[1] |
Esteves PJ, Abrantes J, Baldauf HM, et al. The wide utility of rabbits as models of human diseases[J]. Exp Mol Med, 2018, 50: 1–10. doi: 10.1038/s12276-018-0094-1
|
[2] |
Fan JL, Watanabe T. Transgenic rabbits as therapeutic protein bioreactors and human disease models[J]. Pharmacol Ther, 2003, 99(3): 261–282. doi: 10.1016/S0163-7258(03)00069-X
|
[3] |
|
[4] |
|
[5] |
Fan JL, Kitajima S, Watanabe T, et al. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine[J]. Pharmacol Ther, 2015, 146: 104–119. doi: 10.1016/j.pharmthera.2014.09.009
|
[6] |
Li WH, Gouy M, Sharp PM, et al. Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks[J]. Proc Natl Acad Sci U S A, 1990, 87(17): 6703–6707. doi: 10.1073/pnas.87.17.6703
|
[7] |
Graur D, Duret L, Gouy M. Phylogenetic position of the order Lagomorpha (rabbits, hares and allies)[J]. Nature, 1996, 379(6563): 333–335. doi: 10.1038/379333a0
|
[8] |
Pearce J. Louis Pasteur and rabies: a brief note[J]. J Neurol Neurosurg Psychiatry, 2002, 73(1): 82. doi: 10.1136/jnnp.73.1.82
|
[9] |
Cambau E, Drancourt M. Steps towards the discovery of Mycobacterium tuberculosis by Robert Koch, 1882[J]. Clin Microbiol Infect, 2014, 20(3): 196–201. doi: 10.1111/1469-0691.12555
|
[10] |
Goldstein JL, Kita T, Brown MS. Defective lipoprotein receptors and atherosclerosis—Lessons from an animal counterpart of familial hypercholesterolemia[J]. N Engl J Med, 1983, 309(5): 288–296. doi: 10.1056/NEJM198308043090507
|
[11] |
Endo A. Regulation of cholesterol synthesis, as focused on the regulation of HMG-CoA reductase (author's transl)[J]. Seikagaku (in Japanese), 1980, 52(10): 1033–1049.
|
[12] |
Biggers JD. Walter Heape, FRS: a pioneer in reproductive biology. Centenary of his embryo transfer experiments[J]. J Reprod Fert, 1991, 93(1): 173–186. doi: 10.1530/jrf.0.0930173
|
[13] |
Chang MC. Fertilization of rabbit ova in vitro[J]. Nature, 1959, 184(4684): 466–467. doi: 10.1038/184466a0
|
[14] |
Hammer RE, Pursel VG, Rexroad CE Jr, et al. Production of transgenic rabbits, sheep and pigs by microinjection[J]. Nature, 1985, 315(6021): 680–683. doi: 10.1038/315680a0
|
[15] |
Zernii EY, Baksheeva VE, Iomdina EN, et al. Rabbit models of ocular diseases: new relevance for classical approaches[J]. CNS Neurol Disord Drug Targets, 2016, 15(3): 267–291. doi: 10.2174/1871527315666151110124957
|
[16] |
Kamaruzaman NA, Kardia E, Kamaldin N, et al. The rabbit as a model for studying lung disease and stem cell therapy[J]. Biomed Res Int, 2013, 2013: 691830.
|
[17] |
Burkholder TH, Linton G, Hoyt RF Jr, et al. The rabbit as an experimental model[M]//Suckow MA, Stevens KA, Wilson RP. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. Boston: Academic Press, 2012: 529–560.
|
[18] |
Christensen ND, Peng XW. Rabbit genetics and transgenic models[M]//Suckow MA, Stevens KA, Wilson RP. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. Boston: Academic Press, 2012: 165–193.
