Citation: | Niimi Manabu, Nishijima Kazutoshi, Kitajima Shuji, Matsuhisa Fumikazu, Satoh Kaneo, Yamazaki Hirokazu, Zhang Jifeng, Chen Y. Eugene, Fan Jianglin. Macrophage-derived matrix metalloproteinase-1 enhances aortic aneurysm formation in transgenic rabbits[J]. The Journal of Biomedical Research, 2019, 33(4): 271-279. DOI: 10.7555/JBR.33.20180097 |
[1] |
Fan J, Watanabe T. Inflammatory reactions in the pathogenesis of atherosclerosis[J]. J Atheroscler Thromb, 2003, 10(2): 63–71. doi: 10.5551/jat.10.63
|
[2] |
Moore KJ, Tabas I. Macrophages in the pathogenesis of atherosclerosis[J]. Cell, 2011, 145(3): 341–355. doi: 10.1016/j.cell.2011.04.005
|
[3] |
Libby P. Inflammation in atherosclerosis[J]. Nature, 2002, 420(6917): 868–874. doi: 10.1038/nature01323
|
[4] |
Tabas I, Bornfeldt KE. Macrophage phenotype and function in different stages of atherosclerosis[J]. Circ Res, 2016, 118(4): 653–667. doi: 10.1161/CIRCRESAHA.115.306256
|
[5] |
Dollery CM, Libby P. Atherosclerosis and proteinase activation[J]. Cardiovasc Res, 2006, 69(3): 625–635. doi: 10.1016/j.cardiores.2005.11.003
|
[6] |
Newby AC. Metalloproteinase expression in monocytes and macrophages and its relationship to atherosclerotic plaque instability[J]. Arterioscler Thromb Vasc Biol, 2008, 28(12): 2108–2114. doi: 10.1161/ATVBAHA.108.173898
|
[7] |
Galis ZS, Sukhova GK, Kranzhöfer R, et al. Macrophage foam cells from experimental atheroma constitutively produce matrix-degrading proteinases[J]. Proc Natl Acad Sci U S A, 1995, 92(2): 402–406. doi: 10.1073/pnas.92.2.402
|
[8] |
Galis ZS, Sukhova GK, Lark MW, et al. Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques[J]. J Clin Invest, 1994, 94(6): 2493–2503. doi: 10.1172/JCI117619
|
[9] |
Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly[J]. Circ Res, 2002, 90(3): 251–262. doi: 10.1161/res.90.3.251
|
[10] |
Newby AC. Matrix metalloproteinase inhibition therapy for vascular diseases[J]. Vascul Pharmacol, 2012, 56(5–6): 232–244. doi: 10.1016/j.vph.2012.01.007
|
[11] |
Sinha S, Frishman WH. Matrix metalloproteinases and abdominal aortic aneurysms: a potential therapeutic target[J]. J Clin Pharmacol, 1998, 38(12): 1077–1088.
|
[12] |
Wang Z, Zhang J, Li H, et al. Hyperlipidemia-associated gene variations and expression patterns revealed by whole-genome and transcriptome sequencing of rabbit models[J]. Sci Rep, 2016, 6(1): 26942. doi: 10.1038/srep26942
|
[13] |
Yu Y, Koike T, Kitajima S, et al. Temporal and quantitative analysis of expression of metalloproteinases (MMPs) and their endogenous inhibitors in atherosclerotic lesions[J]. Histol Histopathol, 2008, 23(12): 1503–1516.
|
[14] |
Pardo A, Selman M. MMP-1: the elder of the family[J]. Int J Biochem Cell Biol, 2005, 37(2): 283–288. doi: 10.1016/j.biocel.2004.06.017
|
[15] |
Nikkari ST, Geary RL, Hatsukami T, et al. Expression of collagen, interstitial collagenase, and tissue inhibitor of metalloproteinases-1 in restenosis after carotid endarterectomy[J]. Am J Pathol, 1996, 148(3): 777–783.
