Citation: | Desaulniers Amy T., Cederberg Rebecca A., Carreiro Elizabeth P., Gurumurthy Channabasavaiah B., White Brett R.. A transgenic pig model expressing a CMV-ZsGreen1 reporter across an extensive array of tissues[J]. The Journal of Biomedical Research, 2021, 35(2): 163-173. DOI: 10.7555/JBR.34.20200111 |
[1] |
Walters EM, Wells KD, Bryda EC, et al. Swine models, genomic tools and services to enhance our understanding of human health and diseases[J]. Lab Anim (NY), 2017, 46(4): 167–172. doi: 10.1038/laban.1215
|
[2] |
Desaulniers AT, Cederberg RA, Mills GA, et al. Production of a gonadotropin-releasing hormone 2 receptor knockdown (GNRHR2 KD) swine line[J]. Transgenic Res, 2017, 26(4): 567–575. doi: 10.1007/s11248-017-0023-4
|
[3] |
Bleck GT, White BR, Miller DJ, et al. Production of bovine α-lactalbumin in the milk of transgenic pigs[J]. J Anim Sci, 1998, 76(12): 3072–3078. doi: 10.2527/1998.76123072x
|
[4] |
Whitworth KM, Rowland RR, Ewen CL, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus[J]. Nat Biotechnol, 2016, 34(1): 20–22. doi: 10.1038/nbt.3434
|
[5] |
Matz MV, Fradkov AF, Labas YA, et al. Fluorescent proteins from nonbioluminescent Anthozoa species[J]. Nat Biotechnol, 1999, 17(10): 969–973. doi: 10.1038/13657
|
[6] |
Day RN, Davidson MW. The fluorescent protein palette: tools for cellular imaging[J]. Chem Soc Rev, 2009, 38(10): 2887–2921. doi: 10.1039/b901966a
|
[7] |
Nakamura Y, Ishii J, Kondo A. Bright fluorescence monitoring system utilizing Zoanthus sp. green fluorescent protein (ZsGreen) for human G-protein-coupled receptor signaling in microbial yeast cells[J]. PLoS One, 2013, 8(12): e82237. doi: 10.1371/journal.pone.0082237
|
[8] |
Wouters M, Smans K, Vanderwinden JM. WZsGreen/+: a new green fluorescent protein knock-in mouse model for the study of KIT-expressing cells in gut and cerebellum[J]. Physiol Genomics, 2005, 22(3): 412–421. doi: 10.1152/physiolgenomics.00105.2005
|
[9] |
Boshart M, Weber F, Jahn G, et al. A very strong enhancer is located upstream of an immediate early gene of human cytomegalovirus[J]. Cell, 1985, 41(2): 521–530. doi: 10.1016/S0092-8674(85)80025-8
|
[10] |
Brown AJ, Sweeney B, Mainwaring DO, et al. NF-κB, CRE and YY1 elements are key functional regulators of CMV promoter-driven transient gene expression in CHO cells[J]. Biotechnol J, 2015, 10(7): 1019–1028. doi: 10.1002/biot.201400744
|
[11] |
Mella-Alvarado V, Gautier A, Le Gac F, et al. Tissue and cell-specific transcriptional activity of the human cytomegalovirus immediate early gene promoter (UL123) in zebrafish[J]. Gene Expr Patterns, 2013, 13(3-4): 91–103. doi: 10.1016/j.gep.2013.01.003
|
[12] |
Liu CX, Wang LQ, Li WR, et al. Highly efficient generation of transgenic sheep by lentivirus accompanying the alteration of methylation status[J]. PLoS One, 2013, 8(1): e54614. doi: 10.1371/journal.pone.0054614
|
[13] |
Duan B, Cheng L, Gao Y, et al. Silencing of fat-1 transgene expression in sheep may result from hypermethylation of its driven cytomegalovirus (CMV) promoter[J]. Theriogenology, 2012, 78(4): 793–802. doi: 10.1016/j.theriogenology.2012.03.027
|
[14] |
Dyck MK, Ouellet M, Gagné M, et al. Testes-specific transgene expression in insulin-like growth factor-I transgenic mice[J]. Mol Reprod Dev, 1999, 54(1): 32–42. doi: 10.1002/(SICI)1098-2795(199909)54:1<32::AID-MRD5>3.0.CO;2-U
|
[15] |
Villuendas G, Gutiérrez-Adán A, Jiménez A, et al. CMV-driven expression of green fluorescent protein (GFP) in male germ cells of transgenic mice and its effect on fertility[J]. Int J Androl, 2001, 24(5): 300–305. doi: 10.1046/j.1365-2605.2001.00302.x
|
[16] |