|
[19] |
|
[20] |
Gordon JW, Scangos GA, Plotkin DJ, et al. Genetic transformation of mouse embryos by microinjection of purified DNA[J]. Proc Natl Acad Sci U S A, 1980, 77(12): 7380–7384. doi: 10.1073/pnas.77.12.7380
|
[21] |
Brinster RL, Chen HY, Trumbauer M, et al. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs[J]. Cell, 1981, 27(1): 223–231. doi: 10.1016/0092-8674(81)90376-7
|
[22] |
Costantini F, Lacy E. Introduction of a rabbit β-globin gene into the mouse germ line[J]. Nature, 1981, 294(5836): 92–94. doi: 10.1038/294092a0
|
[23] |
Gordon JW, Ruddle FH. Integration and stable germ line transmission of genes injected into mouse pronuclei[J]. Science, 1981, 214(4526): 1244–1246. doi: 10.1126/science.6272397
|
[24] |
Wagner EF, Stewart TA, Mintz B. The human beta-globin gene and a functional viral thymidine kinase gene in developing mice[J]. Proc Natl Acad Sci U S A, 1981, 78(8): 5016–5020. doi: 10.1073/pnas.78.8.5016
|
[25] |
Wagner TE, Hoppe PC, Jollick JD, et al. Microinjection of a rabbit beta-globin gene into zygotes and its subsequent expression in adult mice and their offspring[J]. Proc Natl Acad Sci U S A, 1981, 78(10): 6376–6380. doi: 10.1073/pnas.78.10.6376
|
[26] |
Campbell KHS, McWhir J, Ritchie WA, et al. Sheep cloned by nuclear transfer from a cultured cell line[J]. Nature, 1996, 380(6569): 64–66. doi: 10.1038/380064a0
|
[27] |
Bibikova M, Golic M, Golic KG, et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases[J]. Genetics, 2002, 161(3): 1169–1175. https://pubmed.ncbi.nlm.nih.gov/12136019/
|
[28] |
Chesne P, Adenot PG, Viglietta C, et al. Cloned rabbits produced by nuclear transfer from adult somatic cells[J]. Nat Biotechnol, 2002, 20(4): 366–369. doi: 10.1038/nbt0402-366
|
[29] |
Li SG, Guo Y, Shi JJ, et al. Transgene expression of enhanced green fluorescent protein in cloned rabbits generated from in vitro-transfected adult fibroblasts[J]. Transgenic Res, 2009, 18(2): 227–235. doi: 10.1007/s11248-008-9227-y
|
[30] |
Geurts AM, Cost GJ, Freyvert Y, et al. Knockout rats via embryo microinjection of zinc-finger nucleases[J]. Science, 2009, 325(5939): 433. doi: 10.1126/science.1172447
|
[31] |
Flisikowska T, Thorey IS, Offner S, et al. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases[J]. PLoS One, 2011, 6(6): e21045. doi: 10.1371/journal.pone.0021045
|
[32] |
Tesson L, Usal C, Menoret S, et al. Knockout rats generated by embryo microinjection of TALENs[J]. Nat Biotechnol, 2011, 29(8): 695–696. doi: 10.1038/nbt.1940
|
[33] |
Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci U S A, 2012, 109(39): E2579–E2586. doi: 10.1073/pnas.1208507109
|
[34] |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816–821. doi: 10.1126/science.1225829
|
[35] |
Wang H, Yang H, Shivalila CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell, 2013, 153(4): 910–918. doi: 10.1016/j.cell.2013.04.025
|
[36] |
Song J, Zhong J, Guo XG, et al. Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs[J]. Cell Res, 2013, 23(8): 1059–1062. doi: 10.1038/cr.2013.85
|
[37] |
Yang D, Xu J, Zhu T, et al. Effective gene targeting in rabbits using RNA-guided Cas9 nucleases[J]. J Mol Cell Biol, 2014, 6(1): 97–99. doi: 10.1093/jmcb/mjt047
|
[38] |
Carneiro M, Rubin CJ, Di Palma F, et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication[J]. Science, 2014, 345(6200): 1074–1079. doi: 10.1126/science.1253714
|
[39] |
Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420–424. doi: 10.1038/nature17946
|
[40] |
Wang Z, Zhang JF, Li H, et al. Hyperlipidemia-associated gene variations and expression patterns revealed by whole-genome and transcriptome sequencing of rabbit models[J]. Sci Rep, 2016, 6: 26942. doi: 10.1038/srep26942
|
[41] |
Liu Z, Chen M, Chen S, et al. Highly efficient RNA-guided base editing in rabbit[J]. Nat Commun, 2018, 9(1): 2717. doi: 10.1038/s41467-018-05232-2
|
[42] |
Shen W, Li L, Pan QJ, et al. Efficient and simple production of transgenic mice and rabbits using the new DMSO-sperm mediated exogenous DNA transfer method[J]. Mol Reprod Dev, 2006, 73(5): 589–594. doi: 10.1002/mrd.20401
|
[43] |
Hiripi L, Negre D, Cosset FL, et al. Transgenic rabbit production with simian immunodeficiency virus-derived lentiviral vector[J]. Transgenic Res, 2010, 19(5): 799–808. doi: 10.1007/s11248-009-9356-y
|
[44] |
Smith KR. Sperm-mediated gene transfer: concepts and controversies[M]. Sharjah, UAE: Bentham Science, 2012.
