4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Jia Meiqun, Ren Lulu, Hu Lingmin, Ma Hongxia, Jin Guangfu, Li Dake, Li Ni, Hu Zhibin, Hang Dong. Association of long non-coding RNA HOTAIR and MALAT1 variants with cervical cancer risk in Han Chinese women[J]. The Journal of Biomedical Research, 2019, 33(5): 308-316. DOI: 10.7555/JBR.33.20180096
Citation: Jia Meiqun, Ren Lulu, Hu Lingmin, Ma Hongxia, Jin Guangfu, Li Dake, Li Ni, Hu Zhibin, Hang Dong. Association of long non-coding RNA HOTAIR and MALAT1 variants with cervical cancer risk in Han Chinese women[J]. The Journal of Biomedical Research, 2019, 33(5): 308-316. DOI: 10.7555/JBR.33.20180096

Association of long non-coding RNA HOTAIR and MALAT1 variants with cervical cancer risk in Han Chinese women

More Information
  • Corresponding author:

    Dong Hang and Zhibin Hu, Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, No. 101 Longmian Ave, Nanjing, Jiangsu 211166, China. Tel/Fax: +86-25-8686-8438/+86-25-8686-8437, E-mails: hangdong@njmu.edu.cn and zhibin_hu@njmu.edu.cn

    hangdong@njmu.edu.cn

  • Received Date: September 30, 2018
  • Revised Date: December 02, 2019
  • Accepted Date: February 25, 2019
  • Available Online: April 29, 2019
  • Long noncoding RNA (lncRNA) HOTAIR and MALAT1 are implicated in the development of multiple cancers. Genetic variants within HOTAIR and MALAT1 may affect the gene expression, thereby modifying genetic susceptibility to cervical cancer. A case-control study was designed, including 1 486 cervical cancer patients and 1 536 healthy controls. Based on RegulomeDB database, 11 SNPs were selected and genotyped by using Sequenom's Mass ARRAY. Univariate and multivariate logistic regression models were used to calculate the odds ratio (OR) and 95% confidence interval (CI). We found that the A allele of rs35643724 in HOTAIR was associated with increased risk of cervical cancer, while the C allele of rs1787666 in MALAT1 was associated with decreased risk. Compared to individuals with 0–1 unfavorable allele, those with 3–4 unfavorable alleles showed 18% increased odds of having cervical cancer. Our findings suggest that HOTAIR rs35643724 and MALAT1 rs1787666 might represent potential biomarkers for cervical cancer susceptibility.
  • [1]
    Torre LA, Islami F, Siegel RL, et al. Global cancer in women: burden and trends[J]. Cancer Epidemiol Biomarkers Prev, 2017, 26(4): 444–457. doi: 10.1158/1055-9965.EPI-16-0858
    [2]
    Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359–E386. doi: 10.1002/ijc.29210
    [3]
    zur Hausen H. Papillomaviruses and cancer: from basic studies to clinical application[J]. Nat Rev Cancer, 2002, 2(5): 342–350. doi: 10.1038/nrc798
    [4]
    Dalstein V, Riethmuller D, Prétet JL, et al. Persistence and load of high-risk HPV are predictors for development of high-grade cervical lesions: a longitudinal French cohort study[J]. Int J Cancer, 2003, 106(3): 396–403. doi: 10.1002/ijc.11222
    [5]
    Kulasingam SL, Hughes JP, Kiviat NB, et al. Evaluation of human papillomavirus testing in primary screening for cervical abnormalities: comparison of sensitivity, specificity, and frequency of referral[J]. JAMA, 2002, 288(14): 1749–1757. doi: 10.1001/jama.288.14.1749
    [6]
    de Freitas AC, Gurgel APAD, Chagas BS, et al. Susceptibility to cervical cancer: an overview[J]. Gynecol Oncol, 2012, 126(2): 304–311. doi: 10.1016/j.ygyno.2012.03.047
    [7]
    Sud A, Kinnersley B, Houlston RS. Genome-wide association studies of cancer: current insights and future perspectives[J]. Nat Rev Cancer, 2017, 17(11): 692–704. doi: 10.1038/nrc.2017.82
    [8]
    Pennisi E. Disease risk links to gene regulation[J]. Science, 2011, 332(6033): 1031. doi: 10.1126/science.332.6033.1031
    [9]
    Kumar V, Wijmenga C, Withoff S. From genome-wide association studies to disease mechanisms: celiac disease as a model for autoimmune diseases[J]. Semin Immunopathol, 2012, 34(4): 567–580. doi: 10.1007/s00281-012-0312-1
    [10]
    Chen D, Juko-Pecirep I, Hammer J, et al. Genome-wide association study of susceptibility loci for cervical cancer[J]. J Natl Cancer Inst, 2013, 105(9): 624–633. doi: 10.1093/jnci/djt051
    [11]
    Shi YY, Li L, Hu ZB, et al. A genome-wide association study identifies two new cervical cancer susceptibility loci at 4q12 and 17q12[J]. Nat Genet, 2013, 45(8): 918–922. doi: 10.1038/ng.2687
    [12]
    Miura K, Mishima H, Kinoshita A, et al. Genome-wide association study of HPV-associated cervical cancer in Japanese women[J]. J Med Virol, 2014, 86(7): 1153–1158. doi: 10.1002/jmv.v86.7
    [13]
    Chen D, Gyllensten U. Lessons and implications from association studies and post-GWAS analyses of cervical cancer[J]. Trends Genet, 2015, 31(1): 41–54. doi: 10.1016/j.tig.2014.10.005
    [14]
    Chen D, Enroth S, Ivansson E, et al. Pathway analysis of cervical cancer genome-wide association study highlights the MHC region and pathways involved in response to infection[J]. Hum Mol Genet, 2014, 23(22): 6047–6060. doi: 10.1093/hmg/ddu304
    [15]
    Cabili MN, Trapnell C, Goff L, et al. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses[J]. Genes Dev, 2011, 25(18): 1915–1927. doi: 10.1101/gad.17446611
    [16]
    Hajjari M, Salavaty A. HOTAIR: an oncogenic long non-coding RNA in different cancers[J]. Cancer Biol Med, 2015, 12(1): 1–9.
    [17]
    Sharma S, Mandal P, Sadhukhan T, et al. Bridging links between long noncoding RNA HOTAIR and HPV oncoprotein E7 in cervical cancer pathogenesis[J]. Sci Rep, 2015, 5: 11724. doi: 10.1038/srep11724
    [18]
    Sharma Saha S, Roy Chowdhury R, Mondal NR, et al. Identification of genetic variation in the lncRNA HOTAIR associated with HPV16-related cervical cancer pathogenesis[J]. Cell Oncol (Dordr), 2016, 39(6): 559–572.
    [19]
    Gutschner T, Hämmerle M, Diederichs S. MALAT1—a paradigm for long noncoding RNA function in cancer[J]. J Mol Med (Berl), 2013, 91(7): 791–801. doi: 10.1007/s00109-013-1028-y
    [20]
    Jiang Y, Li YH, Fang SJ, et al. The role of MALAT1 correlates with HPV in cervical cancer[J]. Oncol Lett, 2014, 7(6): 2135–2141. doi: 10.3892/ol.2014.1996
    [21]
    Peng L, Yuan XQ, Jiang BY, et al. LncRNAs: key players and novel insights into cervical cancer[J]. Tumour Biol, 2016, 37(3): 2779–2788. doi: 10.1007/s13277-015-4663-9
    [22]
    Pan WT, Liu LS, Wei JY, et al. A functional lncRNA HOTAIR genetic variant contributes to gastric cancer susceptibility[J]. Mol Carcinog, 2016, 55(1): 90–96. doi: 10.1002/mc.22261
    [23]
    Yan R, Cao JJ, Song CH, et al. Polymorphisms in lncRNA HOTAIR and susceptibility to breast cancer in a Chinese population[J]. Cancer Epidemiol, 2015, 39(6): 978–985. doi: 10.1016/j.canep.2015.10.025
    [24]
    Qiu HF, Wang XJ, Guo RX, et al. HOTAIR rs920778 polymorphism is associated with ovarian cancer susceptibility and poor prognosis in a Chinese population[J]. Future Oncol, 2017, 13(4): 347–355. doi: 10.2217/fon-2016-0290
    [25]
    Han J, Zhou W, Jia MQ, et al. Expression quantitative trait loci in long non-coding RNA PAX8-AS1 are associated with decreased risk of cervical cancer[J]. Mol Genet Genomics, 2016, 291(4): 1743–1748. doi: 10.1007/s00438-016-1217-9
    [26]
    Boyle AP, Hong EL, Hariharan M, et al. Annotation of functional variation in personal genomes using RegulomeDB[J]. Genome Res, 2012, 22(9): 1790–1797. doi: 10.1101/gr.137323.112
    [27]
    Lettre G, Lange C, Hirschhorn JN. Genetic model testing and statistical power in population-based association studies of quantitative traits[J]. Genet Epidemiol, 2007, 31(4): 358–362. doi: 10.1002/(ISSN)1098-2272
    [28]
    Zhang ZX, Tong X, Zhang WN, et al. Association between the HOTAIR polymorphisms and cancer risk: an updated meta-analysis[J]. Oncotarget, 2017, 8(3): 4460–4470.
    [29]
    Guo LS, Lu XG, Zheng LJ, et al. Association of long non-coding RNA HOTAIR polymorphisms with cervical cancer risk in a chinese population[J]. PLoS One, 2016, 11(7): e0160039. doi: 10.1371/journal.pone.0160039
    [30]
    Jin H, Lu XY, Ni J, et al. HOTAIR rs7958904 polymorphism is associated with increased cervical cancer risk in a Chinese population[J]. Sci Rep, 2017, 7(1): 3144. doi: 10.1038/s41598-017-03174-1
    [31]
    Li YJ, Bao CZ, Gu SM, et al. Associations between novel genetic variants in the promoter region of MALAT1 and risk of colorectal cancer[J]. Oncotarget, 2017, 8(54): 92604–92614.
    [32]
    Wang BG, Xu Q, Lv Z, et al. Association of twelve polymorphisms in three onco-lncRNA genes with hepatocellular cancer risk and prognosis: a case-control study[J]. World J Gastroenterol, 2018, 24(23): 2482–2490. doi: 10.3748/wjg.v24.i23.2482
    [33]
    Peng R, Luo CL, Guo QY, et al. Association analyses of genetic variants in long non-coding RNA MALAT1 with breast cancer susceptibility and mRNA expression of MALAT1 in Chinese Han population[J]. Gene, 2018, 642: 241–248. doi: 10.1016/j.gene.2017.11.013
    [34]
    Chen SQ, Zhang HM, Li JB, et al. Analyzing simultaneous positive expression of EZH2 and P53 protein to improve predictive value in cervical squamous cell carcinoma[J]. Int J Gynecol Cancer, 2014, 24(9): 1653–1658. doi: 10.1097/IGC.0000000000000273
    [35]
    Azizmohammadi S, Azizmohammadi S, Safari A, et al. High-level expression of RIPK4 and EZH2 contributes to lymph node metastasis and predicts favorable prognosis in patients with cervical cancer[J]. Oncol Res, 2017, 25(4): 495–501. doi: 10.3727/096504016X14749735594687
    [36]
    Jin MF, Yang ZJ, Ye WP, et al. Prognostic significance of histone methyltransferase enhancer of zeste homolog 2 in patients with cervical squamous cell carcinoma[J]. Oncol Lett, 2015, 10(2): 857–862. doi: 10.3892/ol.2015.3319
    [37]
    Yang L, Bai HS, Deng Y, et al. High MALAT1 expression predicts a poor prognosis of cervical cancer and promotes cancer cell growth and invasion[J]. Eur Rev Med Pharmacol Sci, 2015, 19(17): 3187–3193.
    [38]
    Guo FJ, Li YL, Liu Y, et al. Inhibition of metastasis-associated lung adenocarcinoma transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion[J]. Acta Biochim Biophys Sin (Shanghai), 2010, 42(3): 224–229. doi: 10.1093/abbs/gmq008
  • Related Articles