|
[16] |
Sukhova GK, Schönbeck U, Rabkin E, et al. Evidence for increased collagenolysis by interstitial collagenases-1 and -3 in vulnerable human atheromatous plaques[J]. Circulation, 1999, 99(19): 2503–2509. doi: 10.1161/01.CIR.99.19.2503
|
[17] |
Ye S, Gale CR, Martyn CN. Variation in the matrix metalloproteinase-1 gene and risk of coronary heart disease[J]. Eur Heart J, 2003, 24(18): 1668–1671. doi: 10.1016/S0195-668X(03)00385-3
|
[18] |
Pearce E, Tregouet DA, Samnegård A, et al. Haplotype effect of the matrix metalloproteinase-1 gene on risk of myocardial infarction[J]. Circ Res, 2005, 97(10): 1070–1076. doi: 10.1161/01.RES.0000189302.03303.11
|
[19] |
Irizarry E, Newman KM, Gandhi RH, et al. Demonstration of interstitial collagenase in abdominal aortic aneurysm disease[J]. J Surg Res, 1993, 54(6): 571–574. doi: 10.1006/jsre.1993.1087
|
[20] |
Knox JB, Sukhova GK, Whittemore AD, et al. Evidence for altered balance between matrix metalloproteinases and their inhibitors in human aortic diseases[J]. Circulation, 1997, 95(1): 205–212. doi: 10.1161/01.CIR.95.1.205
|
[21] |
Vincenti MP, Coon CI, Mengshol JA, et al. Cloning of the gene for interstitial collagenase-3 (matrix metalloproteinase-13) from rabbit synovial fibroblasts: differential expression with collagenase-1 (matrix metalloproteinase-1)[J]. Biochem J, 1998, 331(Pt 1): 341–346.
|
[22] |
Lemaître V, O’Byrne TK, Borczuk AC, et al. ApoE knockout mice expressing human matrix metalloproteinase-1 in macrophages have less advanced atherosclerosis[J]. J Clin Invest, 2001, 107(10): 1227–1234. doi: 10.1172/JCI9626
|
[23] |
Fan J, Kitajima S, Watanabe T, et al. Rabbit models for the study of human atherosclerosis: from pathophysiological mechanisms to translational medicine[J]. Pharmacol Ther, 2015, 146: 104–119. doi: 10.1016/j.pharmthera.2014.09.009
|
[24] |
Fan J, Watanabe T. Transgenic rabbits as therapeutic protein bioreactors and human disease models[J]. Pharmacol Ther, 2003, 99(3): 261–282. doi: 10.1016/S0163-7258(03)00069-X
|
[25] |
Fan J, Wang X, Wu L, et al. Macrophage-specific overexpression of human matrix metalloproteinase-12 in transgenic rabbits[J]. Transgenic Res, 2004, 13(3): 261–269. doi: 10.1023/B:TRAG.0000034717.70729.61
|
[26] |
Recillas-Targa F, Pikaart MJ, Burgess-Beusse B, et al. Position-effect protection and enhancer blocking by the chicken beta-globin insulator are separable activities[J]. Proc Natl Acad Sci U S A, 2002, 99(10): 6883–6888. doi: 10.1073/pnas.102179399
|
[27] |
Koike T, Kitajima S, Yu Y, et al. Human C-reactive protein does not promote atherosclerosis in transgenic rabbits[J]. Circulation, 2009, 120(21): 2088–2094. doi: 10.1161/CIRCULATIONAHA.109.872796
|
[28] |
Zhang J, Niimi M, Yang D, et al. Deficiency of cholesteryl ester transfer protein protects against atherosclerosis in rabbits[J]. Arterioscler Thromb Vasc Biol, 2017, 37(6): 1068–1075. doi: 10.1161/ATVBAHA.117.309114
|
[29] |
Liang J, Liu E, Yu Y, et al. Macrophage metalloelastase accelerates the progression of atherosclerosis in transgenic rabbits[J]. Circulation, 2006, 113(16): 1993–2001. doi: 10.1161/CIRCULATIONAHA.105.596031
|
[30] |
Bi Y, Zhong H, Xu K, et al. Development of a novel rabbit model of abdominal aortic aneurysm via a combination of periaortic calcium chloride and elastase incubation[J]. PLoS One, 2013, 8(7): e68476. doi: 10.1371/journal.pone.0068476
|
[31] |
Miyake T, Aoki M, Masaki H, et al. Regression of abdominal aortic aneurysms by simultaneous inhibition of nuclear factor kappaB and ets in a rabbit model[J]. Circ Res, 2007, 101(11): 1175–1184. doi: 10.1161/CIRCRESAHA.107.148668
|
[32] |
Chen Y, Waqar AB, Nishijima K, et al. Macrophage-derived MMP-9 enhances the vascular calcification and progression of atherosclerotic lesions in transgenic rabbits[J]. FASEB J, 2019, (in press).