|
[45] |
|
[46] |
Houdebine LM. The methods to generate transgenic animals and to control transgene expression[J]. J Biotechnol, 2002, 98(2-3): 145–160. doi: 10.1016/S0168-1656(02)00129-3
|
[47] |
Katter K, Geurts AM, Hoffmann O, et al. Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits[J]. FASEB J, 2013, 27(3): 930–941. doi: 10.1096/fj.12-205526
|
[48] |
Ivics Z, Hiripi L, Hoffmann OI, et al. Germline transgenesis in rabbits by pronuclear microinjection of Sleeping beauty transposons[J]. Nat Protoc, 2014, 9(4): 794–809. doi: 10.1038/nprot.2014.009
|
[49] |
Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292(5819): 154–156. doi: 10.1038/292154a0
|
[50] |
Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells[J]. Proc Natl Acad Sci U S A, 1981, 78(12): 7634–7638. doi: 10.1073/pnas.78.12.7634
|
[51] |
Gossler A, Doetschman T, Korn R, et al. Transgenesis by means of blastocyst-derived embryonic stem cell lines[J]. Proc Natl Acad Sci U S A, 1986, 83(23): 9065–9069. doi: 10.1073/pnas.83.23.9065
|
[52] |
Robertson E, Bradley A, Kuehn M, et al. Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector[J]. Nature, 1986, 323(6087): 445–448. doi: 10.1038/323445a0
|
[53] |
Kuehn MR, Bradley A, Robertson EJ, et al. A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice[J]. Nature, 1987, 326(6110): 295–298. doi: 10.1038/326295a0
|
[54] |
Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells[J]. Nature, 2007, 448(7151): 313–317. doi: 10.1038/nature05934
|
[55] |
Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state[J]. Nature, 2007, 448(7151): 318–324. doi: 10.1038/nature05944
|
[56] |
Boland MJ, Hazen JL, Nazor KL, et al. Adult mice generated from induced pluripotent stem cells[J]. Nature, 2009, 461(7260): 91–94. doi: 10.1038/nature08310
|
[57] |
Kang L, Wang JL, Zhang Y, et al. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos[J]. Cell Stem Cell, 2009, 5(2): 135–138. doi: 10.1016/j.stem.2009.07.001
|
[58] |
Zhao XY, Li W, Lv Z, et al. iPS cells produce viable mice through tetraploid complementation[J]. Nature, 2009, 461(7260): 86–90. doi: 10.1038/nature08267
|
[59] |
Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century[J]. Nat Rev Genet, 2005, 6(6): 507–512. doi: 10.1038/nrg1619
|
[60] |
Fang ZF, Gai H, Huang YZ, et al. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos[J]. Exp Cell Res, 2006, 312(18): 3669–3682. doi: 10.1016/j.yexcr.2006.08.013
|
[61] |
Wang SF, Tang XH, Niu YY, et al. Generation and characterization of rabbit embryonic stem cells[J]. Stem Cells, 2007, 25(2): 481–489. doi: 10.1634/stemcells.2006-0226
|
[62] |
Honda A, Hirose M, Inoue K, et al. Stable embryonic stem cell lines in rabbits: potential small animal models for human research[J]. Reprod Biomed Online, 2008, 17(5): 706–715. doi: 10.1016/S1472-6483(10)60320-3
|
[63] |
Osteil P, Tapponnier Y, Markossian S, et al. Induced pluripotent stem cells derived from rabbits exhibit some characteristics of naïve pluripotency[J]. Biol Open, 2013, 2(6): 613–628. doi: 10.1242/bio.20134242
|
[64] |
