4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Runrun Wang, Jiewen Zhang, Junkui Shang, Fengyu Wang, Xi Yan. Effects of different regional cerebral blood flow on white matter hyperintensity in CADASIL patients[J]. The Journal of Biomedical Research, 2022, 36(5): 368-374. DOI: 10.7555/JBR.36.20220006
Citation: Runrun Wang, Jiewen Zhang, Junkui Shang, Fengyu Wang, Xi Yan. Effects of different regional cerebral blood flow on white matter hyperintensity in CADASIL patients[J]. The Journal of Biomedical Research, 2022, 36(5): 368-374. DOI: 10.7555/JBR.36.20220006

Effects of different regional cerebral blood flow on white matter hyperintensity in CADASIL patients

Funds: This work was supported by National Natural Science Foundation of China (Grants No. 81873727 and 82171196).
More Information
  • Corresponding author:

    Xi Yan, Department of Neurology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, No. 7 Weiwu Road, Zhengzhou, Henan 450003, China. Tel: +86-371-65580782, E-mail: yanxi20091001@163.com

  • Received Date: January 06, 2022
  • Revised Date: July 10, 2022
  • Accepted Date: July 21, 2022
  • Available Online: August 27, 2022
  • Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is an early-onset inherited small vessel disease. Decreased cerebral blood flow (CBF) may contribute to white matter hyperintensity (WMH) severity in CADASIL, but more evidence is needed to support this hypothesis. This study comprised six patients with CADASIL who harbored mutations in the coding sequence of NOTCH3 and twelve age-matched neurologically healthy controls. We collected clinical and imaging data from patients with CADASIL and divided the brain into four regions: WMH, normal-appearing white matter (NAWM), gray matter (GM), and global brain. We analyzed the relationship between CBF of each region and the WMH volume. Compared with the control group, CBF was significantly decreased in all four regions in the CADASIL group. Lower CBF in these regions was correlated with higher WMH volume in CADASIL. CBF in the NAWM, GM and global regions was positively correlated with that in WMH region. However, after correction tests, only CBF in the WMH region but not in NAWM, GM and global regions was associated with WMH volume. Our findings suggest that CBF in the WMH region is an influencing factor of the WMH severity in CADASIL.
  • This work was supported by National Natural Science Foundation of China (Grants No. 81873727 and 82171196).

    CLC number: R743, Document code: A

    The authors reported no conflict of interests.

  • [1]
    Joutel A, Corpechot C, Ducros A, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia[J]. Nature, 1996, 383(6602): 707–710. doi: 10.1038/383707a0
    [2]
    Mašek J, Andersson ER. The developmental biology of genetic Notch disorders[J]. Development, 2017, 144(10): 1743–1763. doi: 10.1242/dev.148007
    [3]
    Villa N, Walker L, Lindsell CE, et al. Vascular expression of Notch pathway receptors and ligands is restricted to arterial vessels[J]. Mech Dev, 2001, 108(1–2): 161–164. doi: 10.1016/s0925-4773(01)00469-5
    [4]
    Schoemaker D, Arboleda-Velasquez JF. Notch3 signaling and aggregation as targets for the treatment of CADASIL and other NOTCH3-associated small-vessel diseases[J]. Am J Pathol, 2021, 191(11): 1856–1870. doi: 10.1016/j.ajpath.2021.03.015
    [5]
    Gatti JR, Zhang X, Korcari E, et al. Redistribution of mature smooth muscle markers in brain arteries in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy[J]. Transl Stroke Res, 2019, 10(2): 160–169. doi: 10.1007/s12975-018-0643-x
    [6]
    Joutel A, Favrole P, Labauge P, et al. Skin biopsy immunostaining with a Notch3 monoclonal antibody for CADASIL diagnosis[J]. Lancet, 2001, 358(9298): 2049–2051. doi: 10.1016/S0140-6736(01)07142-2
    [7]
    Joutel A, Andreux F, Gaulis S, et al. The ectodomain of the Notch3 receptor accumulates within the cerebrovasculature of CADASIL patients[J]. J Clin Invest, 2000, 105(5): 597–605. doi: 10.1172/JCI8047
    [8]
    Hack RJ, Gravesteijn G, Cerfontaine MN, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy family members with a pathogenic NOTCH3 variant can have a normal brain magnetic resonance imaging and skin biopsy beyond age 50 years[J]. Stroke, 2022, 53(6): 1964–1974. doi: 10.1161/STROKEAHA.121.036307
    [9]
    Yao M, Jouvent E, During M, et al. Extensive white matter hyperintensities may increase brain volume in cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy[J]. Stroke, 2012, 43(12): 3252–3257. doi: 10.1161/STROKEAHA.112.664854
    [10]
    Joutel A, Monet-Leprêtre M, Gosele C, et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease[J]. J Clin Invest, 2010, 120(2): 433–445. doi: 10.1172/JCI39733
    [11]
    Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer's disease[J]. Nat Rev Neurosci, 2004, 5(5): 347–360. doi: 10.1038/nrn1387
    [12]
    Schaeffer S, Iadecola C. Revisiting the neurovascular unit[J]. Nat Neurosci, 2021, 24(9): 1198–1209. doi: 10.1038/s41593-021-00904-7
    [13]
    Kisler K, Nelson AR, Montagne A, et al. Cerebral blood flow regulation and neurovascular dysfunction in Alzheimer disease[J]. Nat Rev Neurosci, 2017, 18(7): 419–434. doi: 10.1038/nrn.2017.48
    [14]
    Kugler EC, Greenwood J, MacDonald RB. The "neuro-glial-vascular" unit: the role of glia in neurovascular unit formation and dysfunction[J]. Front Cell Dev Biol, 2021, 9: 732820. doi: 10.3389/fcell.2021.732820
    [15]
    Bruening R, Dichgans M, Berchtenbreiter C, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy: decrease in regional cerebral blood volume in hyperintense subcortical lesions inversely correlates with disability and cognitive performance[J]. AJNR Am J Neuroradiol, 2001, 22(7): 1268–1274. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7975190/
    [16]
    Liem MK, Oberstein SAJL, Haan J, et al. Cerebrovascular reactivity is a main determinant of white matter hyperintensity progression in CADASIL[J]. AJNR Am J Neuroradiol, 2009, 30(6): 1244–1247. doi: 10.3174/ajnr.A1533
    [17]
    Sun C, Wu Y, Ling C, et al. Reduced blood flow velocity in lenticulostriate arteries of patients with CADASIL assessed by PC-MRA at 7T[J]. J Neurol Neurosurg Psychiatry, 2022, 93(4): 451–452. doi: 10.1136/jnnp-2021-326258
    [18]
    Uchida Y, Kan H, Sakurai K, et al. Iron leakage owing to blood-brain barrier disruption in small vessel disease CADASIL[J]. Neurology, 2020, 95(9): e1188–e1198. doi: 10.1212/WNL.0000000000010148
    [19]
    Ruchoux MM, Guerouaou D, Vandenhaute B, et al. Systemic vascular smooth muscle cell impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy[J]. Acta Neuropathol, 1995, 89(6): 500–512. doi: 10.1007/BF00571504
    [20]
    Barkaway A, Attwell D, Korte N. Immune-vascular mural cell interactions: consequences for immune cell trafficking, cerebral blood flow, and the blood-brain barrier[J]. Neurophotonics, 2022, 9(3): 031914. doi: 10.1117/1.NPh.9.3.031914
    [21]
    Brennan-Krohn T, Salloway S, Correia S, et al. Glial vascular degeneration in CADASIL[J]. J Alzheimers Dis, 2010, 21(4): 1393–1402. doi: 10.3233/JAD-2010-100036
    [22]
    Hase Y, Chen A, Bates LL, et al. Severe white matter astrocytopathy in CADASIL[J]. Brain Pathol, 2018, 28(6): 832–843. doi: 10.1111/bpa.12621
    [23]
    Jolly AA, Nannoni S, Edwards H, et al. Prevalence and predictors of vascular cognitive impairment in patients with CADASIL[J]. Neurology, 2022, 95(5): e453–e461. doi: 10.1212/WNL.0000000000200607
    [24]
    Manini A, Pantoni L. CADASIL from bench to bedside: disease models and novel therapeutic approaches[J]. Mol Neurobiol, 2021, 58(6): 2558–2573. doi: 10.1007/s12035-021-02282-4
    [25]
    Chabriat H, Levy C, Taillia H, et al. Patterns of MRI lesions in CADASIL[J]. Neurology, 1998, 51(2): 452–457. doi: 10.1212/WNL.51.2.452
    [26]
    Yin X, Zhou Y, Yan S, et al. Effects of cerebral blood flow and white matter integrity on cognition in CADASIL patients[J]. Front Psychiatry, 2019, 9: 741. doi: 10.3389/fpsyt.2018.00741
    [27]
    Baron-Menguy C, Domenga-Denier V, Ghezali L, et al. Increased Notch3 activity mediates pathological changes in structure of cerebral arteries[J]. Hypertension, 2017, 69(1): 60–70. doi: 10.1161/HYPERTENSIONAHA.116.08015
    [28]
    Mellies JK, Bäumer T, Müller JA, et al. SPECT study of a German CADASIL family: a phenotype with migraine and progressive dementia only[J]. Neurology, 1998, 50(6): 1715–1721. doi: 10.1212/WNL.50.6.1715
    [29]
    Moreton FC, Cullen B, Delles C, et al. Vasoreactivity in CADASIL: comparison to structural MRI and neuropsychology[J]. J Cereb Blood Flow Metab, 2018, 38(6): 1085–1095. doi: 10.1177/0271678X17710375
  • Related Articles

    [1]Ruyu Wang, Haoran Wang, Junyu Mu, Hua Yuan, Yongchu Pang, Yuli Wang, Yifei Du, Feng Han. Molecular events in the jaw vascular unit: A traditional review of the mechanisms involved in inflammatory jaw bone diseases[J]. The Journal of Biomedical Research, 2023, 37(5): 313-325. DOI: 10.7555/JBR.36.20220266
    [2]Shu Liu, Xu Yang, Fei Chen, Zhiyou Cai. Dysfunction of the neurovascular unit in brain aging[J]. The Journal of Biomedical Research, 2023, 37(3): 153-165. DOI: 10.7555/JBR.36.20220105
    [3]Xi Yan, Junkui Shang, Runrun Wang, Fengyu Wang, Jiewen Zhang. Mechanisms regulating cerebral hypoperfusion in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy[J]. The Journal of Biomedical Research, 2022, 36(5): 353-357. DOI: 10.7555/JBR.36.20220208
    [4]Zhang Jingdong, Fox Howard, Xiong Huangui. Severer nodular lesion in white matter than in gray matter in simian immunodeficiency virus-infected monkey, but not closely correlated with viral infection[J]. The Journal of Biomedical Research, 2020, 34(4): 292-300. DOI: 10.7555/JBR.33.20180047
    [5]Huan Liu, Shijiang Zhang, Yongfeng Shao, Xiaohu Lu, Weidong Gu, Buqing Ni, Qun Gu, Junjie Du. Biomechanical characterization of a novel ring connector for sutureless aortic anastomosis[J]. The Journal of Biomedical Research, 2018, 32(6): 454-460. DOI: 10.7555/JBR.31.20170011
    [6]Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023
    [7]Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045
    [8]Xinglong Yang, Jingdong Zhang, Lian Duan, Huangui Xiong, Yanping Jiang, Houcheng Liang. Microglia activation mediated by toll-like receptor-4 impairs brain white matter tracts in rats[J]. The Journal of Biomedical Research, 2018, 32(2): 136-144. DOI: 10.7555/JBR.32.20170033
    [9]Hyung-Suk Lee, Hye Lim Lee, Ho-seong Han, Minju Yeo, Ji Seon Kim, Sung-Hyun Lee, Sang-Soo Lee, Dong-Ick Shin. Clinical usefulness of ankle brachial index and brachial-ankle pulse wave velocity in patients with ischemic stroke[J]. The Journal of Biomedical Research, 2016, 30(4): 285-291. DOI: 10.7555/JBR.30.2016K0006
    [10]Qi Zheng, Yu Yao, Kejun Nan. Weekly intravenous nanoparticle albumin-bound paclitaxel for elderly patients with stage IV non-small-cell lung cancer: a series of 20 cases[J]. The Journal of Biomedical Research, 2012, 26(3): 159-164. DOI: 10.7555/JBR.26.20110106

Catalog

    Figures(1)  /  Tables(3)

    Article Metrics

    Article views (1250) PDF downloads (74) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return