4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Song Jun, Zhang Jifeng, Xu Jie, Garcia-Barrio Minerva, Chen Y. Eugene, Yang Dongshan. Genome engineering technologies in rabbits[J]. The Journal of Biomedical Research, 2021, 35(2): 135-147. DOI: 10.7555/JBR.34.20190133
Citation: Song Jun, Zhang Jifeng, Xu Jie, Garcia-Barrio Minerva, Chen Y. Eugene, Yang Dongshan. Genome engineering technologies in rabbits[J]. The Journal of Biomedical Research, 2021, 35(2): 135-147. DOI: 10.7555/JBR.34.20190133

Genome engineering technologies in rabbits

More Information
  • Corresponding author:

    Y. Eugene Chen and Dongshan Yang, Center for Advanced Models for Translational Sciences and Therapeutics, University of Michigan Medical Center, 2800 Plymouth Road, Ann Arbor, MI 48109, USA. Tel/Fax: +1-734-647-5742/+1-734-763-7097, E-mails: echenum@umich.edu and doyang@umich.edu

  • Received Date: October 21, 2019
  • Accepted Date: April 28, 2020
  • Available Online: June 11, 2020
  • The rabbit has been recognized as a valuable model in various biomedical and biological research fields because of its intermediate size and phylogenetic proximity to primates. However, the technology for precise genome manipulations in rabbit has been stalled for decades, severely limiting its applications in biomedical research. Novel genome editing technologies, especially CRISPR/Cas9, have remarkably enhanced precise genome manipulation in rabbits, and shown their superiority and promise for generating rabbit models of human genetic diseases. In this review, we summarize the brief history of transgenic rabbit technology and the development of novel genome editing technologies in rabbits.
  • [1]
    Esteves PJ, Abrantes J, Baldauf HM, et al. The wide utility of rabbits as models of human diseases[J]. Exp Mol Med, 2018, 50: 1–10. doi: 10.1038/s12276-018-0094-1
    [2]
    Fan JL, Watanabe T. Transgenic rabbits as therapeutic protein bioreactors and human disease models[J]. Pharmacol Ther, 2003, 99(3): 261–282. doi: 10.1016/S0163-7258(03)00069-X
    [3]
    Peng XW. Transgenic rabbit models for studying human cardiovascular diseases[J]. Comp Med, 2012, 62(6): 472–429. https://pubmed.ncbi.nlm.nih.gov/23561880/
    [4]
    Peng XW, Knouse JA, Hernon KM. Rabbit models for studying human infectious diseases[J]. Comp Med, 2015, 65(6): 499–507. https://pubmed.ncbi.nlm.nih.gov/26678367/
    [5]
    Fan JL, Kitajima S, Watanabe T, et al. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine[J]. Pharmacol Ther, 2015, 146: 104–119. doi: 10.1016/j.pharmthera.2014.09.009
    [6]
    Li WH, Gouy M, Sharp PM, et al. Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks[J]. Proc Natl Acad Sci U S A, 1990, 87(17): 6703–6707. doi: 10.1073/pnas.87.17.6703
    [7]
    Graur D, Duret L, Gouy M. Phylogenetic position of the order Lagomorpha (rabbits, hares and allies)[J]. Nature, 1996, 379(6563): 333–335. doi: 10.1038/379333a0
    [8]
    Pearce J. Louis Pasteur and rabies: a brief note[J]. J Neurol Neurosurg Psychiatry, 2002, 73(1): 82. doi: 10.1136/jnnp.73.1.82
    [9]
    Cambau E, Drancourt M. Steps towards the discovery of Mycobacterium tuberculosis by Robert Koch, 1882[J]. Clin Microbiol Infect, 2014, 20(3): 196–201. doi: 10.1111/1469-0691.12555
    [10]
    Goldstein JL, Kita T, Brown MS. Defective lipoprotein receptors and atherosclerosis—Lessons from an animal counterpart of familial hypercholesterolemia[J]. N Engl J Med, 1983, 309(5): 288–296. doi: 10.1056/NEJM198308043090507
    [11]
    Endo A. Regulation of cholesterol synthesis, as focused on the regulation of HMG-CoA reductase (author's transl)[J]. Seikagaku (in Japanese), 1980, 52(10): 1033–1049.
    [12]
    Biggers JD. Walter Heape, FRS: a pioneer in reproductive biology. Centenary of his embryo transfer experiments[J]. J Reprod Fert, 1991, 93(1): 173–186. doi: 10.1530/jrf.0.0930173
    [13]
    Chang MC. Fertilization of rabbit ova in vitro[J]. Nature, 1959, 184(4684): 466–467. doi: 10.1038/184466a0
    [14]
    Hammer RE, Pursel VG, Rexroad CE Jr, et al. Production of transgenic rabbits, sheep and pigs by microinjection[J]. Nature, 1985, 315(6021): 680–683. doi: 10.1038/315680a0
    [15]
    Zernii EY, Baksheeva VE, Iomdina EN, et al. Rabbit models of ocular diseases: new relevance for classical approaches[J]. CNS Neurol Disord Drug Targets, 2016, 15(3): 267–291. doi: 10.2174/1871527315666151110124957
    [16]
    Kamaruzaman NA, Kardia E, Kamaldin N, et al. The rabbit as a model for studying lung disease and stem cell therapy[J]. Biomed Res Int, 2013, 2013: 691830.
