Cas12a are modulated by complementarity between crRNA and DNA[J]. iScience, 2019, 19: 492–503. doi: 10.1016/j.isci.2019.08.005
    [90]
    Swarts DC, Jinek M. Mechanistic insights into the cis- and trans-acting DNase activities of cas12a[J]. Mol Cell, 2019, 73(3): 589–600.e4. doi: 10.1016/j.molcel.2018.11.021
    [91]
    Swarts DC, van der Oost J, Jinek M. Structural basis for guide RNA processing and seed-dependent DNA Targeting by CRISPR-Cas12a[J]. Mol Cell, 2017, 66(2): 221–233.e4. doi: 10.1016/j.molcel.2017.03.016
    [92]
    Cofsky JC, Karandur D, Huang CJ, et al. CRISPR-Cas12a exploits R-loop asymmetry to form double-strand breaks[J]. eLife, 2020, 9: e55143. doi: 10.7554/eLife.55143
    [93]
    Karvelis T, Bigelyte G, Young JK, et al. PAM recognition by miniature CRISPR–Cas12f nucleases triggers programmable double-stranded DNA target cleavage[J]. Nucleic Acids Res, 2020, 48(9): 5016–5023. doi: 10.1093/nar/gkaa208
    [94]
    Pausch P, Al-Shayeb B, Bisom-Rapp E, et al. CRISPR-CasΦ from huge phages is a hypercompact genome editor[J]. Science, 2020, 369(6501): 333–337. doi: 10.1126/science.abb1400
    [95]
    Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-cas system[J]. Cell, 2015, 163(3): 759–771. doi: 10.1016/j.cell.2015.09.038
    [96]
    Rubin BE, Diamond S, Alexander BFC, et al. Targeted genome editing of bacteria within microbial communities[EB/OL]. [2020-07-21]. https://www.biorxiv.org/content/10.1101/2020.07.17.209189v2.
    [97]
    Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149–157. doi: 10.1038/s41586-019-1711-4
    [98]
    Ran FA, Hsu PD, Wright J, et al. Genome engineering using the CRISPR-Cas9 system[J]. Nat Protoc, 2013, 8(11): 2281–2308. doi: 10.1038/nprot.2013.143
    [99]
    Teng F, Li J, Cui TT, et al. Enhanced mammalian genome editing by new Cas12a orthologs with optimized crRNA scaffolds[J]. Genome Biol, 2019, 20(1): 15. doi: 10.1186/s13059-019-1620-8
    [100]
    Kappel S, Matthess Y, Kaufmann M, Strebhardt K. Silencing of mammalian genes by tetracycline-inducible shRNA expression[J]. Nat Protoc, 2007, 2(12): 3257–3269. doi: 10.1038/nprot.2007.458
    [101]
    Abudayyeh OO, Gootenberg JS, Konermann S, et al. C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector[J]. Science, 2016, 353(6299): aaf5573. doi: 10.1126/science.aaf5573
    [102]
    Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems[J]. Curr Opin Microbiol, 2017, 37: 67–78. doi: 10.1016/j.mib.2017.05.008
    [103]
    Abudayyeh OO, Gootenberg JS, Essletzbichler P, et al. RNA targeting with CRISPR–Cas13[J]. Nature, 2017, 550(7675): 280–284. doi: 10.1038/nature24049
  • Related Articles