Xue F, Ma YH, Chen YE, et al. Recombinant rabbit leukemia inhibitory factor and rabbit embryonic fibroblasts support the derivation and maintenance of rabbit embryonic stem cells[J]. Cell Reprogram, 2012, 14(4): 364–376. doi: 10.1089/cell.2012.0001
|
[65] |
Du FL, Chen CH, Li Y, et al. Derivation of rabbit embryonic stem cells from vitrified-thawed embryos[J]. Cell Reprogram, 2015, 17(6): 453–462. doi: 10.1089/cell.2015.0044
|
[66] |
Zakhartchenko V, Flisikowska T, Li S, et al. Cell-mediated transgenesis in rabbits: chimeric and nuclear transfer animals[J]. Biol Reprod, 2011, 84(2): 229–237. doi: 10.1095/biolreprod.110.087098
|
[67] |
|
[68] |
McCreath KJ, Howcroft J, Campbell KHS, et al. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells[J]. Nature, 2000, 405(6790): 1066–1069. doi: 10.1038/35016604
|
[69] |
Lai LX, Kolber-Simonds D, Park KW, et al. Production of α-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science, 2002, 295(5557): 1089–1092. doi: 10.1126/science.1068228
|
[70] |
Richt JA, Kasinathan P, Hamir AN, et al. Production of cattle lacking prion protein[J]. Nat Biotechnol, 2007, 25(1): 132–138. doi: 10.1038/nbt1271
|
[71] |
Stice SL, Robl JM. Nuclear reprogramming in nuclear transplant rabbit embryos[J]. Biol Reprod, 1988, 39(3): 657–664. doi: 10.1095/biolreprod39.3.657
|
[72] |
Du FL, Xu J, Zhang JF, et al. Beneficial effect of young oocytes for rabbit somatic cell nuclear transfer[J]. Cloning Stem Cells, 2009, 11(1): 131–140. doi: 10.1089/clo.2008.0042
|
[73] |
Li SG, Chen XJ, Fang ZF, et al. Rabbits generated from fibroblasts through nuclear transfer[J]. Reproduction, 2006, 131(6): 1085–1090. doi: 10.1530/rep.1.01065
|
[74] |
Li SG, Flisikowska T, Kessler B, et al. Production of cloned transgenic rabbits from mesenchymal stem cells[J]. Reprod Fertil Dev, 2010, 22(1): 192–192. doi: 10.1071/RDv22n1Ab67
|
[75] |
Yin MR, Jiang WH, Fang ZF, et al. Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous recombination and gene trapping through somatic cell nuclear transfer[J]. Sci Rep, 2015, 5: 16023. doi: 10.1038/srep16023
|
[76] |
Gaj T, Gersbach CA, Barbas III CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends Biotechnol, 2013, 31(7): 397–405. doi: 10.1016/j.tibtech.2013.04.004
|
[77] |
Conklin BR. Sculpting genomes with a hammer and chisel[J]. Nat Methods, 2013, 10(9): 839–840. doi: 10.1038/nmeth.2608
|
[78] |
Cui XX, Ji DA, Fisher DA, et al. Targeted integration in rat and mouse embryos with zinc-finger nucleases[J]. Nat Biotechnol, 2011, 29(1): 64–67. doi: 10.1038/nbt.1731
|
[79] |
Paques F, Duchateau P. Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy[J]. Curr Gene Ther, 2007, 7(1): 49–66. doi: 10.2174/156652307779940216
|
[80] |
Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain[J]. Proc Natl Acad Sci U S A, 1996, 93(3): 1156–1160. doi: 10.1073/pnas.93.3.1156
|
[81] |
Yang DS, Yang HQ, Li W, et al. Generation of PPARγ mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning[J]. Cell Res, 2011, 21(6): 979–982. doi: 10.1038/cr.2011.70
|
[82] |
Yu SL, Luo JJ, Song ZY, et al. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle[J]. Cell Res, 2011, 21(11): 1638–1640. doi: 10.1038/cr.2011.153
|
[83] |
