4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Andrew Sulaiman, Zemin Yao, Lisheng Wang. Re-evaluating the role of epithelial-mesenchymal-transition in cancer progression[J]. The Journal of Biomedical Research, 2018, 32(2): 81-90. DOI: 10.7555/JBR.31.20160124
Citation: Andrew Sulaiman, Zemin Yao, Lisheng Wang. Re-evaluating the role of epithelial-mesenchymal-transition in cancer progression[J]. The Journal of Biomedical Research, 2018, 32(2): 81-90. DOI: 10.7555/JBR.31.20160124

Re-evaluating the role of epithelial-mesenchymal-transition in cancer progression

Funds: 

We thank Dr. Luk Cox and Dr. Idoya Lahortiga from Somersault 18:24 to allow the use of their Library of Science and Medical Illustrations (http:// www.somer- 86 Sulaiman A et al. J Biomed Res, 2018,32(2)sault1824.com/resources/) for the creation of the Fig. 1. This work is supported by operating grants from Canadian Breast Cancer Foundation-Ontario Region and the Canadian Institutes of Health Research MOP- 111224 to LW.

More Information
  • Received Date: September 27, 2016
  • Revised Date: October 30, 2016
  • Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) are essential for embryonic development and also important in cancer progression. In a conventional model, epithelial-like cancer cells transit to mesenchymal-like tumor cells with great motility via EMT transcription factors; these mesenchymallike cells migrate through the circulation system, relocate to a suitable site and then convert back to an epithelial-like phenotype to regenerate the tumor. However, recent findings challenge this conventional model and support the existence of a stable hybrid epithelial/mesenchymal (E/M) tumor population. Hybrid E/M tumor cells exhibit both epithelial and mesenchymal properties, possess great metastatic and tumorigenic capacity and are associated with poorer patient prognosis. The hybrid E/M model and associated regulatory networks represent a conceptual change regarding tumor metastasis and organ colonization. It may lead to the development of novel treatment strategies to ultimately stop cancer progression and improve disease-free survival.
  • Related Articles

    [1]Siyun Zhou, Yan Li, Wenqing Sun, Dongyu Ma, Yi Liu, Demin Cheng, Guanru Li, Chunhui Ni. circPVT1 promotes silica-induced epithelial-mesenchymal transition by modulating the miR-497-5p/TCF3 axis[J]. The Journal of Biomedical Research, 2024, 38(2): 163-174. DOI: 10.7555/JBR.37.20220249
    [2]Liting Lv, Xin Hua, Jiaxin Liu, Sutong Zhan, Qianqian Zhang, Xiao Liang, Jian Feng, Yong Song. Anlotinib reverses osimertinib resistance via inhibiting epithelial-to-mesenchymal transition and angiogenesis in non-small cell lung cancer[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240045
    [3]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [4]Haibo Tong, Chunlin Zou, Siyuan Qin, Jie Meng, Evan T. Keller, Jian Zhang, Yi Lu. Prostate cancer tends to metastasize in the bone-mimicking microenvironment via activating NF-kB signaling[J]. The Journal of Biomedical Research, 2018, 32(5): 343-353. DOI: 10.7555/JBR.32.20180035
    [5]Ji-Youn Kim, Ho-Gyu Choi, Hae-Miru Lee, Geum-A Lee, Kyung-A Hwang, Kyung-Chul Choi. Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells[J]. The Journal of Biomedical Research, 2017, 31(4): 358-369. DOI: 10.7555/JBR.31.20160162
    [6]Dongsheng Gu, Kelly E Schlotman, Jingwu Xie. Deciphering the role of hedgehog signaling in pancreatic cancer[J]. The Journal of Biomedical Research, 2016, 30(5): 353-360. DOI: 10.7555/JBR.30.20150107
    [7]Nisha Gupta, Dan G. Duda. Role of stromal cell-derived factor 1α pathway in bone metastatic prostate cancer[J]. The Journal of Biomedical Research, 2016, 30(3): 181-185. DOI: 10.7555/JBR.30.20150114
    [8]Wenze Sun, Liping Song, Ting Ai, Yingbing Zhang, Ying Gao, Jie Cui. Prognostic value of MET, cyclin D1 and MET gene copy number in non-small cell lung cancer[J]. The Journal of Biomedical Research, 2013, 27(3): 220-230. DOI: 10.7555/JBR.27.20130004
    [9]Yao Liu, Qin Zhang, Chuanli Ren, Yanbing Ding, Guangfu Jin, Zhibin Hu, Yaochu Xu, Hongbing Shen. A germline variant N375S in MET and gastric cancer susceptibility in a Chinese population[J]. The Journal of Biomedical Research, 2012, 26(5): 315-318. DOI: 10.7555/JBR.26.20110087
    [10]Qi Zheng, Kejun Nan, Yu Yao. Gastric cancer presenting with solitary gigantic pelvic metastasis[J]. The Journal of Biomedical Research, 2012, 26(4): 303-306. DOI: 10.7555/JBR.26.20110056
  • Cited by