Charreau B, Tesson L, Buscail J, et al. Analysis of human CD59 tissue expression directed by the CMV-IE-1 promoter in transgenic rats[J]. Transgenic Res, 1996, 5(6): 443–450. doi: 10.1007/BF01980209
|
[17] |
McGrew MJ, Sherman A, Ellard FM, et al. Efficient production of germline transgenic chickens using lentiviral vectors[J]. EMBO Rep, 2004, 5(7): 728–733. doi: 10.1038/sj.embor.7400171
|
[18] |
Vasey DB, Lillico SG, Sang HM, et al. CMV enhancer-promoter is preferentially active in exocrine cells in vivo[J]. Transgenic Res, 2009, 18(2): 309–314. doi: 10.1007/s11248-008-9235-y
|
[19] |
Whitelaw CBA, Radcliffe PA, Ritchie WA, et al. Efficient generation of transgenic pigs using equine infectious anaemia virus (EIAV) derived vector[J]. FEBS Lett, 2004, 571(1-3): 233–236. doi: 10.1016/j.febslet.2004.06.076
|
[20] |
Hsu WL, Johnson RK. Analysis of 28 generations of selection for reproduction, growth, and carcass traits in swine[J]. J Anim Sci, 2014, 92(11): 4806–4822. doi: 10.2527/jas.2014-8125
|
[21] |
Desaulniers AT, Cederberg RA, Mills GA, et al. LH-independent testosterone secretion is mediated by the interaction between GnRH2 and its receptor within porcine testes[J]. Biol Reprod, 2015, 93(2): 45. doi: 10.1095/biolreprod.115.128082
|
[22] |
Eaton SL, Roche SL, Llavero Hurtado M, et al. Total protein analysis as a reliable loading control for quantitative fluorescent Western blotting[J]. PLoS One, 2013, 8(8): e72457. doi: 10.1371/journal.pone.0072457
|
[23] |
Furth PA, Hennighausen L, Baker C, et al. The variability in activity of the universally expressed human cytomegalovirus immediate early gene 1 enhancer/promoter in transgenic mice[J]. Nucleic Acids Res, 1991, 19(22): 6205–6208. doi: 10.1093/nar/19.22.6205
|
[24] |
Dobie KW, Lee M, Fantes JA, et al. Variegated transgene expression in mouse mammary gland is determined by the transgene integration locus[J]. Proc Natl Acad Sci U S A, 1996, 93(13): 6659–6664. doi: 10.1073/pnas.93.13.6659
|
[25] |
Garrick D, Fiering S, Martin DI, et al. Repeat-induced gene silencing in mammals[J]. Nat Genet, 1998, 18(1): 56–59. doi: 10.1038/ng0198-56
|
[26] |
Chang SP, Opsahl ML, Whitelaw CB, et al. Relative transgene expression frequencies in homozygous versus hemizygous transgenic mice[J]. Transgenic Res, 2013, 22(6): 1143–1154. doi: 10.1007/s11248-013-9732-5
|
[27] |
Isern E, Gustems M, Messerle M, et al. The activator protein 1 binding motifs within the human cytomegalovirus major immediate-early enhancer are functionally redundant and act in a cooperative manner with the NF-κB sites during acute infection[J]. J Virol, 2011, 85(4): 1732–1746. doi: 10.1128/JVI.01713-10
|
[28] |
Rodova M, Jayini R, Singasani R, et al. CMV promoter is repressed by p53 and activated by JNK pathway[J]. Plasmid, 2013, 69(3): 223–230. doi: 10.1016/j.plasmid.2013.01.004
|
[29] |
Landolfo S, Gariglio M, Gribaudo G, et al. The human cytomegalovirus[J]. Pharmacol Ther, 2003, 98(3): 269–297. doi: 10.1016/S0163-7258(03)00034-2
|
[30] |
Pierzynowski SG, Weström BR, Erlanson-Albertsson C, et al. Induction of exocrine pancreas maturation at weaning in young developing pigs[J]. J Pediatr Gastroenterol Nutr, 1993, 16(3): 287–293. doi: 10.1097/00005176-199304000-00012
|
[31] |
Opsahl ML, Springbett A, Lathe R, et al. Mono-allelic expression of variegating transgene locus in the mouse[J]. Transgenic Res, 2003, 12(6): 661–669. doi: 10.1023/B:TRAG.0000005166.74030.ba
|
[32] |
Velten J, Cakir C, Youn E, et al. Transgene silencing and transgene-derived siRNA production in tobacco plants homozygous for an introduced AtMYB90 construct[J]. PLoS One, 2012, 7(2): e30141. doi: 10.1371/journal.pone.0030141
|
[33] |
Brodersen P, Voinnet O. The diversity of RNA silencing pathways in plants[J]. Trends Genet, 2006, 22(5): 268–280. doi: 10.1016/j.tig.2006.03.003