Perez EE, Wang JB, Miller JC, et al. Establishment of HIV-1 resistance in CD4 + T cells by genome editing using zinc-finger nucleases[J]. Nat Biotechnol, 2008, 26(7): 808–816. doi: 10.1038/nbt1410
|
[84] |
Meng XD, Noyes MB, Zhu LJ, et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases[J]. Nat Biotechnol, 2008, 26(6): 695–701. doi: 10.1038/nbt1398
|
[85] |
Yang DS, Zhang JF, Xu J, et al. Production of apolipoprotein C-III knockout rabbits using zinc finger nucleases[J]. J Vis Exp, 2013, (81): e50957. doi: 10.3791/50957
|
[86] |
Ji DA, Zhao GJ, Songstad A, et al. Efficient creation of an APOE knockout rabbit[J]. Transgenic Res, 2015, 24(2): 227–235. doi: 10.1007/s11248-014-9834-8
|
[87] |
Niimi M, Yang DS, Kitajima S, et al. ApoE knockout rabbits: a novel model for the study of human hyperlipidemia[J]. Atherosclerosis, 2016, 245: 187–193. doi: 10.1016/j.atherosclerosis.2015.12.002
|
[88] |
Zhang JF, Niimi M, Yang DS, et al. Deficiency of cholesteryl ester transfer protein protects against atherosclerosis in rabbits[J]. Arterioscler Thromb Vasc Biol, 2017, 37(6): 1068–1075. doi: 10.1161/ATVBAHA.117.309114
|
[89] |
Miller JC, Tan SY, Qiao GJ, et al. A TALE nuclease architecture for efficient genome editing[J]. Nat Biotechnol, 2011, 29(2): 143–148. doi: 10.1038/nbt.1755
|
[90] |
Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics, 2010, 186(2): 757–761. doi: 10.1534/genetics.110.120717
|
[91] |
Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors[J]. Science, 2009, 326(5959): 1509–1512. doi: 10.1126/science.1178811
|
[92] |
Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326(5959): 1501. doi: 10.1126/science.1178817
|
[93] |
Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262–1278. doi: 10.1016/j.cell.2014.05.010
|
[94] |
Yang DS, Xu J, Chen YE. Generation of rabbit models by gene editing nucleases[M]//Liu CY, Du YB. Microinjection. New York: Humana Press, 2019: 327–345.
|
[95] |
Li L, Zhang QJ, Yang HQ, et al. Fumarylacetoacetate hydrolase knock-out rabbit model for hereditary tyrosinemia type 1[J]. J Biol Chem, 2017, 292(11): 4755–4763. doi: 10.1074/jbc.M116.764787
|
[96] |
Chen M, Yao B, Yang QB, et al. Truncated C-terminus of fibrillin-1 induces Marfanoid-progeroid-lipodystrophy (MPL) syndrome in rabbit[J]. Dis Model Mech, 2018, 11(4): dmm031542. doi: 10.1242/dmm.031542
|
[97] |
Sui TT, Lau YS, Liu D, et al. A novel rabbit model of Duchenne muscular dystrophy generated by CRISPR/Cas9[J]. Dis Model Mech, 2018, 11(6): dmm032201. doi: 10.1242/dmm.032201
|
[98] |
Sui TT, Xu L, Lau YS, et al. Development of muscular dystrophy in a CRISPR-engineered mutant rabbit model with frame-disrupting ANO5 mutations[J]. Cell Death Dis, 2018, 9(6): 609. doi: 10.1038/s41419-018-0674-y
|
[99] |
Yuan L, Yao HB, Xu YX, et al. CRISPR/cas9-mediated mutation of αA-crystallin gene induces congenital cataracts in rabbits[J]. Invest Ophthalmol Vis Sci, 2017, 58(6): BIO34–BIO41. doi: 10.1167/iovs.16-21287
|
[100] |
Yuan L, Sui TT, Chen M, et al. CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts[J]. Sci Rep, 2016, 6: 22024. doi: 10.1038/srep22024
|
[101] |