    Periodical cited type(16)

    1. Tsai CY, Ko HJ, Chiou SJ, et al. GSKIP modulates cell aggregation through EMT/MET signaling rather than differentiation in SH-SY5Y human neuroblastoma cells. J Cell Commun Signal, 2023. DOI:10.1007/s12079-023-00752-z. Online ahead of print
    2. Olascoaga-Caso EM, Tamariz-Domínguez E, Rodríguez-Alba JC, et al. Exogenous growth hormone promotes an epithelial-mesenchymal hybrid phenotype in cancerous HeLa cells but not in non-cancerous HEK293 cells. Mol Cell Biochem, 2023, 478(5): 1117-1128. DOI:10.1007/s11010-022-04583-1
    3. Kakurina G, Stakheeva M, Sereda E, et al. A pilot study of the relative number of circulating tumor cells and leukocytes containing actin-binding proteins in head and neck cancer patients. J Biomed Res, 2022, 37(3): 213-224. DOI:10.7555/JBR.36.20220182
    4. Sulaiman A, Chambers J, Chilumula SC, et al. At the Intersection of Cardiology and Oncology: TGFβ as a Clinically Translatable Therapy for TNBC Treatment and as a Major Regulator of Post-Chemotherapy Cardiomyopathy. Cancers (Basel), 2022, 14(6): 1577. DOI:10.3390/cancers14061577
    5. Sulaiman A, McGarry S, Chilumula SC, et al. Clinically Translatable Approaches of Inhibiting TGF-β to Target Cancer Stem Cells in TNBC. Biomedicines, 2021, 9(10): 1386. DOI:10.3390/biomedicines9101386
    6. Yang T, Gu X, Jia L, et al. DSG2 expression is low in colon cancer and correlates with poor survival. BMC Gastroenterol, 2021, 21(1): 7. DOI:10.1186/s12876-020-01588-2
    7. Quaresma MC, Pankonien I, Clarke LA, et al. Mutant CFTR Drives TWIST1 mediated epithelial-mesenchymal transition. Cell Death Dis, 2020, 11(10): 920. DOI:10.1038/s41419-020-03119-z
    8. Escalona RM, Bilandzic M, Western P, et al. TIMP-2 regulates proliferation, invasion and STAT3-mediated cancer stem cell-dependent chemoresistance in ovarian cancer cells. BMC Cancer, 2020, 20(1): 960. DOI:10.1186/s12885-020-07274-6
    9. Amaral MD, Quaresma MC, Pankonien I. What Role Does CFTR Play in Development, Differentiation, Regeneration and Cancer?. Int J Mol Sci, 2020, 21(9): 3133. DOI:10.3390/ijms21093133
    10. Rojas-Sanchez G, Cotzomi-Ortega I, Pazos-Salazar NG, et al. Autophagy and Its Relationship to Epithelial to Mesenchymal Transition: When Autophagy Inhibition for Cancer Therapy Turns Counterproductive. Biology (Basel), 2019, 8(4): 71. DOI:10.3390/biology8040071
    11. Xing X, Ma JH, Fu Y, et al. Essential oil extracted from erythrina corallodendron L. leaves inhibits the proliferation, migration, and invasion of breast cancer cells. Medicine (Baltimore), 2019, 98(36): e17009. DOI:10.1097/MD.0000000000017009
    12. Sulaiman A, McGarry S, Han X, et al. CSCs in Breast Cancer-One Size Does Not Fit All: Therapeutic Advances in Targeting Heterogeneous Epithelial and Mesenchymal CSCs. Cancers (Basel), 2019, 11(8): 1128. DOI:10.3390/cancers11081128
    13. Mohammed SI, Torres-Luquis O, Walls E, et al. Lymph-circulating tumor cells show distinct properties to blood-circulating tumor cells and are efficient metastatic precursors. Mol Oncol, 2019, 13(6): 1400-1418. DOI:10.1002/1878-0261.12494
    14. Wu L, Yang X. Targeting the Hippo Pathway for Breast Cancer Therapy. Cancers (Basel), 2018, 10(11): 422. DOI:10.3390/cancers10110422
    15. Sulaiman A, McGarry S, Lam KM, et al. Co-inhibition of mTORC1, HDAC and ESR1α retards the growth of triple-negative breast cancer and suppresses cancer stem cells. Cell Death Dis, 2018, 9(8): 815. DOI:10.1038/s41419-018-0811-7
    16. Sulaiman A, Wang L. Bridging the divide: preclinical research discrepancies between triple-negative breast cancer cell lines and patient tumors. Oncotarget, 2017, 8(68): 113269-113281. DOI:10.18632/oncotarget.22916

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3407) PDF downloads (182) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return