|
[34] |
Takahashi G, Gurumurthy CB, Wada K, et al. GONAD: genome-editing via Oviductal Nucleic Acids Delivery system: a novel microinjection independent genome engineering method in mice[J]. Sci Rep, 2015, 5: 11406. doi: 10.1038/srep11406
|
[35] |
Quadros RM, Miura H, Harms DW, et al. Easi-CRISPR: a robust method for one-step generation of mice carrying conditional and insertion alleles using long ssDNA donors and CRISPR ribonucleoproteins[J]. Genome Biol, 2017, 18(1): 92. doi: 10.1186/s13059-017-1220-4
|
[1] | Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387 |
[2] | Fangyuan Li, Yaohui Wang, Xiaochun Ping, Jiani C. Yin, Fufeng Wang, Xian Zhang, Xiang Li, Jing Zhai, Lizong Shen. Molecular evolution of intestinal-type early gastric cancer according to Correa cascade[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240118 |
[3] | Zheyue Wang, Qi Tang, Bende Liu, Wenqing Zhang, Yufeng Chen, Ningfei Ji, Yan Peng, Xiaohui Yang, Daixun Cui, Weiyu Kong, Xiaojun Tang, Tingting Yang, Mingshun Zhang, Xinxia Chang, Jin Zhu, Mao Huang, Zhenqing Feng. A SARS-CoV-2 neutralizing antibody discovery by single cell sequencing and molecular modeling[J]. The Journal of Biomedical Research, 2023, 37(3): 166-178. DOI: 10.7555/JBR.36.20220221 |
[4] | Misevic Gradimir. Single-cell omics analyses with single molecular detection: challenges and perspectives[J]. The Journal of Biomedical Research, 2021, 35(4): 264-276. DOI: 10.7555/JBR.35.20210026 |
[5] | Yuan Huang, Peng Quan, Yongwei Wang, Dongsheng Zhang, Mingwan Zhang, Rui Li, Nan Jiang. Host-guest interaction of β-cyclodextrin with isomeric ursolic acid and oleanolic acid: physicochemical characterization and molecular modeling study[J]. The Journal of Biomedical Research, 2017, 31(5): 395-407. DOI: 10.7555/JBR.31.20160073 |
[6] | Salam Pradeep Singh, Chitta Ranjan Deb, Sharif Udin Ahmed, Yenisetti Saratchandra, Bolin Kumar Konwar. Molecular docking simulation analysis of the interaction of dietary flavonols with heat shock protein 90[J]. The Journal of Biomedical Research, 2016, 30(1): 67-74. DOI: 10.7555/JBR.30.20130158 |
[7] | Usman Sumo Friend Tambunan, Rizky Archintya Rachmania, Arli Aditya Parikesit. In silico modification of oseltamivir as neuraminidase inhibitor of influenza A virus subtype H1N1[J]. The Journal of Biomedical Research, 2015, 29(2): 150-159. DOI: 10.7555/JBR.29.20130024 |
[8] | Talambedu Usha, Sushil Kumar Middha, Arvind Kumar Goyal, Mahesh Karthik, DA Manoj, Syed Faizan, Peyush Goyal, HP Prashanth, Veena Pande. Molecular docking studies of anti-cancerous candidates in Hippophae rhamnoides and Hippophae salicifolia[J]. The Journal of Biomedical Research, 2014, 28(5): 406-415. DOI: 10.7555/JBR.28.20130110 |
[9] | Meilin Wang, Haiyan Chu, Zhengdong Zhang, Qingyi Wei. Molecular epidemiology of DNA repair gene polymorphisms and head and neck cancer[J]. The Journal of Biomedical Research, 2013, 27(3): 179-192. DOI: 10.7555/JBR.27.20130034 |
[10] | Daniel G Rosen, Zhihong Zhang, Weiwei Shan, Jinsong Liu. Morphological and molecular basis of ovarian serous carcinoma[J]. The Journal of Biomedical Research, 2010, 24(4): 257-263. DOI: 10.1016/S1674-8301(10)60036-X |
1. | Antonelli R, Forconi V, Molesti E, et al. A validated and standardized pseudotyped microneutralization assay as a safe and powerful tool to measure LASSA virus neutralising antibodies for vaccine development and comparison. F1000Res, 2024, 13: 534. DOI:10.12688/f1000research.149578.2 |
2. | Nahar N, Nazmul Hasan Zilani M, Biswas P, et al. Profiling of secondary metabolite and evaluation of anti-diabetic potency of Crotalaria quinquefolia (L): In-vitro, in-vivo, and in-silico approaches. Saudi Pharm J, 2024, 32(1): 101887. DOI:10.1016/j.jsps.2023.101887 |