    [1]Ahmad Rusdan Handoyo Utomo, Yusnita Yusnita, Siti Maulidya Sari, Octaviani Indrasari Ranakusuma, Sunu Bagaskara, Wening Sari, Yulia Suciati, Anggi Puspa Nur Hidayati, Silviatun Nihayah, Catur Anggono Putro, Neni Nurainy. Buccal DNA global methylation and cognitive performance in stunted children under five years of age[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.37.20230295
    [2]Sumeng Wang, Silu Chen, Huiqin Li, Shuai Ben, Tingyu Zhao, Rui Zheng, Meilin Wang, Dongying Gu, Lingxiang Liu. Causal genetic regulation of DNA replication on immune microenvironment in colorectal tumorigenesis: Evidenced by an integrated approach of trans-omics and GWAS[J]. The Journal of Biomedical Research, 2024, 38(1): 37-50. DOI: 10.7555/JBR.37.20230081
    [3]Nyamongo Onkoba, Ruth M. Mumo, Horace Ochanda, Charles Omwandho, Hastings S. Ozwara, Thomas G. Egwang. Safety, immunogenicity, and cross-species protection of a plasmid DNA encoding Plasmodium falciparum SERA5 polypeptide, microbial epitopes and chemokine genes in mice and olive baboons[J]. The Journal of Biomedical Research, 2017, 31(4): 321-332. DOI: 10.7555/JBR.31.20160025
    [4]Jiechen Zhang, Wei Hou, Suying Feng, Xiangsheng Chen, Hongwei Wang. Classification of facial wrinkles among Chinese women[J]. The Journal of Biomedical Research, 2017, 31(2): 108-115. DOI: 10.7555/JBR.31.20150175
    [5]Ameya Paranjpe, Nathan I. Bailey, Santhi Konduri, George C. Bobustuc, Francis Ali-Osman, Mohd. A. Yusuf, Surendra R. Punganuru, Hanumantha Rao Madala, Debasish Basak, AGM Mostofa, Kalkunte S. Srivenugopal. New insights into estrogenic regulation of O6-methylguanine DNA-methyltransferase (MGMT) in human breast cancer cells: Co-degradation of ER-α and MGMT proteins by fulvestrant or O6-benzylguanine indicates fresh avenues for therapy[J]. The Journal of Biomedical Research, 2016, 30(5): 393-410. DOI: 10.7555/JBR.30.20160040
    [6]Sukhbir Kaur, Tejinder Kaur, Jyoti Joshi. Immunogenicity and protective efficacy of DNA vaccine against visceral leishmaniasis in BALB/c mice[J]. The Journal of Biomedical Research, 2016, 30(4): 304-313. DOI: 10.7555/JBR.30.20150125
    [7]Meilin Wang, Haiyan Chu, Zhengdong Zhang, Qingyi Wei. Molecular epidemiology of DNA repair gene polymorphisms and head and neck cancer[J]. The Journal of Biomedical Research, 2013, 27(3): 179-192. DOI: 10.7555/JBR.27.20130034
    [8]Qin Cui, Wen Wang, Zhenzhen Fu, Xin Shao, Zhihong Zhang, Mei Zhang, Xianxia Ju, Kunlin Wang, Jiawei Chen, Hongwen Zhou. Integrated DNA-based/biochemical screening for early diagnosis of multiple endocrine neoplasia type 2A (MEN2A)[J]. The Journal of Biomedical Research, 2013, 27(2): 145-150. DOI: 10.7555/JBR.27.20120121
    [9]Mani Udayakumar, Palaniyandi Shanmuga-priya, Kamalakannan Hemavathi, Rengasamy Seenivasagam. Active motif finder - a bio-tool based on mutational structures in DNA sequences[J]. The Journal of Biomedical Research, 2011, 25(6): 444-448. DOI: 10.1016/S1674-8301(11)60059-6
    [10]Bo Cui, Stewart P. Johnson, Nancy Bullock, Francis Ali-Osman, Darell D. Bigner, Henry S. Friedman. Decoupling of DNA damage response signaling from DNA damages underlies temozolomide resistance in glioblastoma cells[J]. The Journal of Biomedical Research, 2010, 24(6): 424-435. DOI: 10.1016/S1674-8301(10)60057-7
  • Cited by

    Periodical cited type(33)

