• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 2
Mar.  2021
Turn off MathJax
Article Contents
Colin T. Konishi, Chengzu Long. Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases[J]. The Journal of Biomedical Research, 2021, 35(2): 148-162. doi: 10.7555/JBR.34.20200105
Citation: Colin T. Konishi, Chengzu Long. Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases[J]. The Journal of Biomedical Research, 2021, 35(2): 148-162. doi: 10.7555/JBR.34.20200105

Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases

doi: 10.7555/JBR.34.20200105
More Information
  • Corresponding author: Chengzu Long, Leon H. Charney Division ofCardiology, Helen and Martin Kimmel Center forStem Cell Biology, Department of Neurology, Department of Neuroscience andPhysiology, New York UniversityGrossman School of Medicine, 435 East30th Street, New York, NY 10016, USA. Tel/Fax:+1-212-263-9100/+1-212-263-9115. E-mail: chengzu.long@nyumc.org
  • Received: 2020-07-10
  • Accepted: 2020-10-15
  • Published: 2020-11-27
  • Issue Date: 2021-03-26
  • There are an estimated 10 000 monogenic diseases affecting tens of millions of individuals worldwide. The application of CRISPR/Cas genome editing tools to treat monogenic diseases is an emerging strategy with the potential to generate personalized treatment approaches for these patients. CRISPR/Cas-based systems are programmable and sequence-specific genome editing tools with the capacity to generate base pair resolution manipulations to DNA or RNA. The complexity of genomic insults resulting in heritable disease requires patient-specific genome editing strategies with consideration of DNA repair pathways, and CRISPR/Cas systems of different types, species, and those with additional enzymatic capacity and/or delivery methods. In this review we aim to discuss broad and multifaceted therapeutic applications of CRISPR/Cas gene editing systems including in harnessing of homology directed repair, non-homologous end joining, microhomology-mediated end joining, and base editing to permanently correct diverse monogenic diseases.

     

  • loading
  • [1]
    WHO. Genes and human diseases[EB/OL]. [2019-03-21]. http://www.who.int/genomics/public/geneticdiseases/en/.
    [2]
    Prakash V, Moore M, Yáñez-Muñoz RJ. Current progress in therapeutic gene editing for monogenic diseases[J]. Mol Ther, 2016, 24(3): 465–474. doi: 10.1038/mt.2016.5
    [3]
    Ferla R, Calò V, Cascio S, et al. Founder mutations in BRCA1 and BRCA2 genes[J]. Ann Oncol, 2007, 18 Suppl 6: vi93–vi98. doi: 10.1093/annonc/mdm234
    [4]
    Strehlow V, Heyne HO, Vlaskamp DRM, et al. GRIN2A-related disorders: genotype and functional consequence predict phenotype[J]. Brain, 2019, 142(1): 80–92. doi: 10.1093/brain/awy304
    [5]
    Dravet C, Oguni H. Dravet syndrome (severe myoclonic epilepsy in infancy)[J]. Handbook Clin Neurol, 2013, 111: 627–633. doi: 10.1016/B978-0-444-52891-9.00065-8
    [6]
    Khan SH. Genome-editing technologies: concept, pros, and cons of various genome-editing techniques and bioethical concerns for clinical application[J]. Mol Ther - Nucleic Acids, 2019, 16: 326–334. doi: 10.1016/j.omtn.2019.02.027
    [7]
    Rath D, Amlinger L, Rath A, et al. The CRISPR-Cas immune system: biology, mechanisms and applications[J]. Biochimie, 2015, 117: 119–128. doi: 10.1016/j.biochi.2015.03.025
