• ISSN 1674-8301
  • CN 32-1810/R
Volume 35 Issue 3
May  2021
Turn off MathJax
Article Contents
Lei Wang, Kun Zhang, Xin Ding, Yan Wang, Hui Bai, Qing Yang, Jingjing Ben, Hanwen Zhang, Xiaoyu Li, Qi Chen, Xudong Zhu. Fucoidan antagonizes diet-induced obesity and inflammation in mice[J]. The Journal of Biomedical Research, 2021, 35(3): 197-205. doi: 10.7555/JBR.34.20200153
Citation: Lei Wang, Kun Zhang, Xin Ding, Yan Wang, Hui Bai, Qing Yang, Jingjing Ben, Hanwen Zhang, Xiaoyu Li, Qi Chen, Xudong Zhu. Fucoidan antagonizes diet-induced obesity and inflammation in mice[J]. The Journal of Biomedical Research, 2021, 35(3): 197-205. doi: 10.7555/JBR.34.20200153

Fucoidan antagonizes diet-induced obesity and inflammation in mice

doi: 10.7555/JBR.34.20200153
More Information
  • Corresponding author: Qi Chen and Xudong Zhu, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China. Tels: +86-25-86868843/+86-25-86869370, E-mails: qichen@njmu.edu.cn or zhuxudong@njmu.edu.cn; 
  • Received: 2020-09-14
  • Revised: 2020-11-05
  • Published: 2020-12-18
  • Issue Date: 2021-05-28
  • Obesity is an escalating global pandemic posing a serious threat to human health. The intervention therapy using weight-reducing drugs, accompanied by lifestyle modification, is a strategy for the treatment of obesity. In the present study, we explored the role of fucoidan, a seaweed compound, on high-fat diet (HFD)-induced obesity in mice. We found that fucoidan treatment significantly reduced the body fat and caused redistribution of visceral and subcutaneous fat in HFD-fed mice. Meanwhile, fucoidan treatment inhibited adipocyte hypertrophy and inflammation in adipose tissue. Collectively, these results suggest that fucoidan may be a promising treatment for obesity and obesity-induced complications.


