4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Niimi Manabu, Nishijima Kazutoshi, Kitajima Shuji, Matsuhisa Fumikazu, Satoh Kaneo, Yamazaki Hirokazu, Zhang Jifeng, Chen Y. Eugene, Fan Jianglin. Macrophage-derived matrix metalloproteinase-1 enhances aortic aneurysm formation in transgenic rabbits[J]. The Journal of Biomedical Research, 2019, 33(4): 271-279. DOI: 10.7555/JBR.33.20180097
Citation: Niimi Manabu, Nishijima Kazutoshi, Kitajima Shuji, Matsuhisa Fumikazu, Satoh Kaneo, Yamazaki Hirokazu, Zhang Jifeng, Chen Y. Eugene, Fan Jianglin. Macrophage-derived matrix metalloproteinase-1 enhances aortic aneurysm formation in transgenic rabbits[J]. The Journal of Biomedical Research, 2019, 33(4): 271-279. DOI: 10.7555/JBR.33.20180097

Macrophage-derived matrix metalloproteinase-1 enhances aortic aneurysm formation in transgenic rabbits

More Information
  • Corresponding author:

    Jianglin Fan, Department of Molecular Pathology, Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan; School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China. E-mail: jianglin@yamanashi.ac.jp

  • Received Date: September 30, 2018
  • Accepted Date: November 27, 2018
  • Available Online: February 27, 2019
  • Increased expression of matrix metalloproteinase-1 (MMP-1) has been observed in the lesions of atherosclerosis and aneurysms; however, it is not fully understood whether macrophage-derived MMP-1 affects these diseases. To investigate whether macrophage-derived MMP-1 participates in the development of vascular diseases, we generated transgenic (Tg) rabbits expressing human MMP-1 in the monocyte/macrophage lineage under the control of the human scavenger receptor enhancer/promoter. Tg rabbits exhibited no visible abnormalities throughout their bodies. Western blotting analysis revealed that the amount of MMP-1 proteins in the conditioned media secreted from peritoneal macrophages of Tg rabbits was up to 3-fold higher than that in non-Tg rabbits. For the first experiment, Tg and non-Tg rabbits were fed a cholesterol diet for 16 weeks, and aortic and coronary atherosclerosis were evaluated. The gross lesion area of aortic atherosclerosis in Tg rabbits was not significantly different from that in non-Tg rabbits, but Tg rabbits had marked destruction of the medial elastic lamina of the aortic lesions on microscopic examination. For the second experiment, we generated aortic aneurysms by incubating with elastase. Compared with non-Tg rabbits, Tg rabbits exhibited a significantly greater aortic dilation. Increased macrophage-derived MMP-1 led to increased medial destruction in both aortic atherosclerosis and aneurysms. These results demonstrate that MMP-1 plays a different role in the pathogenesis of atherosclerosis and aneurysms.
  • [1]
    Fan J, Watanabe T. Inflammatory reactions in the pathogenesis of atherosclerosis[J]. J Atheroscler Thromb, 2003, 10(2): 63–71. doi: 10.5551/jat.10.63
    [2]
    Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis[J]. Cell, 2011, 145(3): 341–355. doi: 10.1016/j.cell.2011.04.005
    [3]
    Libby P. Inflammation in atherosclerosis[J]. Nature, 2002, 420(6917): 868–874. doi: 10.1038/nature01323
    [4]
    Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis[J]. Circ Res, 2016, 118(4): 653–667. doi: 10.1161/CIRCRESAHA.115.306256
    [5]
    Dollery CM, Libby P. Atherosclerosis and proteinase activation[J]. Cardiovasc Res, 2006, 69(3): 625–635. doi: 10.1016/j.cardiores.2005.11.003
    [6]
    Newby AC. Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability[J]. Arterioscler Thromb Vasc Biol, 2008, 28(12): 2108–2114. doi: 10.1161/ATVBAHA.108.173898
    [7]
    Galis ZS, Sukhova GK, Kranzhöfer R, et al. Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases[J]. Proc Natl Acad Sci U S A, 1995, 92(2): 402–406. doi: 10.1073/pnas.92.2.402
    [8]
    Galis ZS, Sukhova GK, Lark MW, et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques[J]. J Clin Invest, 1994, 94(6): 2493–2503. doi: 10.1172/JCI117619
    [9]
    Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly[J]. Circ Res, 2002, 90(3): 251–262. doi: 10.1161/res.90.3.251
    [10]
    Newby AC. Matrix metalloproteinase inhibition therapy for vascular diseases[J]. Vascul Pharmacol, 2012, 56(5–6): 232–244. doi: 10.1016/j.vph.2012.01.007
    [11]
    Sinha S, Frishman WH. Matrix metalloproteinases and abdominal aortic aneurysms: a potential therapeutic target[J]. J Clin Pharmacol, 1998, 38(12): 1077–1088.
    [12]
    Wang Z, Zhang J, Li H, et al. Hyperlipidemia-associated gene variations and expression patterns revealed by whole-genome and transcriptome sequencing of rabbit models[J]. Sci Rep, 2016, 6(1): 26942. doi: 10.1038/srep26942