    [8]
    Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816–821. doi: 10.1126/science.1225829
    [9]
    Wiedenheft B, Sternberg SH, Doudna JA. RNA-guided genetic silencing systems in bacteria and archaea[J]. Nature, 2012, 482(7385): 331–338. doi: 10.1038/nature10886
    [10]
    Barrangou R, Marraffini LA. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity[J]. Mol Cell, 2014, 54(2): 234–244. doi: 10.1016/j.molcel.2014.03.011
    [11]
    Makarova KS, Haft DH, Barrangou R, et al. Evolution and classification of the CRISPR–Cas systems[J]. Nat Rev Microbiol, 2011, 9(6): 467–477. doi: 10.1038/nrmicro2577
    [12]
    Terns MP, Terns RM. CRISPR-based adaptive immune systems[J]. Curr Opin Microbiol, 2011, 14(3): 321–327. doi: 10.1016/j.mib.2011.03.005
    [13]
    Gasiunas G, Barrangou R, Horvath P, et al. Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci U S A, 2012, 109(39): E2579–E2586. doi: 10.1073/pnas.1208507109
    [14]
    Cong L, Ran FA, Cox D, et al. Multiplex genome engineering using CRISPR/Cas systems[J]. Science, 2013, 339(6121): 819–823. doi: 10.1126/science.1231143
    [15]
    Mali P, Yang LH, Esvelt KM, et al. RNA-guided human genome engineering via Cas9[J]. Science, 2013, 339(6121): 823–826. doi: 10.1126/science.1232033
    [16]
    Deltcheva E, Chylinski K, Sharma CM, et al. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III[J]. Nature, 2011, 471(7340): 602–607. doi: 10.1038/nature09886
    [17]
    Lee CM, Cradick TJ, Bao G. The Neisseria meningitidis CRISPR-Cas9 system enables specific genome editing in mammalian cells[J]. Mol Ther, 2016, 24(3): 645–654. doi: 10.1038/mt.2016.8
    [18]
    Gleditzsch D, Pausch P, Müller-Esparza H, et al. PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures[J]. RNA Biol, 2019, 16(4): 504–517. doi: 10.1080/15476286.2018.1504546
    [19]
    Hu JH, Miller SM, Geurts MH, et al. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity[J]. Nature, 2018, 556(7699): 57–63. doi: 10.1038/nature26155
    [20]
    Kleinstiver BP, Prew MS, Tsai SQ, et al. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition[J]. Nat Biotechnol, 2015, 33(12): 1293–1298. doi: 10.1038/nbt.3404
    [21]
    Nishimasu H, Shi X, Ishiguro S, et al. Engineered CRISPR-Cas9 nuclease with expanded targeting space[J]. Science, 2018, 361(6408): 1259–1262. doi: 10.1126/science.aas9129
    [22]
    Wang YM, Liu KI, Sutrisnoh NAB, et al. Systematic evaluation of CRISPR-Cas systems reveals design principles for genome editing in human cells[J]. Genome Biol, 2018, 19: 62. doi: 10.1186/s13059-018-1445-x
    [23]
    Zetsche B, Gootenberg JS, Abudayyeh OO, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system[J]. Cell, 2015, 163(3): 759–771. doi: 10.1016/j.cell.2015.09.038
    [24]
    Nishimasu H, Ran FA, Hsu PD, et al. Crystal structure of Cas9 in complex with guide RNA and target DNA[J]. Cell, 2014, 156(5): 935–949. doi: 10.1016/j.cell.2014.02.001
    [25]
    Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway[J]. Annu Rev Biochem, 2010, 79: 181–211. doi: 10.1146/annurev.biochem.052308.093131
    [26]
    Chapman JR, Taylor MRG, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice[J]. Mol Cell, 2012, 47(4): 497–510. doi: 10.1016/j.molcel.2012.07.029
    [27]