Lu R, Yuan T, Wang Y, et al. Spontaneous severe hypercholesterolemia and atherosclerosis lesions in rabbits with deficiency of low-density lipoprotein receptor (LDLR) on exon 7[J]. EBioMedicine, 2018, 36: 29–38. doi: 10.1016/j.ebiom.2018.09.020
|
[102] |
Guo R, Wan Y, Xu D, et al. Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system[J]. Sci Rep, 2016, 6: 29855. doi: 10.1038/srep29855
|
[103] |
Lv Q, Yuan L, Deng J, et al. Efficient Generation of Myostatin Gene Mutated Rabbit by CRISPR/Cas9[J]. Sci Rep, 2016, 6: 25029. doi: 10.1038/srep25029
|
[104] |
Song Y, Liu T, Wang Y, et al. Mutation of the Sp1 binding site in the 5' flanking region of SRY causes sex reversal in rabbits[J]. Oncotarget, 2017, 8(24): 38176–38183. doi: 10.18632/oncotarget.16979
|
[105] |
Song Y, Xu Y, Liang M, et al. CRISPR/Cas9-mediated mosaic mutation of SRY gene induces hermaphroditism in rabbits[J]. Biosci Rep, 2018, 38(2): BSR20171490. doi: 10.1042/BSR20171490
|
[106] |
Sui T, Yuan L, Liu H, et al. CRISPR/Cas9-mediated mutation of PHEX in rabbit recapitulates human X-linked hypophosphatemia (XLH)[J]. Hum Mol Genet, 2016, 25(13): 2661–2671. doi: 10.1093/hmg/ddw125
|
[107] |
Sui T, Liu D, Liu T, et al. LMNA-mutated rabbits: a model of premature aging syndrome with muscular dystrophy and dilated cardiomyopathy[J]. Aging Dis, 2019, 10(1): 102–115. doi: 10.14336/AD.2018.0209
|
[108] |
Wu H, Liu Q, Shi H, et al. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems[J]. Cell Mol Life Sci, 2018, 75(19): 3593–3607. doi: 10.1007/s00018-018-2810-3
|
[109] |
Honda A, Hirose M, Sankai T, et al. Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9[J]. Exp Anim, 2015, 64(1): 31–37. doi: 10.1538/expanim.14-0034
|
[110] |
Song Y, Xu Y, Deng J, et al. CRISPR/Cas9-mediated mutation of tyrosinase (Tyr) 3' UTR induce graying in rabbit[J]. Sci Rep, 2017, 7(1): 1569. doi: 10.1038/s41598-017-01727-y
|
[111] |
Jiang WH, Liu LL, Chang QR, et al. Production of Wilson disease model rabbits with homology-directed precision point mutations in the ATP7B gene using the CRISPR/Cas9 system[J]. Sci Rep, 2018, 8: 1332. doi: 10.1038/s41598-018-19774-4
|
[112] |
Song YN, Zhang YX, Chen M, et al. Functional validation of the albinism-associated tyrosinase T373K SNP by CRISPR/Cas9-mediated homology-directed repair (HDR) in rabbits[J]. EBioMedicine, 2018, 36: 517–525. doi: 10.1016/j.ebiom.2018.09.041
|
[113] |
Song YN, Yuan L, Wang Y, et al. Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system[J]. Cell Mol Life Sci, 2016, 73(15): 2959–2968. doi: 10.1007/s00018-016-2143-z
|
[114] |
Song J, Wang GS, Hoenerhoff MJ, et al. Bacterial and Pneumocystis infections in the lungs of gene-knockout rabbits with severe combined immunodeficiency[J]. Front Immunol, 2018, 9: 429. doi: 10.3389/fimmu.2018.00429
|
[115] |
Song J, Yang DS, Ruan JX, et al. Production of immunodeficient rabbits by multiplex embryo transfer and multiplex gene targeting[J]. Sci Rep, 2017, 7(1): 12202. doi: 10.1038/s41598-017-12201-0
|
[116] |
Yan Q, Zhang Q, Yang H, et al. Generation of multi-gene knockout rabbits using the Cas9/gRNA system[J]. Cell Regen (Lond), 2014, 3(1): 12. doi: 10.1186/2045-9769-3-12
|