  • loading
  • [1]
    Wang YC, McPherson K, Marsh T, et al. Health and economic burden of the projected obesity trends in the USA and the UK[J]. Lancet, 2011, 378(9793): 815–825. doi: 10.1016/S0140-6736(11)60814-3
    Chu DT, Nguyet NTM, Dinh TC, et al. An update on physical health and economic consequences of overweight and obesity[J]. Diabetes Metab Syndr Clin Res Rev, 2018, 12(6): 1095–1100. doi: 10.1016/j.dsx.2018.05.004
    NCD Risk Factor Collaboration. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19•2 million participants[J]. Lancet, 2016, 387(10026): 1377–1396. doi: 10.1016/S0140-6736(16)30054-X
    Zatterale F, Longo M, Naderi J, et al. Chronic adipose tissue inflammation linking obesity to insulin resistance and type 2 diabetes[J]. Front Physiol, 2020, 10: 1607. doi: 10.3389/fphys.2019.01607
    Ni YH, Ni LY, Zhuge F, et al. Adipose tissue macrophage phenotypes and characteristics: the key to insulin resistance in obesity and metabolic disorders[J]. Obesity, 2020, 28(2): 225–234. doi: 10.1002/oby.22674
    Guilherme A, Henriques F, Bedard AH, et al. Molecular pathways linking adipose innervation to insulin action in obesity and diabetes mellitus[J]. Nat Rev Endocrinol, 2019, 15(4): 207–225. doi: 10.1038/s41574-019-0165-y
    Faraj M. LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue[J]. J Biomed Res, 2020, 34(4): 251–259. doi: 10.7555/JBR.34.20190124
    Kan JT, Hood M, Burns C, et al. A novel combination of wheat peptides and fucoidan attenuates ethanol-induced gastric mucosal damage through anti-oxidant, anti-inflammatory, and pro-survival mechanisms[J]. Nutrients, 2017, 9(9): 978. doi: 10.3390/nu9090978
    Yu HH, Ko EC, Chang CL, et al. Fucoidan inhibits radiation-induced pneumonitis and lung fibrosis by reducing inflammatory cytokine expression in lung tissues[J]. Mar Drugs, 2018, 16(10): 392. doi: 10.3390/md16100392
    Kim MJ, Jeon J, Lee JS. Fucoidan prevents high-fat diet-induced obesity in animals by suppression of fat accumulation[J]. Phytother Res, 2014, 28(1): 137–143. doi: 10.1002/ptr.4965
    Sim SY, Shin YE, Kim HK. Fucoidan from Undaria pinnatifida has anti-diabetic effects by stimulation of glucose uptake and reduction of basal lipolysis in 3T3-L1 adipocytes[J]. Nutr Res, 2019, 65: 54–62. doi: 10.1016/j.nutres.2019.02.002
    Zhu XD, Wang Y, Zhu L, et al. Class A1 scavenger receptor prevents obesity-associated blood pressure elevation through suppressing overproduction of vascular endothelial growth factor B in macrophages[J]. Cardiovasc Res, 2020, cvaa030. doi: 10.1093/cvr/cvaa030
    Weisberg SP, McCann D, Desai M, et al. Obesity is associated with macrophage accumulation in adipose tissue[J]. J Clin Invest, 2003, 112(12): 1796–1808. doi: 10.1172/JCI200319246
    Chawla A, Nguyen KD, Goh YPS. Macrophage-mediated inflammation in metabolic disease[J]. Nat Rev Immunol, 2011, 11(11): 738–749. doi: 10.1038/nri3071
    The GBD 2015 Obesity Collaborators. Health effects of overweight and obesity in 195 countries over 25 years[J]. N Engl J Med, 2017, 377(1): 13–27. doi: 10.1056/NEJMoa1614362
    Flegal KM, Kruszon-Moran D, Carroll MD, et al. Trends in obesity among adults in the United States, 2005 to 2014[J]. JAMA, 2016, 315(21): 2284–2291. doi: 10.1001/jama.2016.6458
    Luthuli S, Wu SY, Cheng Y, et al. Therapeutic effects of fucoidan: a review on recent studies[J]. Mar Drugs, 2019, 17(9): 487. doi: 10.3390/md17090487
    Huang H, Li X, Zhuang Y, et al. Class A scavenger receptor activation inhibits endoplasmic reticulum stress-induced autophagy in macrophage[J]. J Biomed Res, 2014, 28(3): 213–221. doi: 10.7555/JBR.28.20130105
    Aleissa MS, Alkahtani S, Eldaim MAA, et al. Fucoidan ameliorates oxidative stress, inflammation, DNA damage, and hepatorenal injuries in diabetic rats intoxicated with aflatoxin B1[J]. Oxid Med Cell Longev, 2020, 2020: 9316751. doi: 10.1155/2020/9316751
    Cuong HD, Thuy TTT, Huong TT, et al. Structure and hypolipidaemic activity of fucoidan extracted from brown seaweed Sargassum henslowianum[J]. Nat Prod Res, 2015, 29(5): 411–415. doi: 10.1080/14786419.2014.948436
    Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation[J]. Nat Rev Endocrinol, 2017, 13(11): 633–643. doi: 10.1038/nrendo.2017.90
    Hotamisligil GS. Inflammation and metabolic disorders[J]. Nature, 2006, 444(7121): 860–867. doi: 10.1038/nature05485
    Metrakos P, Nilsson T. Non-alcoholic fatty liver disease--a chronic disease of the 21st century[J]. J Biomed Res, 2018, 32(5): 327–335. doi: 10.7555/JBR.31.20160153
    Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease[J]. J Clin Invest, 2011, 121(6): 2111–2117. doi: 10.1172/JCI57132
    Park J, Cha JD, Choi KM, et al. Fucoidan inhibits LPS-induced inflammation in vitro and during the acute response in vivo[J]. Int Immunopharmacol, 2017, 43: 91–98. doi: 10.1016/j.intimp.2016.12.006
    Park HY, Han MH, Park C, et al. Anti-inflammatory effects of fucoidan through inhibition of NF-κB, MAPK and Akt activation in lipopolysaccharide-induced BV2 microglia cells[J]. Food Chem Toxicol, 2011, 49(8): 1745–1752. doi: 10.1016/j.fct.2011.04.020
    Xu HY, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance[J]. J Clin Invest, 2003, 112(12): 1821–1830. doi: 10.1172/JCI200319451
    Han MS, Jung DY, Morel C, et al. JNK expression by macrophages promotes obesity-induced insulin resistance and inflammation[J]. Science, 2013, 339(6116): 218–222. doi: 10.1126/science.1227568
    Lee YS, Kim JW, Osborne O, et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity[J]. Cell, 2014, 157(6): 1339–1352. doi: 10.1016/j.cell.2014.05.012
    Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity[J]. Physiol Rev, 2013, 93(1): 1–21. doi: 10.1152/physrev.00017.2012
    Nguyen MTA, Favelyukis S, Nguyen AK, et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways[J]. J Biol Chem, 2007, 282(48): 35279–35292. doi: 10.1074/jbc.M706762200
    Cui XB, Chen SY. White adipose tissue browning and obesity[J]. J Biomed Res, 2016, 31(1): 1–2. doi: 10.7555/JBR.31.20160101
    Wang N, Zhao TT, Li SM, et al. Fibroblast growth factor 21 exerts its anti-inflammatory effects on multiple cell types of adipose tissue in obesity[J]. Obesity, 2019, 27(3): 399–408. doi: 10.1002/oby.22376
    Petrus P, Lecoutre S, Dollet L, et al. Glutamine links obesity to inflammation in human white adipose tissue[J]. Cell Metab, 2020, 31(2): 375–390. doi: 10.1016/j.cmet.2019.11.019
    Veena CK, Josephine A, Preetha SP, et al. Mitochondrial dysfunction in an animal model of hyperoxaluria: a prophylactic approach with fucoidan[J]. Eur J Pharmacol, 2008, 579(1-3): 330–336. doi: 10.1016/j.ejphar.2007.09.044
    Skurk T, Alberti-Huber C, Herder C, et al. Relationship between adipocyte size and adipokine expression and secretion[J]. J Clin Endocrinol Metab, 2007, 92(3): 1023–1033. doi: 10.1210/jc.2006-1055
    Ghaben AL, Scherer PE. Adipogenesis and metabolic health[J]. Nat Rev Mol Cell Biol, 2019, 20(4): 242–258. doi: 10.1038/s41580-018-0093-z
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索


    Article Metrics

    Article views (390) PDF downloads(56) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint