Citation: | Runrun Wang, Jiewen Zhang, Junkui Shang, Fengyu Wang, Xi Yan. Effects of different regional cerebral blood flow on white matter hyperintensity in CADASIL patients[J]. The Journal of Biomedical Research, 2022, 36(5): 368-374. DOI: 10.7555/JBR.36.20220006 |
This work was supported by National Natural Science Foundation of China (Grants No. 81873727 and 82171196).
CLC number: R743, Document code: A
The authors reported no conflict of interests.
[1] |
Joutel A, Corpechot C, Ducros A, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia[J]. Nature, 1996, 383(6602): 707–710. doi: 10.1038/383707a0
|
[2] |
Mašek J, Andersson ER. The developmental biology of genetic Notch disorders[J]. Development, 2017, 144(10): 1743–1763. doi: 10.1242/dev.148007
|
[3] |
Villa N, Walker L, Lindsell CE, et al. Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels[J]. Mech Dev, 2001, 108(1–2): 161–164. doi: 10.1016/s0925-4773(01)00469-5
|
[4] |
Schoemaker D, Arboleda-Velasquez JF. Notch3 signaling and aggregation as targets for the treatment of CADASIL and other NOTCH3-associated small-vessel diseases[J]. Am J Pathol, 2021, 191(11): 1856–1870. doi: 10.1016/j.ajpath.2021.03.015
|
[5] |
Gatti JR, Zhang X, Korcari E, et al. Redistribution of mature smooth muscle markers in brain arteries in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy[J]. Transl Stroke Res, 2019, 10(2): 160–169. doi: 10.1007/s12975-018-0643-x
|
[6] |
Joutel A, Favrole P, Labauge P, et al. Skin biopsy immunostaining with a Notch3 monoclonal antibody for CADASIL diagnosis[J]. Lancet, 2001, 358(9298): 2049–2051. doi: 10.1016/S0140-6736(01)07142-2
|
[7] |
Joutel A, Andreux F, Gaulis S, et al. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients[J]. J Clin Invest, 2000, 105(5): 597–605. doi: 10.1172/JCI8047
|
[8] |
Hack RJ, Gravesteijn G, Cerfontaine MN, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy family members with a pathogenic NOTCH3 variant can have a normal brain magnetic resonance imaging and skin biopsy beyond age 50 years[J]. Stroke, 2022, 53(6): 1964–1974. doi: 10.1161/STROKEAHA.121.036307
|
[9] |
Yao M, Jouvent E, During M, et al. Extensive white matter hyperintensities may increase brain volume in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy[J]. Stroke, 2012, 43(12): 3252–3257. doi: 10.1161/STROKEAHA.112.664854
|
[10] |
Joutel A, Monet-Leprêtre M, Gosele C, et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease[J]. J Clin Invest, 2010, 120(2): 433–445. doi: 10.1172/JCI39733
|
[11] |
Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease[J]. Nat Rev Neurosci, 2004, 5(5): 347–360. doi: 10.1038/nrn1387
|
[12] |
Schaeffer S, Iadecola C. Revisiting the neurovascular unit[J]. Nat Neurosci, 2021, 24(9): 1198–1209. doi: 10.1038/s41593-021-00904-7
|
[13] |
Kisler K, Nelson AR, Montagne A, et al. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease[J]. Nat Rev Neurosci, 2017, 18(7): 419–434. doi: 10.1038/nrn.2017.48
|
[14] |
Kugler EC, Greenwood J, MacDonald RB. The "neuro-glial-vascular" unit: the role of glia in neurovascular unit formation and dysfunction[J]. Front Cell Dev Biol, 2021, 9: 732820. doi: 10.3389/fcell.2021.732820
|
[15] |
Bruening R, Dichgans M, Berchtenbreiter C, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: decrease in regional cerebral blood volume in hyperintense subcortical lesions inversely correlates with disability and cognitive performance[J]. AJNR Am J Neuroradiol, 2001, 22(7): 1268–1274. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7975190/
|
[16] |
Liem MK, Oberstein SAJL, Haan J, et al. Cerebrovascular reactivity is a main determinant of white matter hyperintensity progression in CADASIL[J]. AJNR Am J Neuroradiol, 2009, 30(6): 1244–1247. doi: 10.3174/ajnr.A1533
|
[17] |
Sun C, Wu Y, Ling C, et al. Reduced blood flow velocity in lenticulostriate arteries of patients with CADASIL assessed by PC-MRA at 7T[J]. J Neurol Neurosurg Psychiatry, 2022, 93(4): 451–452. doi: 10.1136/jnnp-2021-326258
|
[18] |
Uchida Y, Kan H, Sakurai K, et al. Iron leakage owing to blood-brain barrier disruption in small vessel disease CADASIL[J]. Neurology, 2020, 95(9): e1188–e1198. doi: 10.1212/WNL.0000000000010148
|
[19] |
Ruchoux MM, Guerouaou D, Vandenhaute B, et al. Systemic vascular smooth muscle cell impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy[J]. Acta Neuropathol, 1995, 89(6): 500–512. doi: 10.1007/BF00571504
|
[20] |
Barkaway A, Attwell D, Korte N. Immune-vascular mural cell interactions: consequences for immune cell trafficking, cerebral blood flow, and the blood-brain barrier[J]. Neurophotonics, 2022, 9(3): 031914. doi: 10.1117/1.NPh.9.3.031914
|
[21] |
Brennan-Krohn T, Salloway S, Correia S, et al. Glial vascular degeneration in CADASIL[J]. J Alzheimers Dis, 2010, 21(4): 1393–1402. doi: 10.3233/JAD-2010-100036
|
[22] |
Hase Y, Chen A, Bates LL, et al. Severe white matter astrocytopathy in CADASIL[J]. Brain Pathol, 2018, 28(6): 832–843. doi: 10.1111/bpa.12621
|
[23] |
Jolly AA, Nannoni S, Edwards H, et al. Prevalence and predictors of vascular cognitive impairment in patients with CADASIL[J]. Neurology, 2022, 95(5): e453–e461. doi: 10.1212/WNL.0000000000200607
|
[24] |
Manini A, Pantoni L. CADASIL from bench to bedside: disease models and novel therapeutic approaches[J]. Mol Neurobiol, 2021, 58(6): 2558–2573. doi: 10.1007/s12035-021-02282-4
|
[25] |
Chabriat H, Levy C, Taillia H, et al. Patterns of MRI lesions in CADASIL[J]. Neurology, 1998, 51(2): 452–457. doi: 10.1212/WNL.51.2.452
|
[26] |
Yin X, Zhou Y, Yan S, et al. Effects of cerebral blood flow and white matter integrity on cognition in CADASIL patients[J]. Front Psychiatry, 2019, 9: 741. doi: 10.3389/fpsyt.2018.00741
|
[27] |
Baron-Menguy C, Domenga-Denier V, Ghezali L, et al. Increased Notch3 activity mediates pathological changes in structure of cerebral arteries[J]. Hypertension, 2017, 69(1): 60–70. doi: 10.1161/HYPERTENSIONAHA.116.08015
|
[28] |
Mellies JK, Bäumer T, Müller JA, et al. SPECT study of a German CADASIL family: a phenotype with migraine and progressive dementia only[J]. Neurology, 1998, 50(6): 1715–1721. doi: 10.1212/WNL.50.6.1715
|
[29] |
Moreton FC, Cullen B, Delles C, et al. Vasoreactivity in CADASIL: comparison to structural MRI and neuropsychology[J]. J Cereb Blood Flow Metab, 2018, 38(6): 1085–1095. doi: 10.1177/0271678X17710375
|
[1] | Ruyu Wang, Haoran Wang, Junyu Mu, Hua Yuan, Yongchu Pang, Yuli Wang, Yifei Du, Feng Han. Molecular events in the jaw vascular unit: A traditional review of the mechanisms involved in inflammatory jaw bone diseases[J]. The Journal of Biomedical Research, 2023, 37(5): 313-325. DOI: 10.7555/JBR.36.20220266 |
[2] | Shu Liu, Xu Yang, Fei Chen, Zhiyou Cai. Dysfunction of the neurovascular unit in brain aging[J]. The Journal of Biomedical Research, 2023, 37(3): 153-165. DOI: 10.7555/JBR.36.20220105 |
[3] | Xi Yan, Junkui Shang, Runrun Wang, Fengyu Wang, Jiewen Zhang. Mechanisms regulating cerebral hypoperfusion in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy[J]. The Journal of Biomedical Research, 2022, 36(5): 353-357. DOI: 10.7555/JBR.36.20220208 |
[4] | Zhang Jingdong, Fox Howard, Xiong Huangui. Severer nodular lesion in white matter than in gray matter in simian immunodeficiency virus-infected monkey, but not closely correlated with viral infection[J]. The Journal of Biomedical Research, 2020, 34(4): 292-300. DOI: 10.7555/JBR.33.20180047 |
[5] | Huan Liu, Shijiang Zhang, Yongfeng Shao, Xiaohu Lu, Weidong Gu, Buqing Ni, Qun Gu, Junjie Du. Biomechanical characterization of a novel ring connector for sutureless aortic anastomosis[J]. The Journal of Biomedical Research, 2018, 32(6): 454-460. DOI: 10.7555/JBR.31.20170011 |
[6] | Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023 |
[7] | Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045 |
[8] | Xinglong Yang, Jingdong Zhang, Lian Duan, Huangui Xiong, Yanping Jiang, Houcheng Liang. Microglia activation mediated by toll-like receptor-4 impairs brain white matter tracts in rats[J]. The Journal of Biomedical Research, 2018, 32(2): 136-144. DOI: 10.7555/JBR.32.20170033 |
[9] | Hyung-Suk Lee, Hye Lim Lee, Ho-seong Han, Minju Yeo, Ji Seon Kim, Sung-Hyun Lee, Sang-Soo Lee, Dong-Ick Shin. Clinical usefulness of ankle brachial index and brachial-ankle pulse wave velocity in patients with ischemic stroke[J]. The Journal of Biomedical Research, 2016, 30(4): 285-291. DOI: 10.7555/JBR.30.2016K0006 |
[10] | Qi Zheng, Yu Yao, Kejun Nan. Weekly intravenous nanoparticle albumin-bound paclitaxel for elderly patients with stage IV non-small-cell lung cancer: a series of 20 cases[J]. The Journal of Biomedical Research, 2012, 26(3): 159-164. DOI: 10.7555/JBR.26.20110106 |