    [17]
    Burkholder TH, Linton G, Hoyt RF Jr, et al. The rabbit as an experimental model[M]//Suckow MA, Stevens KA, Wilson RP. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. Boston: Academic Press, 2012: 529–560.
    [18]
    Christensen ND, Peng XW. Rabbit genetics and transgenic models[M]//Suckow MA, Stevens KA, Wilson RP. The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents. Boston: Academic Press, 2012: 165–193.
    [19]
    Isola LM, Gordon JW. Transgenic animals: a new era in developmental biology and medicine[J]. Biotechnology, 1991, 16: 3–20. https://pubmed.ncbi.nlm.nih.gov/2007198/
    [20]
    Gordon JW, Scangos GA, Plotkin DJ, et al. Genetic transformation of mouse embryos by microinjection of purified DNA[J]. Proc Natl Acad Sci U S A, 1980, 77(12): 7380–7384. doi: 10.1073/pnas.77.12.7380
    [21]
    Brinster RL, Chen HY, Trumbauer M, et al. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs[J]. Cell, 1981, 27(1): 223–231. doi: 10.1016/0092-8674(81)90376-7
    [22]
    Costantini F, Lacy E. Introduction of a rabbit β-globin gene into the mouse germ line[J]. Nature, 1981, 294(5836): 92–94. doi: 10.1038/294092a0
    [23]
    Gordon JW, Ruddle FH. Integration and stable germ line transmission of genes injected into mouse pronuclei[J]. Science, 1981, 214(4526): 1244–1246. doi: 10.1126/science.6272397
    [24]
    Wagner EF, Stewart TA, Mintz B. The human beta-globin gene and a functional viral thymidine kinase gene in developing mice[J]. Proc Natl Acad Sci U S A, 1981, 78(8): 5016–5020. doi: 10.1073/pnas.78.8.5016
    [25]
    Wagner TE, Hoppe PC, Jollick JD, et al. Microinjection of a rabbit beta-globin gene into zygotes and its subsequent expression in adult mice and their offspring[J]. Proc Natl Acad Sci U S A, 1981, 78(10): 6376–6380. doi: 10.1073/pnas.78.10.6376
    [26]
    Campbell KHS, McWhir J, Ritchie WA, et al. Sheep cloned by nuclear transfer from a cultured cell line[J]. Nature, 1996, 380(6569): 64–66. doi: 10.1038/380064a0
    [27]
    Bibikova M, Golic M, Golic KG, et al. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases[J]. Genetics, 2002, 161(3): 1169–1175. https://pubmed.ncbi.nlm.nih.gov/12136019/
    [28]
    Chesne P, Adenot PG, Viglietta C, et al. Cloned rabbits produced by nuclear transfer from adult somatic cells[J]. Nat Biotechnol, 2002, 20(4): 366–369. doi: 10.1038/nbt0402-366
    [29]
    Li SG, Guo Y, Shi JJ, et al. Transgene expression of enhanced green fluorescent protein in cloned rabbits generated from in vitro-transfected adult fibroblasts[J]. Transgenic Res, 2009, 18(2): 227–235. doi: 10.1007/s11248-008-9227-y
    [30]
    Geurts AM, Cost GJ, Freyvert Y, et al. Knockout rats via embryo microinjection of zinc-finger nucleases[J]. Science, 2009, 325(5939): 433. doi: 10.1126/science.1172447
    [31]
    Flisikowska T, Thorey IS, Offner S, et al. Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases[J]. PLoS One, 2011, 6(6): e21045. doi: 10.1371/journal.pone.0021045
    [32]
    Tesson L, Usal C, Menoret S, et al. Knockout rats generated by embryo microinjection of TALENs[J]. Nat Biotechnol, 2011, 29(8): 695–696. doi: 10.1038/nbt.1940
    [33]
    Gasiunas G, Barrangou R, Horvath P, et al. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria[J]. Proc Natl Acad Sci U S A, 2012, 109(39): E2579–E2586. doi: 10.1073/pnas.1208507109
    [34]
    Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096): 816–821. doi: 10.1126/science.1225829
    [35]
    Wang H, Yang H, Shivalila CS, et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering[J]. Cell, 2013, 153(4): 910–918. doi: 10.1016/j.cell.2013.04.025
    [36]
    Song J, Zhong J, Guo XG, et al. Generation of RAG 1- and 2-deficient rabbits by embryo microinjection of TALENs[J]. Cell Res, 2013, 23(8): 1059–1062. doi: 10.1038/cr.2013.85
    [37]
    Yang D, Xu J, Zhu T, et al. Effective gene targeting in rabbits using RNA-guided Cas9 nucleases[J]. J Mol Cell Biol, 2014, 6(1): 97–99. doi: 10.1093/jmcb/mjt047
    [38]
    Carneiro M, Rubin CJ, Di Palma F, et al. Rabbit genome analysis reveals a polygenic basis for phenotypic change during domestication[J]. Science, 2014, 345(6200): 1074–1079. doi: 10.1126/science.1253714
    [39]
    Komor AC, Kim YB, Packer MS, et al. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage[J]. Nature, 2016, 533(7603): 420–424. doi: 10.1038/nature17946
    [40]
    Wang Z, Zhang JF, Li H, et al. Hyperlipidemia-associated gene variations and expression patterns revealed by whole-genome and transcriptome sequencing of rabbit models[J]. Sci Rep, 2016, 6: 26942. doi: 10.1038/srep26942
    [41]
    Liu Z, Chen M, Chen S, et al. Highly efficient RNA-guided base editing in rabbit[J]. Nat Commun, 2018, 9(1): 2717. doi: 10.1038/s41467-018-05232-2
    [42]
    Shen W, Li L, Pan QJ, et al. Efficient and simple production of transgenic mice and rabbits using the new DMSO-sperm mediated exogenous DNA transfer method[J]. Mol Reprod Dev, 2006, 73(5): 589–594. doi: 10.1002/mrd.20401
    [43]
    Hiripi L, Negre D, Cosset FL, et al. Transgenic rabbit production with simian immunodeficiency virus-derived lentiviral vector[J]. Transgenic Res, 2010, 19(5): 799–808. doi: 10.1007/s11248-009-9356-y
    [44]
    Smith KR. Sperm-mediated gene transfer: concepts and controversies[M]. Sharjah, UAE: Bentham Science, 2012.
    [45]
    Kuznetsov AV, Kuznetsova IV, Schit IY. DNA interaction with rabbit sperm cells and its transfer into ova in vitro and in vivo[J]. Mol Reprod Dev, 2000, 56(S2): 292–297. doi: 10.1002/(SICI)1098-2795(200006)56:2+<292::AID-MRD18>3.0.CO;2-Z
    [46]
    Houdebine LM. The methods to generate transgenic animals and to control transgene expression[J]. J Biotechnol, 2002, 98(2-3): 145–160. doi: 10.1016/S0168-1656(02)00129-3
    [47]
    Katter K, Geurts AM, Hoffmann O, et al. Transposon-mediated transgenesis, transgenic rescue, and tissue-specific gene expression in rodents and rabbits[J]. FASEB J, 2013, 27(3): 930–941. doi: 10.1096/fj.12-205526
    [48]
    Ivics Z, Hiripi L, Hoffmann OI, et al. Germline transgenesis in rabbits by pronuclear microinjection of Sleeping beauty transposons[J]. Nat Protoc, 2014, 9(4): 794–809. doi: 10.1038/nprot.2014.009
    [49]
    Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos[J]. Nature, 1981, 292(5819): 154–156. doi: 10.1038/292154a0
    [50]
    Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells[J]. Proc Natl Acad Sci U S A, 1981, 78(12): 7634–7638. doi: 10.1073/pnas.78.12.7634
    [51]
    Gossler A, Doetschman T, Korn R, et al. Transgenesis by means of blastocyst-derived embryonic stem cell lines[J]. Proc Natl Acad Sci U S A, 1986, 83(23): 9065–9069. doi: 10.1073/pnas.83.23.9065
    [52]
    Robertson E, Bradley A, Kuehn M, et al. Germ-line transmission of genes introduced into cultured pluripotential cells by retroviral vector[J]. Nature, 1986, 323(6087): 445–448. doi: 10.1038/323445a0
    [53]
    Kuehn MR, Bradley A, Robertson EJ, et al. A potential animal model for Lesch-Nyhan syndrome through introduction of HPRT mutations into mice[J]. Nature, 1987, 326(6110): 295–298. doi: 10.1038/326295a0
    [54]
    Okita K, Ichisaka T, Yamanaka S. Generation of germline-competent induced pluripotent stem cells[J]. Nature, 2007, 448(7151): 313–317. doi: 10.1038/nature05934
    [55]
    Wernig M, Meissner A, Foreman R, et al. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state[J]. Nature, 2007, 448(7151): 318–324. doi: 10.1038/nature05944