[117] |
Liu H, Sui T, Liu D, et al. Multiple homologous genes knockout (KO) by CRISPR/Cas9 system in rabbit[J]. Gene, 2018, 647: 261–267. doi: 10.1016/j.gene.2018.01.044
|
[118] |
Yang DS, Song J, Zhang JF, et al. Identification and characterization of rabbit ROSA26 for gene knock-in and stable reporter gene expression[J]. Sci Rep, 2016, 6: 25161. doi: 10.1038/srep25161
|
[119] |
Song J, Yang DS, Xu J, et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency[J]. Nat Commun, 2016, 7: 10548. doi: 10.1038/ncomms10548
|
[120] |
Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464–471. doi: 10.1038/nature24644
|
[121] |
Komor AC, Zhao KT, Packer MS, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C: G-to-T: a base editors with higher efficiency and product purity[J]. Sci Adv, 2017, 3(8): eaao4774. doi: 10.1126/sciadv.aao4774
|
[122] |
Koblan LW, Doman JL, Wilson C, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J]. Nat Biotechnol, 2018, 36(9): 843–846. doi: 10.1038/nbt.4172
|
[123] |
Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9): 827–832. doi: 10.1038/nbt.2647
|
[124] |
Schmid-Burgk JL, Gao LY, Li D, et al. Highly parallel profiling of cas9 variant specificity[J]. Mol Cell, 2020, . doi: 10.1016/j.molcel.2020.02.023
|
[125] |
Tycko J, Myer VE, Hsu PD. Methods for optimizing crispr-cas9 genome editing specificity[J]. Mol Cell, 2016, 63(3): 355–370. doi: 10.1016/j.molcel.2016.07.004
|
[126] |
Chen SM, Yao YF, Zhang YC, et al. CRISPR system: discovery, development and off-target detection[J]. Cell Signal, 2020, 70: 109577. doi: 10.1016/j.cellsig.2020.109577
|
[127] |
Li JJ, Hong SY, Chen WJ, et al. Advances in detecting and reducing off-target effects generated by CRISPR-mediated genome editing[J]. J Genet Genomics, 2019, 46(11): 513–521. doi: 10.1016/j.jgg.2019.11.002
|
[128] |
Zischewski J, Fischer R, Bortesi L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases[J]. Biotechnol Adv, 2017, 35(1): 95–104. doi: 10.1016/j.biotechadv.2016.12.003
|
[129] |
Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements[J]. Nat Biotechnol, 2018, 36(8): 765–771. doi: 10.1038/nbt.4192
|
[130] |
Mou HW, Smith JL, Peng LT, et al. CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion[J]. Genome Biol, 2017, 18(1): 108. doi: 10.1186/s13059-017-1237-8
|
[131] |
Prykhozhij SV, Steele SL, Razaghi B, et al. A rapid and effective method for screening, sequencing and reporter verification of engineered frameshift mutations in zebrafish[J]. Dis Model Mech, 2017, 10(6): 811–822. doi: 10.1242/dmm.026765
|
[132] |
Sharpe JJ, Cooper TA. Unexpected consequences: exon skipping caused by CRISPR-generated mutations[J]. Genome Biol, 2017, 18(1): 109. doi: 10.1186/s13059-017-1240-0
|
[133] |
Sui TT, Song YN, Liu ZQ, et al. CRISPR-induced exon skipping is dependent on premature termination codon mutations[J]. Genome Biol, 2018, 19(1): 164. doi: 10.1186/s13059-018-1532-z
|
[134] |
Li P, Estrada J, Zhang F, et al. Isolation, characterization, and nuclear reprogramming of cell lines derived from porcine adult liver and fat[J]. Cell Reprogram, 2010, 12(5): 599–607. doi: 10.1089/cell.2010.0006
|