    [1]Yuetong Chen, Chen Li, Yi Shi, Jiali Dai, Yixuan Meng, Shuwei Li, Cuiju Tang, Dongying Gu, Jinfei Chen. Identification of common genetic variants in KCNQ family genes associated with gastric cancer survival in a Chinese population[J]. The Journal of Biomedical Research, 2025, 39(1): 76-86. DOI: 10.7555/JBR.38.20240040
    [2]Chen Li, Kerui Wang, Xingfeng Mao, Xiuxiu Liu, Yingmei Lu. Upregulated inwardly rectifying K+ current-mediated hypoactivity of parvalbumin interneuron underlies autism-like deficits in Bod1-deficient mice[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240394
    [3]Yifei Cheng, Rongjie Shi, Shuai Ben, Silu Chen, Shuwei Li, Junyi Xin, Meilin Wang, Gong Cheng. Genetic variation of circHIBADH enhances prostate cancer risk through regulating HNRNPA1-related RNA splicing[J]. The Journal of Biomedical Research, 2024, 38(4): 358-368. DOI: 10.7555/JBR.38.20240030
    [4]Mengfan Guo, Jingyuan Liu, Yujuan Zhang, Jingjing Gu, Junyi Xin, Mulong Du, Haiyan Chu, Meilin Wang, Hanting Liu, Zhengdong Zhang. Genetic variants in C1GALT1 are associated with gastric cancer risk by influencing immune infiltration[J]. The Journal of Biomedical Research, 2024, 38(4): 348-357. DOI: 10.7555/JBR.37.20230161
    [5]Xiaoqing Yuan, Yawei Liu, Xule Yang, Yun Huang, Xuan Shen, Hui Liang, Hongwen Zhou, Qian Wang, Xu Zhang, John Zhong Li. Long noncoding RNA lnc_217 regulates hepatic lipid metabolism by modulating lipogenesis and fatty acid oxidation[J]. The Journal of Biomedical Research, 2023, 37(6): 448-459. DOI: 10.7555/JBR.37.20230075
    [6]Ting Liu, Jingjing Gu, Chuning Li, Mengfan Guo, Lin Yuan, Qiang Lv, Chao Qin, Mulong Du, Haiyan Chu, Hanting Liu, Zhengdong Zhang. Alternative polyadenylation-related genetic variants contribute to bladder cancer risk[J]. The Journal of Biomedical Research, 2023, 37(6): 405-417. DOI: 10.7555/JBR.37.20230063
    [7]Wang Jing, He Xuezhi, Lu Xiyi, Amin Karim Muhammad, Miao Dengshun, Zhang Erbao. A novel long non-coding RNA NFIA-AS1 is down-regulated in gastric cancer and inhibits proliferation of gastric cancer cells[J]. The Journal of Biomedical Research, 2019, 33(6): 371-381. DOI: 10.7555/JBR.33.20190015
    [8]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [9]Jianwei Zhao, Lin Liu, Anqing Zhang, Qin Chen, Wenxiang Fang, Lizhi Zeng, Jiachun Lu. Effect of EME1 exon variant Ile350Thr on risk and early onset of breast cancer in southern Chinese women[J]. The Journal of Biomedical Research, 2013, 27(3): 193-201. DOI: 10.7555/JBR.27.20130013
    [10]Xiaojun Chen, Jie Jiang, Hongbing Shen, Zhibin Hu. Genetic susceptibility of cervical cancer[J]. The Journal of Biomedical Research, 2011, 25(3): 155-164. DOI: 10.1016/S1674-8301(11)60020-1
  • Cited by