    [56]
    Boland MJ, Hazen JL, Nazor KL, et al. Adult mice generated from induced pluripotent stem cells[J]. Nature, 2009, 461(7260): 91–94. doi: 10.1038/nature08310
    [57]
    Kang L, Wang JL, Zhang Y, et al. iPS cells can support full-term development of tetraploid blastocyst-complemented embryos[J]. Cell Stem Cell, 2009, 5(2): 135–138. doi: 10.1016/j.stem.2009.07.001
    [58]
    Zhao XY, Li W, Lv Z, et al. iPS cells produce viable mice through tetraploid complementation[J]. Nature, 2009, 461(7260): 86–90. doi: 10.1038/nature08267
    [59]
    Capecchi MR. Gene targeting in mice: functional analysis of the mammalian genome for the twenty-first century[J]. Nat Rev Genet, 2005, 6(6): 507–512. doi: 10.1038/nrg1619
    [60]
    Fang ZF, Gai H, Huang YZ, et al. Rabbit embryonic stem cell lines derived from fertilized, parthenogenetic or somatic cell nuclear transfer embryos[J]. Exp Cell Res, 2006, 312(18): 3669–3682. doi: 10.1016/j.yexcr.2006.08.013
    [61]
    Wang SF, Tang XH, Niu YY, et al. Generation and characterization of rabbit embryonic stem cells[J]. Stem Cells, 2007, 25(2): 481–489. doi: 10.1634/stemcells.2006-0226
    [62]
    Honda A, Hirose M, Inoue K, et al. Stable embryonic stem cell lines in rabbits: potential small animal models for human research[J]. Reprod Biomed Online, 2008, 17(5): 706–715. doi: 10.1016/S1472-6483(10)60320-3
    [63]
    Osteil P, Tapponnier Y, Markossian S, et al. Induced pluripotent stem cells derived from rabbits exhibit some characteristics of naïve pluripotency[J]. Biol Open, 2013, 2(6): 613–628. doi: 10.1242/bio.20134242
    [64]
    Xue F, Ma YH, Chen YE, et al. Recombinant rabbit leukemia inhibitory factor and rabbit embryonic fibroblasts support the derivation and maintenance of rabbit embryonic stem cells[J]. Cell Reprogram, 2012, 14(4): 364–376. doi: 10.1089/cell.2012.0001
    [65]
    Du FL, Chen CH, Li Y, et al. Derivation of rabbit embryonic stem cells from vitrified-thawed embryos[J]. Cell Reprogram, 2015, 17(6): 453–462. doi: 10.1089/cell.2015.0044
    [66]
    Zakhartchenko V, Flisikowska T, Li S, et al. Cell-mediated transgenesis in rabbits: chimeric and nuclear transfer animals[J]. Biol Reprod, 2011, 84(2): 229–237. doi: 10.1095/biolreprod.110.087098
    [67]
    Tancos Z, Nemes C, Polgar Z, et al. Generation of rabbit pluripotent stem cell lines[J]. Theriogenology, 2012, 78(8): 1774–1786. doi: 10.1016/j.theriogenology.2012.06.017
    [68]
    McCreath KJ, Howcroft J, Campbell KHS, et al. Production of gene-targeted sheep by nuclear transfer from cultured somatic cells[J]. Nature, 2000, 405(6790): 1066–1069. doi: 10.1038/35016604
    [69]
    Lai LX, Kolber-Simonds D, Park KW, et al. Production of α-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning[J]. Science, 2002, 295(5557): 1089–1092. doi: 10.1126/science.1068228
    [70]
    Richt JA, Kasinathan P, Hamir AN, et al. Production of cattle lacking prion protein[J]. Nat Biotechnol, 2007, 25(1): 132–138. doi: 10.1038/nbt1271
    [71]
    Stice SL, Robl JM. Nuclear reprogramming in nuclear transplant rabbit embryos[J]. Biol Reprod, 1988, 39(3): 657–664. doi: 10.1095/biolreprod39.3.657
    [72]
    Du FL, Xu J, Zhang JF, et al. Beneficial effect of young oocytes for rabbit somatic cell nuclear transfer[J]. Cloning Stem Cells, 2009, 11(1): 131–140. doi: 10.1089/clo.2008.0042
    [73]
    Li SG, Chen XJ, Fang ZF, et al. Rabbits generated from fibroblasts through nuclear transfer[J]. Reproduction, 2006, 131(6): 1085–1090. doi: 10.1530/rep.1.01065
    [74]
    Li SG, Flisikowska T, Kessler B, et al. Production of cloned transgenic rabbits from mesenchymal stem cells[J]. Reprod Fertil Dev, 2010, 22(1): 192–192. doi: 10.1071/RDv22n1Ab67