    Scully R, Panday A, Elango R, et al. DNA double-strand break repair-pathway choice in somatic mammalian cells[J]. Nat Rev Mol Cell Biol, 2019, 20(11): 698–714. doi: 10.1038/s41580-019-0152-0
    [28]
    Takata M, Sasaki MS, Sonoda E, et al. Homologous recombination and non-homologous end-joining pathways of DNA double-strand break repair have overlapping roles in the maintenance of chromosomal integrity in vertebrate cells[J]. EMBO J, 1998, 17(18): 5497–5508. doi: 10.1093/emboj/17.18.5497
    [29]
    Liu MJ, Rehman S, Tang XD, et al. Methodologies for improving HDR efficiency[J]. Front Genet, 2019, 9: 691. doi: 10.3389/fgene.2018.00691
    [30]
    Li K, Wang G, Andersen T, et al. Optimization of genome engineering approaches with the CRISPR/Cas9 system[J]. PLoS One, 2014, 9(8): e105779. doi: 10.1371/journal.pone.0105779
    [31]
    Song F, Stieger K. Optimizing the DNA donor template for homology-directed repair of double-strand breaks[J]. Mol Ther - Nucleic Acids, 2017, 7: 53–60. doi: 10.1016/j.omtn.2017.02.006
    [32]
    Richardson CD, Ray GJ, DeWitt MA, et al. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA[J]. Nat Biotechnol, 2016, 34(3): 339–344. doi: 10.1038/nbt.3481
    [33]
    Schumann K, Lin S, Boyer E, et al. Generation of knock-in primary human T cells using Cas9 ribonucleoproteins[J]. Proc Natl Acad Sci U S A, 2015, 112(33): 10437–10442. doi: 10.1073/pnas.1512503112
    [34]
    Zhang JP, Li XL, Li GH, et al. Efficient precise knockin with a double cut HDR donor after CRISPR/Cas9-mediated double-stranded DNA cleavage[J]. Genome Biol, 2017, 18(1): 35. doi: 10.1186/s13059-017-1164-8
    [35]
    Cideciyan AV. Leber congenital amaurosis due to RPE65 mutations and its treatment with gene therapy[J]. Prog Retin Eye Res, 2010, 29(5): 398–427. doi: 10.1016/j.preteyeres.2010.04.002
    [36]
    Maguire AM, Russell S, Wellman JA, et al. Efficacy, safety, and durability of voretigene neparvovec-rzyl in RPE65 mutation–associated inherited retinal dystrophy: results of phase 1 and 3 trials[J]. Ophthalmology, 2019, 126(9): 1273–1285. doi: 10.1016/j.ophtha.2019.06.017
    [37]
    Jo DH, Song DW, Cho CS, et al. CRISPR-Cas9–mediated therapeutic editing of Rpe65 ameliorates the disease phenotypes in a mouse model of Leber congenital amaurosis[J]. Sci Adv, 2019, 5(10): eaax1210. doi: 10.1126/sciadv.aax1210
    [38]
    Gordon N. Ornithine transcarbamylase deficiency: a urea cycle defect[J]. Eur J Paediatr Neur, 2003, 7(3): 115–121. doi: 10.1016/S1090-3798(03)00040-0
    [39]
    Yang Y, Wang LL, Bell P, et al. A dual AAV system enables the Cas9-mediated correction of a metabolic liver disease in newborn mice[J]. Nat Biotechnol, 2016, 34(3): 334–338. doi: 10.1038/nbt.3469
    [40]
    Aponte JL, Sega GA, Hauser LJ, et al. Point mutations in the murine fumarylacetoacetate hydrolase gene: animal models for the human genetic disorder hereditary tyrosinemia type 1[J]. Proc Natl Acad Sci U S A, 2001, 98(2): 641–645. doi: 10.1073/pnas.98.2.641
    [41]
    Paulk NK, Wursthorn K, Wang ZY, et al. Adeno-associated virus gene repair corrects a mouse model of hereditary tyrosinemia in vivo[J]. Hepatology, 2010, 51(4): 1200–1208. doi: 10.1002/hep.23481
    [42]
    VanLith CJ, Guthman RM, Nicolas CT, et al. Ex vivo hepatocyte reprograming promotes homology-directed DNA repair to correct metabolic disease in mice after transplantation[J]. Hepatol Commun, 2019, 3(4): 558–573. doi: 10.1002/hep4.1315