    [13]
    Yu Y, Koike T, Kitajima S, et al. Temporal and quantitative analysis of expression of metalloproteinases (MMPs) and their endogenous inhibitors in atherosclerotic lesions[J]. Histol Histopathol, 2008, 23(12): 1503–1516.
    [14]
    Pardo A, Selman M. MMP-1: the elder of the family[J]. Int J Biochem Cell Biol, 2005, 37(2): 283–288. doi: 10.1016/j.biocel.2004.06.017
    [15]
    Nikkari ST, Geary RL, Hatsukami T, et al. Expression of collagen, interstitial collagenase, and tissue inhibitor of metalloproteinases-1 in restenosis after carotid endarterectomy[J]. Am J Pathol, 1996, 148(3): 777–783.
    [16]
    Sukhova GK, Schönbeck U, Rabkin E, et al. Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques[J]. Circulation, 1999, 99(19): 2503–2509. doi: 10.1161/01.CIR.99.19.2503
    [17]
    Ye S, Gale CR, Martyn CN. Variation in the matrix metalloproteinase-1 gene and risk of coronary heart disease[J]. Eur Heart J, 2003, 24(18): 1668–1671. doi: 10.1016/S0195-668X(03)00385-3
    [18]
    Pearce E, Tregouet DA, Samnegård A, et al. Haplotype effect of the matrix metalloproteinase-1 gene on risk of myocardial infarction[J]. Circ Res, 2005, 97(10): 1070–1076. doi: 10.1161/01.RES.0000189302.03303.11
    [19]
    Irizarry E, Newman KM, Gandhi RH, et al. Demonstration of interstitial collagenase in abdominal aortic aneurysm disease[J]. J Surg Res, 1993, 54(6): 571–574. doi: 10.1006/jsre.1993.1087
    [20]
    Knox JB, Sukhova GK, Whittemore AD, et al. Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases[J]. Circulation, 1997, 95(1): 205–212. doi: 10.1161/01.CIR.95.1.205
    [21]
    Vincenti MP, Coon CI, Mengshol JA, et al. Cloning of the gene for interstitial collagenase-3 (matrix metalloproteinase-13) from rabbit synovial fibroblasts: differential expression with collagenase-1 (matrix metalloproteinase-1)[J]. Biochem J, 1998, 331(Pt 1): 341–346.
    [22]
    Lemaître V, O’Byrne TK, Borczuk AC, et al. ApoE knockout mice expressing human matrix metalloproteinase-1 in macrophages have less advanced atherosclerosis[J]. J Clin Invest, 2001, 107(10): 1227–1234. doi: 10.1172/JCI9626
    [23]
    Fan J, Kitajima S, Watanabe T, et al. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine[J]. Pharmacol Ther, 2015, 146: 104–119. doi: 10.1016/j.pharmthera.2014.09.009
    [24]
    Fan J, Watanabe T. Transgenic rabbits as therapeutic protein bioreactors and human disease models[J]. Pharmacol Ther, 2003, 99(3): 261–282. doi: 10.1016/S0163-7258(03)00069-X
    [25]
    Fan J, Wang X, Wu L, et al. Macrophage-specific overexpression of human matrix metalloproteinase-12 in transgenic rabbits[J]. Transgenic Res, 2004, 13(3): 261–269. doi: 10.1023/B:TRAG.0000034717.70729.61
    [26]
    Recillas-Targa F, Pikaart MJ, Burgess-Beusse B, et al. Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities[J]. Proc Natl Acad Sci U S A, 2002, 99(10): 6883–6888. doi: 10.1073/pnas.102179399
    [27]
    Koike T, Kitajima S, Yu Y, et al. Human C-reactive protein does not promote atherosclerosis in transgenic rabbits[J]. Circulation, 2009, 120(21): 2088–2094. doi: 10.1161/CIRCULATIONAHA.109.872796
    [28]
    Zhang J, Niimi M, Yang D, et al. Deficiency of cholesteryl ester transfer protein protects against atherosclerosis in rabbits[J]. Arterioscler Thromb Vasc Biol, 2017, 37(6): 1068–1075. doi: 10.1161/ATVBAHA.117.309114
    [29]
    Liang J, Liu E, Yu Y, et al. Macrophage metalloelastase accelerates the progression of atherosclerosis in transgenic rabbits[J]. Circulation, 2006, 113(16): 1993–2001. doi: 10.1161/CIRCULATIONAHA.105.596031
    [30]
    Bi Y, Zhong H, Xu K, et al. Development of a novel rabbit model of abdominal aortic aneurysm via a combination of periaortic calcium chloride and elastase incubation[J]. PLoS One, 2013, 8(7): e68476. doi: 10.1371/journal.pone.0068476
    [31]
    Miyake T, Aoki M, Masaki H, et al. Regression of abdominal aortic aneurysms by simultaneous inhibition of nuclear factor kappaB and ets in a rabbit model[J]. Circ Res, 2007, 101(11): 1175–1184. doi: 10.1161/CIRCRESAHA.107.148668
    [32]
    Chen Y, Waqar AB, Nishijima K, et al. Macrophage-derived MMP-9 enhances the vascular calcification and progression of atherosclerotic lesions in transgenic rabbits[J]. FASEB J, 2019, (in press).
    [33]
    Matsumoto S, Kobayashi T, Katoh M, et al. Expression and localization of matrix metalloproteinase-12 in the aorta of cholesterol-fed rabbits: relationship to lesion development[J]. Am J Pathol, 1998, 153(1): 109–119. doi: 10.1016/S0002-9440(10)65551-4
  • Related Articles