    [75]
    Yin MR, Jiang WH, Fang ZF, et al. Generation of hypoxanthine phosphoribosyltransferase gene knockout rabbits by homologous recombination and gene trapping through somatic cell nuclear transfer[J]. Sci Rep, 2015, 5: 16023. doi: 10.1038/srep16023
    [76]
    Gaj T, Gersbach CA, Barbas III CF. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering[J]. Trends Biotechnol, 2013, 31(7): 397–405. doi: 10.1016/j.tibtech.2013.04.004
    [77]
    Conklin BR. Sculpting genomes with a hammer and chisel[J]. Nat Methods, 2013, 10(9): 839–840. doi: 10.1038/nmeth.2608
    [78]
    Cui XX, Ji DA, Fisher DA, et al. Targeted integration in rat and mouse embryos with zinc-finger nucleases[J]. Nat Biotechnol, 2011, 29(1): 64–67. doi: 10.1038/nbt.1731
    [79]
    Paques F, Duchateau P. Meganucleases and DNA double-strand break-induced recombination: perspectives for gene therapy[J]. Curr Gene Ther, 2007, 7(1): 49–66. doi: 10.2174/156652307779940216
    [80]
    Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain[J]. Proc Natl Acad Sci U S A, 1996, 93(3): 1156–1160. doi: 10.1073/pnas.93.3.1156
    [81]
    Yang DS, Yang HQ, Li W, et al. Generation of PPARγ mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer cloning[J]. Cell Res, 2011, 21(6): 979–982. doi: 10.1038/cr.2011.70
    [82]
    Yu SL, Luo JJ, Song ZY, et al. Highly efficient modification of beta-lactoglobulin (BLG) gene via zinc-finger nucleases in cattle[J]. Cell Res, 2011, 21(11): 1638–1640. doi: 10.1038/cr.2011.153
    [83]
    Perez EE, Wang JB, Miller JC, et al. Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases[J]. Nat Biotechnol, 2008, 26(7): 808–816. doi: 10.1038/nbt1410
    [84]
    Meng XD, Noyes MB, Zhu LJ, et al. Targeted gene inactivation in zebrafish using engineered zinc-finger nucleases[J]. Nat Biotechnol, 2008, 26(6): 695–701. doi: 10.1038/nbt1398
    [85]
    Yang DS, Zhang JF, Xu J, et al. Production of apolipoprotein C-III knockout rabbits using zinc finger nucleases[J]. J Vis Exp, 2013, (81): e50957. doi: 10.3791/50957
    [86]
    Ji DA, Zhao GJ, Songstad A, et al. Efficient creation of an APOE knockout rabbit[J]. Transgenic Res, 2015, 24(2): 227–235. doi: 10.1007/s11248-014-9834-8
    [87]
    Niimi M, Yang DS, Kitajima S, et al. ApoE knockout rabbits: a novel model for the study of human hyperlipidemia[J]. Atherosclerosis, 2016, 245: 187–193. doi: 10.1016/j.atherosclerosis.2015.12.002
    [88]
    Zhang JF, Niimi M, Yang DS, et al. Deficiency of cholesteryl ester transfer protein protects against atherosclerosis in rabbits[J]. Arterioscler Thromb Vasc Biol, 2017, 37(6): 1068–1075. doi: 10.1161/ATVBAHA.117.309114
    [89]
    Miller JC, Tan SY, Qiao GJ, et al. A TALE nuclease architecture for efficient genome editing[J]. Nat Biotechnol, 2011, 29(2): 143–148. doi: 10.1038/nbt.1755
    [90]
    Christian M, Cermak T, Doyle EL, et al. Targeting DNA double-strand breaks with TAL effector nucleases[J]. Genetics, 2010, 186(2): 757–761. doi: 10.1534/genetics.110.120717
    [91]
    Boch J, Scholze H, Schornack S, et al. Breaking the code of DNA binding specificity of TAL-type III effectors[J]. Science, 2009, 326(5959): 1509–1512. doi: 10.1126/science.1178811
    [92]
    Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors[J]. Science, 2009, 326(5959): 1501. doi: 10.1126/science.1178817
    [93]
    Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering[J]. Cell, 2014, 157(6): 1262–1278. doi: 10.1016/j.cell.2014.05.010
    [94]
    Yang DS, Xu J, Chen YE. Generation of rabbit models by gene editing nucleases[M]//Liu CY, Du YB. Microinjection. New York: Humana Press, 2019: 327–345.