    [43]
    Yin H, Song CQ, Dorkin JR, et al. Therapeutic genome editing by combined viral and non-viral delivery of CRISPR system components in vivo[J]. Nat Biotechnol, 2016, 34(3): 328–333. doi: 10.1038/nbt.3471
    [44]
    Davis AJ, Chen DJ. DNA double strand break repair via non-homologous end-joining[J]. Transl Cancer Res, 2013, 2(3): 130–143. doi: 10.3978/j.issn.2218-676X.2013.04.02
    [45]
    Brandsma I, Van Gent DC. Pathway choice in DNA double strand break repair: observations of a balancing act[J]. Genome Integr, 2012, 3(1): 9. doi: 10.1186/2041-9414-3-9
    [46]
    Riley JL. PD-1 signaling in primary T cells[J]. Immunol Rev, 2009, 229(1): 114–125. doi: 10.1111/j.1600-065X.2009.00767.x
    [47]
    Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity[J]. Annu Rev Immunol, 2008, 26: 677–704. doi: 10.1146/annurev.immunol.26.021607.090331
    [48]
    Hu WH, Zi ZG, Jin YL, et al. CRISPR/Cas9-mediated PD-1 disruption enhances human mesothelin-targeted CAR T cell effector functions[J]. Cancer Immunol Immunother, 2019, 68(3): 365–377. doi: 10.1007/s00262-018-2281-2
    [49]
    Chinese PLA General Hospital. Study of CRISPR-Cas9 mediated PD-1 and TCR gene-knocked out mesothelin-directed CAR-T cells in patients with mesothelin positive multiple solid tumors[EB/OL]. [2018-06-04]. https://clinicaltrials.gov/ct2/show/record/NCT03545815.
    [50]
    Antony JS, Haque AKMA, Lamsfus‐Calle A, et al. CRISPR/Cas9 system: a promising technology for the treatment of inherited and neoplastic hematological diseases[J]. Adv Cell Gene Ther, 2018, 1(1): e10. doi: 10.1002/acg2.10
    [51]
    Cavazzana M, Antoniani C, Miccio A. Gene therapy for β-hemoglobinopathies[J]. Mol Ther, 2017, 25(5): 1142–1154. doi: 10.1016/j.ymthe.2017.03.024
    [52]
    Sankaran VG, Orkin SH. The switch from fetal to adult hemoglobin[J]. Cold Spring Harb Perspect Med, 2013, 3(1): a011643. doi: 10.1101/cshperspect.a011643
    [53]
    Sokolova A, Mararenko A, Rozin A, et al. Hereditary persistence of hemoglobin F is protective against red cell sickling. A case report and brief review[J]. Hematol/Oncol Stem Cell Ther, 2019, 12(4): 215–219. doi: 10.1016/j.hemonc.2017.09.003
    [54]
    Xu J, Peng C, Sankaran VG, et al. Correction of Sickle Cell Disease in Adult Mice by Interference with Fetal Hemoglobin Silencing[J]. Science, 2011, 334(6058): 993–996. doi: 10.1126/science.1211053
    [55]
    Bjurström CF, Mojadidi M, Phillips J, et al. Reactivating fetal hemoglobin expression in human adult erythroblasts through BCL11A knockdown using targeted endonucleases[J]. Mol Ther - Nucleic Acids, 2016, 5: e351. doi: 10.1038/mtna.2016.52
    [56]
    Vertex Pharmaceuticals Incorporated. A safety and efficacy study evaluating CTX001 in subjects with severe sickle cell disease[EB/OL]. [2018-11-19]. https://clinicaltrials.gov/ct2/show/NCT03745287.
    [57]
    CRISPR therapeutics and vertex announce positive safety and efficacy data from first two patients treated with investigational CRISPR/Cas9 gene-editing therapy CTX001® for severe hemoglobinopathies[EB/OL]. [2019-11-19]. https://investors.vrtx.com/news-releases/news-release-details/crispr-therapeutics-and-vertex-announce-positive-safety-and.