    1. Swain S, Narayan RK, Mishra PR. Unraveling the interplay: exploring signaling pathways in pancreatic cancer in the context of pancreatic embryogenesis. Front Cell Dev Biol, 2024, 12: 1461278. DOI:10.3389/fcell.2024.1461278
    2. Mustafa M, Abbas K, Alam M, et al. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol, 2024, 14: 1427802. DOI:10.3389/fonc.2024.1427802
    3. Pramanik N, Gupta A, Ghanwatkar Y, et al. Recent advances in drug delivery and targeting for the treatment of pancreatic cancer. J Control Release, 2024, 366: 231-260. DOI:10.1016/j.jconrel.2023.12.053
    4. Oh K, Yoo YJ, Torre-Healy LA, et al. Coordinated single-cell tumor microenvironment dynamics reinforce pancreatic cancer subtype. Nat Commun, 2023, 14(1): 5226. DOI:10.1038/s41467-023-40895-6
    5. Jing J, Wu Z, Wang J, et al. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther, 2023, 8(1): 315. DOI:10.1038/s41392-023-01559-5
    6. Zhao Y, Qin C, Zhao B, et al. Pancreatic cancer stemness: dynamic status in malignant progression. J Exp Clin Cancer Res, 2023, 42(1): 122. DOI:10.1186/s13046-023-02693-2
    7. Dai M, Chen S, Teng X, et al. KRAS as a Key Oncogene in the Clinical Precision Diagnosis and Treatment of Pancreatic Cancer. J Cancer, 2022, 13(11): 3209-3220. DOI:10.7150/jca.76695
    8. McCubrey JA, Meher AK, Akula SM, et al. Wild type and gain of function mutant TP53 can regulate the sensitivity of pancreatic cancer cells to chemotherapeutic drugs, EGFR/Ras/Raf/MEK, and PI3K/mTORC1/GSK-3 pathway inhibitors, nutraceuticals and alter metabolic properties. Aging (Albany NY), 2022, 14(8): 3365-3386. DOI:10.18632/aging.204038
    9. Singh K, Shishodia G, Koul HK. Pancreatic cancer: genetics, disease progression, therapeutic resistance and treatment strategies. J Cancer Metastasis Treat, 2021, 7: 60. DOI:10.20517/2394-4722.2021.96
    10. Hafezi S, Saber-Ayad M, Abdel-Rahman WM. Highlights on the Role of KRAS Mutations in Reshaping the Microenvironment of Pancreatic Adenocarcinoma. Int J Mol Sci, 2021, 22(19): 10219. DOI:10.3390/ijms221910219
    11. Asif PJ, Longobardi C, Hahne M, et al. The Role of Cancer-Associated Fibroblasts in Cancer Invasion and Metastasis. Cancers (Basel), 2021, 13(18): 4720. DOI:10.3390/cancers13184720
    12. Chai JY, Sugumar V, Alshawsh MA, et al. The Role of Smoothened-Dependent and -Independent Hedgehog Signaling Pathway in Tumorigenesis. Biomedicines, 2021, 9(9): 1188. DOI:10.3390/biomedicines9091188
    13. Chekmarev J, Azad MG, Richardson DR. The Oncogenic Signaling Disruptor, NDRG1: Molecular and Cellular Mechanisms of Activity. Cells, 2021, 10(9): 2382. DOI:10.3390/cells10092382
    14. Viswakarma N, Sondarva G, Principe DR, et al. Mixed Lineage Kinase 3 phosphorylates prolyl-isomerase PIN1 and potentiates GLI1 signaling in pancreatic cancer development. Cancer Lett, 2021, 515: 1-13. DOI:10.1016/j.canlet.2021.04.015
    15. Weighill D, Ben Guebila M, Glass K, et al. Gene Targeting in Disease Networks. Front Genet, 2021, 12: 649942. DOI:10.3389/fgene.2021.649942
    16. Carter EP, Coetzee AS, Tomas Bort E, et al. Dissecting FGF Signalling to Target Cellular Crosstalk in Pancreatic Cancer. Cells, 2021, 10(4): 847. DOI:10.3390/cells10040847
    17. Abrams SL, Akula SM, Meher AK, et al. GSK-3β Can Regulate the Sensitivity of MIA-PaCa-2 Pancreatic and MCF-7 Breast Cancer Cells to Chemotherapeutic Drugs, Targeted Therapeutics and Nutraceuticals. Cells, 2021, 10(4): 816. DOI:10.3390/cells10040816