    [95]
    Li L, Zhang QJ, Yang HQ, et al. Fumarylacetoacetate hydrolase knock-out rabbit model for hereditary tyrosinemia type 1[J]. J Biol Chem, 2017, 292(11): 4755–4763. doi: 10.1074/jbc.M116.764787
    [96]
    Chen M, Yao B, Yang QB, et al. Truncated C-terminus of fibrillin-1 induces Marfanoid-progeroid-lipodystrophy (MPL) syndrome in rabbit[J]. Dis Model Mech, 2018, 11(4): dmm031542. doi: 10.1242/dmm.031542
    [97]
    Sui TT, Lau YS, Liu D, et al. A novel rabbit model of Duchenne muscular dystrophy generated by CRISPR/Cas9[J]. Dis Model Mech, 2018, 11(6): dmm032201. doi: 10.1242/dmm.032201
    [98]
    Sui TT, Xu L, Lau YS, et al. Development of muscular dystrophy in a CRISPR-engineered mutant rabbit model with frame-disrupting ANO5 mutations[J]. Cell Death Dis, 2018, 9(6): 609. doi: 10.1038/s41419-018-0674-y
    [99]
    Yuan L, Yao HB, Xu YX, et al. CRISPR/cas9-mediated mutation of αA-crystallin gene induces congenital cataracts in rabbits[J]. Invest Ophthalmol Vis Sci, 2017, 58(6): BIO34–BIO41. doi: 10.1167/iovs.16-21287
    [100]
    Yuan L, Sui TT, Chen M, et al. CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts[J]. Sci Rep, 2016, 6: 22024. doi: 10.1038/srep22024
    [101]
    Lu R, Yuan T, Wang Y, et al. Spontaneous severe hypercholesterolemia and atherosclerosis lesions in rabbits with deficiency of low-density lipoprotein receptor (LDLR) on exon 7[J]. EBioMedicine, 2018, 36: 29–38. doi: 10.1016/j.ebiom.2018.09.020
    [102]
    Guo R, Wan Y, Xu D, et al. Generation and evaluation of Myostatin knock-out rabbits and goats using CRISPR/Cas9 system[J]. Sci Rep, 2016, 6: 29855. doi: 10.1038/srep29855
    [103]
    Lv Q, Yuan L, Deng J, et al. Efficient Generation of Myostatin Gene Mutated Rabbit by CRISPR/Cas9[J]. Sci Rep, 2016, 6: 25029. doi: 10.1038/srep25029
    [104]
    Song Y, Liu T, Wang Y, et al. Mutation of the Sp1 binding site in the 5' flanking region of SRY causes sex reversal in rabbits[J]. Oncotarget, 2017, 8(24): 38176–38183. doi: 10.18632/oncotarget.16979
    [105]
    Song Y, Xu Y, Liang M, et al. CRISPR/Cas9-mediated mosaic mutation of SRY gene induces hermaphroditism in rabbits[J]. Biosci Rep, 2018, 38(2): BSR20171490. doi: 10.1042/BSR20171490
    [106]
    Sui T, Yuan L, Liu H, et al. CRISPR/Cas9-mediated mutation of PHEX in rabbit recapitulates human X-linked hypophosphatemia (XLH)[J]. Hum Mol Genet, 2016, 25(13): 2661–2671. doi: 10.1093/hmg/ddw125
    [107]
    Sui T, Liu D, Liu T, et al. LMNA-mutated rabbits: a model of premature aging syndrome with muscular dystrophy and dilated cardiomyopathy[J]. Aging Dis, 2019, 10(1): 102–115. doi: 10.14336/AD.2018.0209
    [108]
    Wu H, Liu Q, Shi H, et al. Engineering CRISPR/Cpf1 with tRNA promotes genome editing capability in mammalian systems[J]. Cell Mol Life Sci, 2018, 75(19): 3593–3607. doi: 10.1007/s00018-018-2810-3
    [109]
    Honda A, Hirose M, Sankai T, et al. Single-step generation of rabbits carrying a targeted allele of the tyrosinase gene using CRISPR/Cas9[J]. Exp Anim, 2015, 64(1): 31–37. doi: 10.1538/expanim.14-0034
    [110]
    Song Y, Xu Y, Deng J, et al. CRISPR/Cas9-mediated mutation of tyrosinase (Tyr) 3' UTR induce graying in rabbit[J]. Sci Rep, 2017, 7(1): 1569. doi: 10.1038/s41598-017-01727-y
    [111]
    Jiang WH, Liu LL, Chang QR, et al. Production of Wilson disease model rabbits with homology-directed precision point mutations in the ATP7B gene using the CRISPR/Cas9 system[J]. Sci Rep, 2018, 8: 1332. doi: 10.1038/s41598-018-19774-4
    [112]
    Song YN, Zhang YX, Chen M, et al. Functional validation of the albinism-associated tyrosinase T373K SNP by CRISPR/Cas9-mediated homology-directed repair (HDR) in rabbits[J]. EBioMedicine, 2018, 36: 517–525. doi: 10.1016/j.ebiom.2018.09.041
    [113]
    Song YN, Yuan L, Wang Y, et al. Efficient dual sgRNA-directed large gene deletion in rabbit with CRISPR/Cas9 system[J]. Cell Mol Life Sci, 2016, 73(15): 2959–2968. doi: 10.1007/s00018-016-2143-z