    [58]
    Scotti MM, Swanson MS. RNA mis-splicing in disease[J]. Nat Rev Genet, 2016, 17(1): 19–32. doi: 10.1038/nrg.2015.3
    [59]
    Faustino NA, Cooper TA. Pre-mRNA splicing and human disease[J]. Genes Dev, 2003, 17(4): 419–437. doi: 10.1101/gad.1048803
    [60]
    Maeder ML, Stefanidakis M, Wilson CJ, et al. Development of a gene-editing approach to restore vision loss in Leber congenital amaurosis type 10[J]. Nat Med, 2019, 25(2): 229–233. doi: 10.1038/s41591-018-0327-9
    [61]
    Geller AM, Sieving PA. Assessment of foveal cone photoreceptors in Stargardt's macular dystrophy using a small dot detection task[J]. Vision Res, 1993, 33(11): 1509–1524. doi: 10.1016/0042-6989(93)90144-L
    [62]
    Allergan. Single ascending dose study in participants with LCA10[EB/OL]. [2019-03-13]. https://clinicaltrials.gov/ct2/show/NCT03872479.
    [63]
    Campbell KP, Kahl SD. Association of dystrophin and an integral membrane glycoprotein[J]. Nature, 1989, 338(6212): 259–262. doi: 10.1038/338259a0
    [64]
    Yokota T, Duddy W, Partridge T. Optimizing exon skipping therapies for DMD[J]. Acta Myol, 2007, 26(3): 179–184. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2949311/
    [65]
    Long CZ, Li H, Tiburcy M, et al. Correction of diverse muscular dystrophy mutations in human engineered heart muscle by single-site genome editing[J]. Sci Adv, 2018, 4(1): eaap9004. doi: 10.1126/sciadv.aap9004
    [66]
    Shen MW, Arbab M, Hsu JY, et al. Predictable and precise template-free CRISPR editing of pathogenic variants[J]. Nature, 2018, 563(7733): 646–651. doi: 10.1038/s41586-018-0686-x
    [67]
    Chakrabarti AM, Henser-Brownhill T, Monserrat J, et al. Target-specific precision of CRISPR-mediated genome editing[J]. Mol Cell, 2019, 73(4): 699–713. doi: 10.1016/j.molcel.2018.11.031
    [68]
    Allen F, Crepaldi L, Alsinet C, et al. Predicting the mutations generated by repair of Cas9-induced double-strand breaks[J]. Nat Biotechnol, 2019, 37(1): 64–72. doi: 10.1038/nbt.4317
    [69]
    Nalepa G, Clapp DW. Fanconi anaemia and cancer: an intricate relationship[J]. Nat Rev Cancer, 2018, 18(3): 168–185. doi: 10.1038/nrc.2017.116
    [70]
    Ceccaldi R, Sarangi P, D'Andrea AD. The Fanconi anaemia pathway: new players and new functions[J]. Nat Rev Mol Cell Biol, 2016, 17(6): 337–349. doi: 10.1038/nrm.2016.48
    [71]
    Román-Rodríguez FJ, Ugalde L, Álvarez L, et al. NHEJ-mediated repair of CRISPR-Cas9-induced DNA breaks efficiently corrects mutations in HSPCs from patients with fanconi anemia[J]. Cell Stem Cell, 2019, 25(5): 607–621. doi: 10.1016/j.stem.2019.08.016
    [72]
    Sfeir A, Symington LS. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway?[J]. Trends Biochem Sci, 2015, 40(11): 701–714. doi: 10.1016/j.tibs.2015.08.006
    [73]
    Truong LN, Li YJ, Shi LZ, et al. Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells[J]. Proc Natl Acad Sci U S A, 2013, 110(19): 7720–7725. doi: 10.1073/pnas.1213431110
    [74]
    Ottaviani D, LeCain M, Sheer D. The role of microhomology in genomic structural variation[J]. Trends Genet, 2014, 30(3): 85–94. doi: 10.1016/j.tig.2014.01.001
    [75]
    Moreira ES, Wiltshire TJ, Faulkner G, et al. Limb-girdle muscular dystrophy type 2G is caused by mutations in the gene encoding the sarcomeric protein telethonin[J]. Nat Genet, 2000, 24(2): 163–166. doi: 10.1038/72822