3. | Nur Kabidul Azam M, Biswas P, Mohaimenul Islam Tareq M, et al. Identification of antidiabetic inhibitors from Allophylus villosus and Mycetia sinensis by targeting α-glucosidase and PPAR-γ: In-vitro, in-vivo, and computational evidence. Saudi Pharm J, 2024, 32(1): 101884. DOI:10.1016/j.jsps.2023.101884 |
4. | Rahman MH, Al Azad S, Uddin MF, et al. WGS-based screening of the co-chaperone protein DjlA-induced curved DNA binding protein A (CbpA) from a new multidrug-resistant zoonotic mastitis-causing Klebsiella pneumoniae strain: a novel molecular target of selective flavonoids. Mol Divers, 2023. DOI:10.1007/s11030-023-10731-6. Online ahead of print |
5. | Akash S, Bibi S, Biswas P, et al. Revolutionizing anti-cancer drug discovery against breast cancer and lung cancer by modification of natural genistein: an advanced computational and drug design approach. Front Oncol, 2023, 13: 1228865. DOI:10.3389/fonc.2023.1228865 |
6. | Sharif MA, Khan AM, Salekeen R, et al. Phyllanthus emblica (Amla) methanolic extract regulates multiple checkpoints in 15-lipoxygenase mediated inflammopathies: Computational simulation and in vitro evidence. Saudi Pharm J, 2023, 31(8): 101681. DOI:10.1016/j.jsps.2023.06.014 |
7. | Biswas P, Bibi S, Yousafi Q, et al. Study of MDM2 as Prognostic Biomarker in Brain-LGG Cancer and Bioactive Phytochemicals Inhibit the p53-MDM2 Pathway: A Computational Drug Development Approach. Molecules, 2023, 28(7): 2977. DOI:10.3390/molecules28072977 |
8. | Jabin A, Uddin MF, Al Azad S, et al. Target-specificity of different amyrin subunits in impeding HCV influx mechanism inside the human cells considering the quantum tunnel profiles and molecular strings of the CD81 receptor: a combined in silico and in vivo study. In Silico Pharmacol, 2023, 11(1): 8. DOI:10.1007/s40203-023-00144-6 |
9. | Arefin A, Gage MC. Metformin, Empagliflozin, and Their Combination Modulate Ex-Vivo Macrophage Inflammatory Gene Expression. Int J Mol Sci, 2023, 24(5): 4785. DOI:10.3390/ijms24054785 |
10. | Morshed AKMH, Al Azad S, Mia MAR, et al. Oncoinformatic screening of the gene clusters involved in the HER2-positive breast cancer formation along with the in silico pharmacodynamic profiling of selective long-chain omega-3 fatty acids as the metastatic antagonists. Mol Divers, 2023, 27(6): 2651-2672. DOI:10.1007/s11030-022-10573-8 |
11. | Dey D, Biswas P, Paul P, et al. Natural flavonoids effectively block the CD81 receptor of hepatocytes and inhibit HCV infection: a computational drug development approach. Mol Divers, 2023, 27(3): 1309-1322. DOI:10.1007/s11030-022-10491-9 |
12. | Islam S, Farjana M, Uddin MR, et al. Molecular identification, characterization, and antagonistic activity profiling of Bacillus cereus LOCK 1002 along with the in-silico analysis of its presumptive bacteriocins. J Adv Vet Anim Res, 2022, 9(4): 663-675. DOI:10.5455/javar.2022.i635 |
13. | Biswas P, Dey D, Biswas PK, et al. A Comprehensive Analysis and Anti-Cancer Activities of Quercetin in ROS-Mediated Cancer and Cancer Stem Cells. Int J Mol Sci, 2022, 23(19): 11746. DOI:10.3390/ijms231911746 |
14. | Ferdausi N, Islam S, Rimti FH, et al. Point-specific interactions of isovitexin with the neighboring amino acid residues of the hACE2 receptor as a targeted therapeutic agent in suppressing the SARS-CoV-2 influx mechanism. J Adv Vet Anim Res, 2022, 9(2): 230-240. DOI:10.5455/javar.2022.i588 |
15. | Dey D, Hasan MM, Biswas P, et al. Investigating the Anticancer Potential of Salvicine as a Modulator of Topoisomerase II and ROS Signaling Cascade. Front Oncol, 2022, 12: 899009. DOI:10.3389/fonc.2022.899009 |