    [114]
    Song J, Wang GS, Hoenerhoff MJ, et al. Bacterial and Pneumocystis infections in the lungs of gene-knockout rabbits with severe combined immunodeficiency[J]. Front Immunol, 2018, 9: 429. doi: 10.3389/fimmu.2018.00429
    [115]
    Song J, Yang DS, Ruan JX, et al. Production of immunodeficient rabbits by multiplex embryo transfer and multiplex gene targeting[J]. Sci Rep, 2017, 7(1): 12202. doi: 10.1038/s41598-017-12201-0
    [116]
    Yan Q, Zhang Q, Yang H, et al. Generation of multi-gene knockout rabbits using the Cas9/gRNA system[J]. Cell Regen (Lond), 2014, 3(1): 12. doi: 10.1186/2045-9769-3-12
    [117]
    Liu H, Sui T, Liu D, et al. Multiple homologous genes knockout (KO) by CRISPR/Cas9 system in rabbit[J]. Gene, 2018, 647: 261–267. doi: 10.1016/j.gene.2018.01.044
    [118]
    Yang DS, Song J, Zhang JF, et al. Identification and characterization of rabbit ROSA26 for gene knock-in and stable reporter gene expression[J]. Sci Rep, 2016, 6: 25161. doi: 10.1038/srep25161
    [119]
    Song J, Yang DS, Xu J, et al. RS-1 enhances CRISPR/Cas9- and TALEN-mediated knock-in efficiency[J]. Nat Commun, 2016, 7: 10548. doi: 10.1038/ncomms10548
    [120]
    Gaudelli NM, Komor AC, Rees HA, et al. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage[J]. Nature, 2017, 551(7681): 464–471. doi: 10.1038/nature24644
    [121]
    Komor AC, Zhao KT, Packer MS, et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C: G-to-T: a base editors with higher efficiency and product purity[J]. Sci Adv, 2017, 3(8): eaao4774. doi: 10.1126/sciadv.aao4774
    [122]
    Koblan LW, Doman JL, Wilson C, et al. Improving cytidine and adenine base editors by expression optimization and ancestral reconstruction[J]. Nat Biotechnol, 2018, 36(9): 843–846. doi: 10.1038/nbt.4172
    [123]
    Hsu PD, Scott DA, Weinstein JA, et al. DNA targeting specificity of RNA-guided Cas9 nucleases[J]. Nat Biotechnol, 2013, 31(9): 827–832. doi: 10.1038/nbt.2647
    [124]
    Schmid-Burgk JL, Gao LY, Li D, et al. Highly parallel profiling of cas9 variant specificity[J]. Mol Cell, 2020, . doi: 10.1016/j.molcel.2020.02.023
    [125]
    Tycko J, Myer VE, Hsu PD. Methods for optimizing crispr-cas9 genome editing specificity[J]. Mol Cell, 2016, 63(3): 355–370. doi: 10.1016/j.molcel.2016.07.004
    [126]
    Chen SM, Yao YF, Zhang YC, et al. CRISPR system: discovery, development and off-target detection[J]. Cell Signal, 2020, 70: 109577. doi: 10.1016/j.cellsig.2020.109577
    [127]
    Li JJ, Hong SY, Chen WJ, et al. Advances in detecting and reducing off-target effects generated by CRISPR-mediated genome editing[J]. J Genet Genomics, 2019, 46(11): 513–521. doi: 10.1016/j.jgg.2019.11.002
    [128]
    Zischewski J, Fischer R, Bortesi L. Detection of on-target and off-target mutations generated by CRISPR/Cas9 and other sequence-specific nucleases[J]. Biotechnol Adv, 2017, 35(1): 95–104. doi: 10.1016/j.biotechadv.2016.12.003
    [129]
    Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements[J]. Nat Biotechnol, 2018, 36(8): 765–771. doi: 10.1038/nbt.4192
    [130]
    Mou HW, Smith JL, Peng LT, et al. CRISPR/Cas9-mediated genome editing induces exon skipping by alternative splicing or exon deletion[J]. Genome Biol, 2017, 18(1): 108. doi: 10.1186/s13059-017-1237-8
    [131]
    Prykhozhij SV, Steele SL, Razaghi B, et al. A rapid and effective method for screening, sequencing and reporter verification of engineered frameshift mutations in zebrafish[J]. Dis Model Mech, 2017, 10(6): 811–822. doi: 10.1242/dmm.026765
    [132]
    Sharpe JJ, Cooper TA. Unexpected consequences: exon skipping caused by CRISPR-generated mutations[J]. Genome Biol, 2017, 18(1): 109. doi: 10.1186/s13059-017-1240-0
    [133]
    Sui TT, Song YN, Liu ZQ, et al. CRISPR-induced exon skipping is dependent on premature termination codon mutations[J]. Genome Biol, 2018, 19(1): 164. doi: 10.1186/s13059-018-1532-z