    Periodical cited type(9)

    1. Ruidas B, Sur TK, Das Mukhopadhyay C, et al. Quercetin: a silent retarder of fatty acid oxidation in breast cancer metastasis through steering of mitochondrial CPT1. Breast Cancer, 2022. DOI:10.1007/s12282-022-01356-y. Online ahead of print
    2. Persano F, Gigli G, Leporatti S. Natural Compounds as Promising Adjuvant Agents in The Treatment of Gliomas. Int J Mol Sci, 2022, 23(6): 3360. DOI:10.3390/ijms23063360
    3. Talib WH, Mahmod AI, Abuarab SF, et al. Diabetes and Cancer: Metabolic Association, Therapeutic Challenges, and the Role of Natural Products. Molecules, 2021, 26(8): 2179. DOI:10.3390/molecules26082179
    4. Talib WH, Alsalahat I, Daoud S, et al. Plant-Derived Natural Products in Cancer Research: Extraction, Mechanism of Action, and Drug Formulation. Molecules, 2020, 25(22): 5319. DOI:10.3390/molecules25225319
    5. Luzi F, Pannucci E, Santi L, et al. Gallic Acid and Quercetin as Intelligent and Active Ingredients in Poly(vinyl alcohol) Films for Food Packaging. Polymers (Basel), 2019, 11(12): 1999. DOI:10.3390/polym11121999
    6. Xu D, Hu MJ, Wang YQ, et al. Antioxidant Activities of Quercetin and Its Complexes for Medicinal Application. Molecules, 2019, 24(6): 1123. DOI:10.3390/molecules24061123
    7. Long J, Zhang CJ, Zhu N, et al. Lipid metabolism and carcinogenesis, cancer development. Am J Cancer Res, 2018, 8(5): 778-791.
    8. Pratheeshkumar P, Son YO, Divya SP, et al. Quercetin inhibits Cr(VI)-induced malignant cell transformation by targeting miR-21-PDCD4 signaling pathway. Oncotarget, 2016, 8(32): 52118-52131. DOI:10.18632/oncotarget.10130
    9. Ganesan P, Choi DK. Current application of phytocompound-based nanocosmeceuticals for beauty and skin therapy. Int J Nanomedicine, 2016, 11: 1987-2007. DOI:10.2147/IJN.S104701

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3708) PDF downloads (79) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return