    [76]
    Iyer S, Suresh S, Guo DS, et al. Precise therapeutic gene correction by a simple nuclease-induced double-stranded break[J]. Nature, 2019, 568(7753): 561–565. doi: 10.1038/s41586-019-1076-8
    [77]
    Nakade S, Tsubota T, Sakane Y, et al. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9[J]. Nat Commun, 2014, 5: 5560. doi: 10.1038/ncomms6560
    [78]
    Yao X, Wang X, Liu JL, et al. CRISPR/Cas9 – mediated precise targeted integration in vivo using a double cut donor with short homology arms[J]. EBioMedicine, 2017, 20: 19–26. doi: 10.1016/j.ebiom.2017.05.015
    [79]
    Lau CH, Suh Y. In vivo genome editing in animals using AAV-CRISPR system: applications to translational research of human disease[J]. F1000Res, 2017, 6: 2153. doi: 10.12688/f1000research.11243.1
    [80]
    Zincarelli C, Soltys S, Rengo G, et al. Analysis of AAV serotypes 1–9 mediated gene expression and tropism in mice after systemic injection[J]. Mol Ther, 2008, 16(6): 1073–1080. doi: 10.1038/mt.2008.76
    [81]
    Samulski RJ, Muzyczka N. AAV-mediated gene therapy for research and therapeutic purposes[J]. Annu Rev Virol, 2014, 1: 427–451. doi: 10.1146/annurev-virology-031413-085355
    [82]
    Moreno AM, Fu X, Zhu J, et al. In situ gene therapy via AAV-CRISPR-Cas9-mediated targeted gene regulation[J]. Mol Ther, 2018, 26(7): 1818–1827. doi: 10.1016/j.ymthe.2018.04.017
    [83]
    Nishiguchi KM, Fujita K, Miya F, et al. Single AAV-mediated mutation replacement genome editing in limited number of photoreceptors restores vision in mice[J]. Nat Commun, 2020, 11(1): 482. doi: 10.1038/s41467-019-14181-3
    [84]
    Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420–424. doi: 10.1038/nature17946
    [85]
    Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464–471. doi: 10.1038/nature24644
    [86]
    Komor AC, Zhao KT, Packer MS, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity[J]. Sci Adv, 2017, 3(8): eaao4774. doi: 10.1126/sciadv.aao4774
    [87]
    Koblan LW, Doman JL, Wilson C, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J]. Nat Biotechnol, 2018, 36(9): 843–846. doi: 10.1038/nbt.4172
    [88]
    Ramirez F, Dietz HC. Marfan syndrome: from molecular pathogenesis to clinical treatment[J]. Curr Opin Genet Dev, 2007, 17(3): 252–258. doi: 10.1016/j.gde.2007.04.006
    [89]
    Pepe G, Giusti B, Sticchi E, Abbate R, Gensini GF, Nistri S. Marfan syndrome: current perspectives[J]. Appl Clin Genet, 2016, 9: 55–65. doi: 10.2147/TACG.S96233
    [90]
    Rees HA, Liu DR. Base editing: precision chemistry on the genome and transcriptome of living cells[J]. Nat Rev Genet, 2018, 19(12): 770–788. doi: 10.1038/s41576-018-0059-1
    [91]
    Zeng YT, Li JN, Li GL, et al. Correction of the Marfan syndrome pathogenic FBN1 mutation by base editing in human cells and heterozygous embryos[J]. Mol Ther, 2018, 26(11): 2631–2637. doi: 10.1016/j.ymthe.2018.08.007
    [92]
    Billon P, Bryant EE, Joseph SA, et al. CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP Codons[J]. Mol Cell, 2017, 67(6): 1068–1079. doi: 10.1016/j.molcel.2017.08.008
    [93]