    [134]
    Li P, Estrada J, Zhang F, et al. Isolation, characterization, and nuclear reprogramming of cell lines derived from porcine adult liver and fat[J]. Cell Reprogram, 2010, 12(5): 599–607. doi: 10.1089/cell.2010.0006
  • Related Articles

    [1]Desaulniers Amy T., Cederberg Rebecca A., Carreiro Elizabeth P., Gurumurthy Channabasavaiah B., White Brett R.. A transgenic pig model expressing a CMV-ZsGreen1 reporter across an extensive array of tissues[J]. The Journal of Biomedical Research, 2021, 35(2): 163-173. DOI: 10.7555/JBR.34.20200111
    [2]Konishi Colin T., Long Chengzu. Progress and challenges in CRISPR-mediated therapeutic genome editing for monogenic diseases[J]. The Journal of Biomedical Research, 2021, 35(2): 148-162. DOI: 10.7555/JBR.34.20200105
    [3]Papizan James B., Porter Shaina N., Sharma Akshay, Pruett-Miller Shondra M.. Therapeutic gene editing strategies using CRISPR-Cas9 for the β-hemoglobinopathies[J]. The Journal of Biomedical Research, 2021, 35(2): 115-134. DOI: 10.7555/JBR.34.20200096
    [4]Choe Dongwook C., Musunuru Kiran. Base editing: a brief review and a practical example[J]. The Journal of Biomedical Research, 2021, 35(2): 107-114. DOI: 10.7555/JBR.34.20200003
    [5]McKay Alexander, Burgio Gaetan. Harnessing CRISPR-Cas system diversity for gene editing technologies[J]. The Journal of Biomedical Research, 2021, 35(2): 91-106. DOI: 10.7555/JBR.35.20200184
    [6]Li Wanlin, Wu Min, Wang Qianqian, Xu Kun, Lin Fan, Wang Qianghu, Guo Renhua. A comparative genomics analysis of lung adenocarcinoma for Chinese population by using panel of recurrent mutations[J]. The Journal of Biomedical Research, 2021, 35(1): 11-20. DOI: 10.7555/JBR.34.20200068
    [7]Ma Hongxia, Shen Hongbing. From human genome epidemiology to systems epidemiology: current progress and future perspective[J]. The Journal of Biomedical Research, 2020, 34(5): 323-327. DOI: 10.7555/JBR.34.20200027
    [8]Niimi Manabu, Nishijima Kazutoshi, Kitajima Shuji, Matsuhisa Fumikazu, Satoh Kaneo, Yamazaki Hirokazu, Zhang Jifeng, Chen Y. Eugene, Fan Jianglin. Macrophage-derived matrix metalloproteinase-1 enhances aortic aneurysm formation in transgenic rabbits[J]. The Journal of Biomedical Research, 2019, 33(4): 271-279. DOI: 10.7555/JBR.33.20180097
    [9]Didi Zhu, Jiamin Yuan, Rui Zhu, Yao Wang, Zhiyong Qian, Jiangang Zou. Pathway-based analysis of genome-wide association study of circadian phenotypes[J]. The Journal of Biomedical Research, 2018, 32(5): 361-370. DOI: 10.7555/JBR.32.20170102
    [10]Honggang Yi, Hongmei Wo, Yang Zhao, Ruyang Zhang, Junchen Dai, Guangfu Jin, Hongxia Ma, Tangchun Wu, Zhibin Hu, Dongxin Lin, Hongbing Shen, Feng Chen. Comparison of dimension reduction-based logistic regression models forcase-control genome-wide association study: principal components analysis vs. partial least squares[J]. The Journal of Biomedical Research, 2015, 29(4): 298-307. DOI: 10.7555/JBR.29.20140043
  • Cited by

    Periodical cited type(5)

    1. Han Y, Zhou J, Zhang R, et al. Genome-edited rabbits: Unleashing the potential of a promising experimental animal model across diverse diseases. Zool Res, 2024, 45(2): 253-262. DOI:10.24272/j.issn.2095-8137.2023.201
    2. Summers KM. Genetic models of fibrillinopathies. Genetics, 2024, 226(1): iyad189. DOI:10.1093/genetics/iyad189
    3. Yuan L, Yue F, Kubiak JZ, et al. Editorial: Applying large animals for developmental study and disease modeling. Front Cell Dev Biol, 2023, 11: 1225060. DOI:10.3389/fcell.2023.1225060
    4. Fan J, Wang Y, Chen YE. Genetically Modified Rabbits for Cardiovascular Research. Front Genet, 2021, 12: 614379. DOI:10.3389/fgene.2021.614379
    5. Yang D, Liang X, Pallas B, et al. Production of CFTR-ΔF508 Rabbits. Front Genet, 2021, 11: 627666. DOI:10.3389/fgene.2020.627666

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3550) PDF downloads (272) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return