|
[33] |
Matsumoto S, Kobayashi T, Katoh M, et al. Expression and localization of matrix metalloproteinase-12 in the aorta of cholesterol-fed rabbits: relationship to lesion development[J]. Am J Pathol, 1998, 153(1): 109–119. doi: 10.1016/S0002-9440(10)65551-4
|
[1] | Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387 |
[2] | Lianjun Shi, Huimin Ge, Fan Ye, Xiumiao Li, Qin Jiang. The role of pericyte in ocular vascular diseases[J]. The Journal of Biomedical Research, 2024, 38(6): 521-530. DOI: 10.7555/JBR.37.20230314 |
[3] | Ruyu Wang, Haoran Wang, Junyu Mu, Hua Yuan, Yongchu Pang, Yuli Wang, Yifei Du, Feng Han. Molecular events in the jaw vascular unit: A traditional review of the mechanisms involved in inflammatory jaw bone diseases[J]. The Journal of Biomedical Research, 2023, 37(5): 313-325. DOI: 10.7555/JBR.36.20220266 |
[4] | Zhang Zhijia, Hou Yuxing, Li Jiantao, Tang Chao, Que Linli, Tan Qian, Li Yuehua. TIR/BB-loop mimetic AS-1 protects vascular endothelial cells from injury induced by hypoxia/reoxygenation[J]. The Journal of Biomedical Research, 2020, 34(5): 343-350. DOI: 10.7555/JBR.33.20190030 |
[5] | Niimi Manabu, Nishijima Kazutoshi, Kitajima Shuji, Matsuhisa Fumikazu, Satoh Kaneo, Yamazaki Hirokazu, Zhang Jifeng, Chen Y. Eugene, Fan Jianglin. Macrophage-derived matrix metalloproteinase-1 enhances aortic aneurysm formation in transgenic rabbits[J]. The Journal of Biomedical Research, 2019, 33(4): 271-279. DOI: 10.7555/JBR.33.20180097 |
[6] | Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045 |
[7] | Jiawei Liao, Wei Huang, George Liu. Animal models of coronary heart disease[J]. The Journal of Biomedical Research, 2017, 31(1): 3-10. DOI: 10.7555/JBR.30.20150051 |
[8] | Jiaxin Ye, Ping Ni, Lina Kang, Biao Xu. Apelin and vascular endothelial growth factor are associated with mobilization of endothelial progenitor cells after acute myocardial infarction[J]. The Journal of Biomedical Research, 2012, 26(6): 400-409. DOI: 10.7555/JBR.26.20120052 |
[9] | Xiwen Zhang, Yao Wang, Weiwei Yang, Xiaofeng Hou, Jiangang Zou, Kejiang Cao. Resveratrol inhibits angiotensin II -induced ERK1/2 activation by downregulating quinone reductase 2 in rat vascular smooth muscle cells[J]. The Journal of Biomedical Research, 2012, 26(2): 103-109. DOI: 10.1016/S1674-8301(12)60019-0 |
[10] | Wen Qiu, Yan Li, Jianbo Zhou, Chenhui Zhao, Jing Zhang, Kai Shan, Dan Zhao, Yingwei Wang. TSP-1 promotes glomerular mesangial cell proliferation and extracellular matrix secretion in Thy-1 nephritis rats[J]. The Journal of Biomedical Research, 2011, 25(6): 402-410. DOI: 10.1016/S1674-8301(11)60053-5 |
1. | Lombard L, Sandoval-Denis M, Lamprecht SC, et al. Epitypification of Fusarium oxysporum - clearing the taxonomic chaos. Persoonia, 2019, 43: 1-47. DOI:10.3767/persoonia.2019.43.01 |
2. | Urbaniak C, van Dam P, Zaborin A, et al. Genomic Characterization and Virulence Potential of Two Fusarium oxysporum Isolates Cultured from the International Space Station. mSystems, 2019, 4(2): e00345-18. DOI:10.1128/mSystems.00345-18 |