    Kuscu C, Parlak M, Tufan T, et al. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations[J]. Nat Methods, 2017, 14(7): 710–712. doi: 10.1038/nmeth.4327
    [94]
    Lim CKW, Gapinske M, Brooks AK, et al. Treatment of a mouse model of ALS by in vivo base editing[J]. Mol Ther, 2020, 28(4): 1177–1189. doi: 10.1016/j.ymthe.2020.01.005
    [95]
    Wang XJ, Liu ZW, Li GL, et al. Efficient gene silencing by adenine base editor-mediated start codon mutation[J]. Mol Ther, 2020, 28(2): 431–440. doi: 10.1016/j.ymthe.2019.11.022
    [96]
    Ratjen F, Bell SC, Rowe SM, et al. Cystic fibrosis[J]. Nat Rev Dis Primers, 2015, 1(1): 15010. doi: 10.1038/nrdp.2015.10
    [97]
    Geurts MH, De Poel E, Amatngalim GD, et al. CRISPR-based adenine editors correct nonsense mutations in a cystic fibrosis organoid biobank[J]. Cell Stem Cell, 2020, 26(4): 503–510. doi: 10.1016/j.stem.2020.01.019
    [98]
    Green DM, McDougal KE, Blackman SM, et al. Mutations that permit residual CFTR function delay acquisition of multiple respiratory pathogens in CF patients[J]. Respir Res, 2010, 11(1): 140. doi: 10.1186/1465-9921-11-140
    [99]
    Ferec C, Cutting GR. Assessing the disease-liability of mutations in CFTR[J]. Cold Spring Harb Perspect Med, 2012, 2(12): a009480. doi: 10.1101/cshperspect.a009480
    [100]
    Grünewald J, Zhou RB, Lareau CA, et al. A dual-deaminase CRISPR base editor enables concurrent adenine and cytosine editing[J]. Nat Biotechnol, 2020, 38(7): 861–864. doi: 10.1038/s41587-020-0535-y
    [101]
    Zhang XH, Zhu BY, Chen L, et al. Dual base editor catalyzes both cytosine and adenine base conversions in human cells[J]. Nat Biotechnol, 2020, 38(7): 856–860. doi: 10.1038/s41587-020-0527-y
    [102]
    Sakata RC, Ishiguro S, Mori H, et al. Base editors for simultaneous introduction of C-to-T and A-to-G mutations[J]. Nat Biotechnol, 2020, 38(7): 865–869. doi: 10.1038/s41587-020-0509-0
    [103]
    Wienert B, Martyn GE, Funnell APW, et al. Wake-up sleepy gene: reactivating fetal globin for β-hemoglobinopathies[J]. Trends Genet, 2018, 34(12): 927–940. doi: 10.1016/j.tig.2018.09.004
    [104]
    Martyn GE, Wienert B, Kurita R, et al. A natural regulatory mutation in the proximal promoter elevates fetal globin expression by creating a de novo GATA1 site[J]. Blood, 2019, 133(8): 852–856. doi: 10.1182/blood-2018-07-863951
    [105]
    Anzalone AV, Randolph PB, Davis JR, et al. Search-and-replace genome editing without double-strand breaks or donor DNA[J]. Nature, 2019, 576(7785): 149–157. doi: 10.1038/s41586-019-1711-4
    [106]
    Bostick B, Yue YP, Long C, et al. Prevention of dystrophin-deficient cardiomyopathy in twenty-one-month-old carrier mice by mosaic dystrophin expression or complementary dystrophin/utrophin expression[J]. Circ Res, 2008, 102(1): 121–130. doi: 10.1161/CIRCRESAHA.107.162982
    [107]
    Verdera HC, Kuranda K, Mingozzi F. AAV vector immunogenicity in humans: a long journey to successful gene transfer[J]. Mol Ther, 2020, 28(3): 723–746. doi: 10.1016/j.ymthe.2019.12.010
    [108]
    Hanlon KS, Kleinstiver BP, Garcia SP, et al. High levels of AAV vector integration into CRISPR-induced DNA breaks[J]. Nat Commun, 2019, 10(1): 4439. doi: 10.1038/s41467-019-12449-2
    [109]