    18. Chippalkatti R, Abankwa D. Promotion of cancer cell stemness by Ras. Biochem Soc Trans, 2021, 49(1): 467-476. DOI:10.1042/BST20200964
    19. Mejia I, Bodapati S, Chen KT, et al. Pancreatic Adenocarcinoma Invasiveness and the Tumor Microenvironment: From Biology to Clinical Trials. Biomedicines, 2020, 8(10): 401. DOI:10.3390/biomedicines8100401
    20. He M, Henderson M, Muth S, et al. Preclinical mouse models for immunotherapeutic and non-immunotherapeutic drug development for pancreatic ductal adenocarcinoma. Ann Pancreat Cancer, 2020, 3: 7. DOI:10.21037/apc.2020.03.03
    21. Strapcova S, Takacova M, Csaderova L, et al. Clinical and Pre-Clinical Evidence of Carbonic Anhydrase IX in Pancreatic Cancer and Its High Expression in Pre-Cancerous Lesions. Cancers (Basel), 2020, 12(8): 2005. DOI:10.3390/cancers12082005
    22. Miller AL, Garcia PL, Yoon KJ. Developing effective combination therapy for pancreatic cancer: An overview. Pharmacol Res, 2020, 155: 104740. DOI:10.1016/j.phrs.2020.104740
    23. Baharudin R, Tieng FYF, Lee LH, et al. Epigenetics of SFRP1: The Dual Roles in Human Cancers. Cancers (Basel), 2020, 12(2): 445. DOI:10.3390/cancers12020445
    24. Sriram K, Salmerón C, Wiley SZ, et al. GPCRs in pancreatic adenocarcinoma: Contributors to tumour biology and novel therapeutic targets. Br J Pharmacol, 2020, 177(11): 2434-2455. DOI:10.1111/bph.15028
    25. Zaccari P, Cardinale V, Severi C, et al. Common features between neoplastic and preneoplastic lesions of the biliary tract and the pancreas. World J Gastroenterol, 2019, 25(31): 4343-4359. DOI:10.3748/wjg.v25.i31.4343
    26. Niyaz M, Khan MS, Mudassar S. Hedgehog Signaling: An Achilles' Heel in Cancer. Transl Oncol, 2019, 12(10): 1334-1344. DOI:10.1016/j.tranon.2019.07.004
    27. Singh AN, Sharma N. Epigenetic Modulators as Potential Multi-targeted Drugs Against Hedgehog Pathway for Treatment of Cancer. Protein J, 2019, 38(5): 537-550. DOI:10.1007/s10930-019-09832-9
    28. Kang X, Lin Z, Xu M, et al. Deciphering role of FGFR signalling pathway in pancreatic cancer. Cell Prolif, 2019, 52(3): e12605. DOI:10.1111/cpr.12605
    29. Ray P, Confeld M, Borowicz P, et al. PEG-b-poly (carbonate)-derived nanocarrier platform with pH-responsive properties for pancreatic cancer combination therapy. Colloids Surf B Biointerfaces, 2019, 174: 126-135. DOI:10.1016/j.colsurfb.2018.10.069
    30. Young K, Hughes DJ, Cunningham D, et al. Immunotherapy and pancreatic cancer: unique challenges and potential opportunities. Ther Adv Med Oncol, 2018, 10: 1758835918816281. DOI:10.1177/1758835918816281
    31. Kondratyeva LG, Chernov IP, Zinovyeva MV, et al. Heterogeneous Expression of Embryonal Development Master Regulator SOX9 in Patients with Pancreatic Cancer. Dokl Biochem Biophys, 2018, 481(1): 208-211. DOI:10.1134/S1607672918040087
    32. Kumar V, Mundra V, Peng Y, et al. Pharmacokinetics and biodistribution of polymeric micelles containing miRNA and small-molecule drug in orthotopic pancreatic tumor-bearing mice. Theranostics, 2018, 8(15): 4033-4049. DOI:10.7150/thno.24945
    33. Kondratyeva LG, Didych DA, Chernov IP, et al. Dependence of expression of regulatory master genes of embryonic development in pancreatic cancer cells on the intracellular concentration of the master regulator PDX1. Dokl Biochem Biophys, 2017, 475(1): 259-263. DOI:10.1134/S1607672917040056

    Other cited types(0)

Catalog

    Article Metrics

    Article views (2266) PDF downloads (210) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return