    [1]Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387
    [2]Lianjun Shi, Huimin Ge, Fan Ye, Xiumiao Li, Qin Jiang. The role of pericyte in ocular vascular diseases[J]. The Journal of Biomedical Research, 2024, 38(6): 521-530. DOI: 10.7555/JBR.37.20230314
    [3]Ruyu Wang, Haoran Wang, Junyu Mu, Hua Yuan, Yongchu Pang, Yuli Wang, Yifei Du, Feng Han. Molecular events in the jaw vascular unit: A traditional review of the mechanisms involved in inflammatory jaw bone diseases[J]. The Journal of Biomedical Research, 2023, 37(5): 313-325. DOI: 10.7555/JBR.36.20220266
    [4]Zhang Zhijia, Hou Yuxing, Li Jiantao, Tang Chao, Que Linli, Tan Qian, Li Yuehua. TIR/BB-loop mimetic AS-1 protects vascular endothelial cells from injury induced by hypoxia/reoxygenation[J]. The Journal of Biomedical Research, 2020, 34(5): 343-350. DOI: 10.7555/JBR.33.20190030
    [5]Niimi Manabu, Nishijima Kazutoshi, Kitajima Shuji, Matsuhisa Fumikazu, Satoh Kaneo, Yamazaki Hirokazu, Zhang Jifeng, Chen Y. Eugene, Fan Jianglin. Macrophage-derived matrix metalloproteinase-1 enhances aortic aneurysm formation in transgenic rabbits[J]. The Journal of Biomedical Research, 2019, 33(4): 271-279. DOI: 10.7555/JBR.33.20180097
    [6]Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045
    [7]Jiawei Liao, Wei Huang, George Liu. Animal models of coronary heart disease[J]. The Journal of Biomedical Research, 2017, 31(1): 3-10. DOI: 10.7555/JBR.30.20150051
    [8]Jiaxin Ye, Ping Ni, Lina Kang, Biao Xu. Apelin and vascular endothelial growth factor are associated with mobilization of endothelial progenitor cells after acute myocardial infarction[J]. The Journal of Biomedical Research, 2012, 26(6): 400-409. DOI: 10.7555/JBR.26.20120052
    [9]Xiwen Zhang, Yao Wang, Weiwei Yang, Xiaofeng Hou, Jiangang Zou, Kejiang Cao. Resveratrol inhibits angiotensin II -induced ERK1/2 activation by downregulating quinone reductase 2 in rat vascular smooth muscle cells[J]. The Journal of Biomedical Research, 2012, 26(2): 103-109. DOI: 10.1016/S1674-8301(12)60019-0
    [10]Wen Qiu, Yan Li, Jianbo Zhou, Chenhui Zhao, Jing Zhang, Kai Shan, Dan Zhao, Yingwei Wang. TSP-1 promotes glomerular mesangial cell proliferation and extracellular matrix secretion in Thy-1 nephritis rats[J]. The Journal of Biomedical Research, 2011, 25(6): 402-410. DOI: 10.1016/S1674-8301(11)60053-5
  • Other Related Supplements

  • Cited by

    Periodical cited type(2)

    1. Lombard L, Sandoval-Denis M, Lamprecht SC, et al. Epitypification of Fusarium oxysporum - clearing the taxonomic chaos. Persoonia, 2019, 43: 1-47. DOI:10.3767/persoonia.2019.43.01
    2. Urbaniak C, van Dam P, Zaborin A, et al. Genomic Characterization and Virulence Potential of Two Fusarium oxysporum Isolates Cultured from the International Space Station. mSystems, 2019, 4(2): e00345-18. DOI:10.1128/mSystems.00345-18

    Other cited types(0)

Catalog

    Article Metrics

    Article views (6440) PDF downloads (66) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return