    Mangeot PE, Risson V, Fusil F, et al. Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins[J]. Nat Commun, 2019, 10(1): 45. doi: 10.1038/s41467-018-07845-z
    [110]
    Zhang LM, Wang P, Feng Q, et al. Lipid nanoparticle-mediated efficient delivery of CRISPR/Cas9 for tumor therapy[J]. NPG Asia Mater, 2017, 9(10): e441. doi: 10.1038/AM.2017.185
    [111]
    Cheng WJ, Chen LC, Ho HO, et al. Stearyl polyethylenimine complexed with plasmids as the core of human serum albumin nanoparticles noncovalently bound to CRISPR/Cas9 plasmids or siRNA for disrupting or silencing PD-L1 expression for immunotherapy[J]. Int J Nanomedicine, 2018, 13: 7079–7094. doi: 10.2147/IJN.S181440
    [112]
    Zhang XH, Tee LY, Wang XG, et al. Off-target effects in CRISPR/Cas9-mediated genome engineering[J]. Mol Ther - Nucleic Acids, 2015, 4: e264. doi: 10.1038/mtna.2015.37
    [113]
    Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9): 827–832. doi: 10.1038/nbt.2647
    [114]
    Cho SW, Kim S, Kim Y, et al. Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases[J]. Genome Res, 2014, 24(1): 132–141. doi: 10.1101/gr.162339.113
    [115]
    Kim D, Bae S, Park J, et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells[J]. Nat Methods, 2015, 12(3): 237–243. doi: 10.1038/nmeth.3284
    [116]
    Kleinstiver BP, Pattanayak V, Prew MS, et al. High-fidelity CRISPR–Cas9 nucleases with no detectable genome-wide off-target effects[J]. Nature, 2016, 529(7587): 490–495. doi: 10.1038/nature16526
    [117]
    Slaymaker IM, Gao LY, Zetsche B, et al. Rationally engineered Cas9 nucleases with improved specificity[J]. Science, 2016, 351(6268): 84–88. doi: 10.1126/science.aad5227
    [118]
    Kim D, Kim DE, Lee G, et al. Genome-wide target specificity of CRISPR RNA-guided adenine base editors[J]. Nat Biotechnol, 2019, 37(4): 430–435. doi: 10.1038/s41587-019-0050-1
    [119]
    Jin S, Zong Y, Gao Q, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice[J]. Science, 2019, 364(6437): 292–295. doi: 10.1126/science.aaw7166
    [120]
    Zuo EW, Sun YD, Wei W, et al. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos[J]. Science, 2019, 364(6437): 289–292. doi: 10.1126/science.aav9973
    [121]
    Grünewald J, Zhou RH, Iyer S, et al. CRISPR DNA base editors with reduced RNA off-target and self-editing activities[J]. Nat Biotechnol, 2019, 37(9): 1041–1048. doi: 10.1038/s41587-019-0236-6
    [122]
    Grünewald J, Zhou RH, Garcia SP, et al. Transcriptome-wide off-target RNA editing induced by CRISPR-guided DNA base editors[J]. Nature, 2019, 569(7756): 433–437. doi: 10.1038/s41586-019-1161-z
    [123]
    Zhou CY, Sun YD, Yan R, et al. Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis[J]. Nature, 2019, 571(7764): 275–278. doi: 10.1038/s41586-019-1314-0
    [124]
    Lee HK, Willi M, Miller SM, et al. Targeting fidelity of adenine and cytosine base editors in mouse embryos[J]. Nat Commun, 2018, 9(1): 4804. doi: 10.1038/s41467-018-07322-7
    [125]
    Liang PP, Xie XW, Zhi SY, et al. Genome-wide profiling of adenine base editor specificity by EndoV-seq[J]. Nat Commun, 2019, 10(1): 67. doi: 10.1038/s41467-018-07988-z
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)

    Article Metrics

    Article views (264) PDF downloads(67) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return