1. |
Jia Z, Zhang X, Li Z, et al. Hydrogen sulfide mitigates ox‑LDL‑induced NLRP3/caspase‑1/GSDMD dependent macrophage pyroptosis by S‑sulfhydrating caspase‑1. Mol Med Rep, 2024, 30(2): 135.
DOI:10.3892/mmr.2024.13259
|
2. |
Flori L, Benedetti G, Calderone V, et al. Hydrogen Sulfide and Irisin, Potential Allies in Ensuring Cardiovascular Health. Antioxidants (Basel), 2024, 13(5): 543.
DOI:10.3390/antiox13050543
|
3. |
Gonzalez AL, Dungan MM, Smart CD, et al. Inflammation Resolution in the Cardiovascular System: Arterial Hypertension, Atherosclerosis, and Ischemic Heart Disease. Antioxid Redox Signal, 2024, 40(4-6): 292-316.
DOI:10.1089/ars.2023.0284
|
4. |
Andrés CMC, Pérez de la Lastra JM, Andrés Juan C, et al. Chemistry of Hydrogen Sulfide-Pathological and Physiological Functions in Mammalian Cells. Cells, 2023, 12(23): 2684.
DOI:10.3390/cells12232684
|
5. |
Bechelli C, Macabrey D, Deglise S, et al. Clinical Potential of Hydrogen Sulfide in Peripheral Arterial Disease. Int J Mol Sci, 2023, 24(12): 9955.
DOI:10.3390/ijms24129955
|
6. |
Munteanu C. Hydrogen Sulfide and Oxygen Homeostasis in Atherosclerosis: A Systematic Review from Molecular Biology to Therapeutic Perspectives. Int J Mol Sci, 2023, 24(9): 8376.
DOI:10.3390/ijms24098376
|
7. |
Star BS, van der Slikke EC, Ransy C, et al. GYY4137-Derived Hydrogen Sulfide Donates Electrons to the Mitochondrial Electron Transport Chain via Sulfide: Quinone Oxidoreductase in Endothelial Cells. Antioxidants (Basel), 2023, 12(3): 587.
DOI:10.3390/antiox12030587
|
8. |
Zhang X, Wang Z, Zheng Y, et al. Inhibitors of the NLRP3 inflammasome pathway as promising therapeutic candidates for inflammatory diseases (Review). Int J Mol Med, 2023, 51(4): 35.
DOI:10.3892/ijmm.2023.5238
|
9. |
Liu J, Mesfin FM, Hunter CE, et al. Recent Development of the Molecular and Cellular Mechanisms of Hydrogen Sulfide Gasotransmitter. Antioxidants (Basel), 2022, 11(9): 1788.
DOI:10.3390/antiox11091788
|
10. |
Zhu C, Liu Q, Li X, et al. Hydrogen sulfide: A new therapeutic target in vascular diseases. Front Endocrinol (Lausanne), 2022, 13: 934231.
DOI:10.3389/fendo.2022.934231
|
11. |
Munteanu C, Rotariu M, Turnea M, et al. Recent Advances in Molecular Research on Hydrogen Sulfide (H2S) Role in Diabetes Mellitus (DM)-A Systematic Review. Int J Mol Sci, 2022, 23(12): 6720.
DOI:10.3390/ijms23126720
|
12. |
Zhao H, Liu H, Yang Y, et al. The Role of H2S Regulating NLRP3 Inflammasome in Diabetes. Int J Mol Sci, 2022, 23(9): 4818.
DOI:10.3390/ijms23094818
|
13. |
Guo Z, Du X, Zhang Y, et al. Diosmin Alleviates Venous Injury and Muscle Damage in a Mouse Model of Iliac Vein Stenosis. Front Cardiovasc Med, 2022, 8: 785554.
DOI:10.3389/fcvm.2021.785554
|
14. |
Doran AC. Inflammation Resolution: Implications for Atherosclerosis. Circ Res, 2022, 130(1): 130-148.
DOI:10.1161/CIRCRESAHA.121.319822
|
15. |
Wu W, Tan QY, Xi FF, et al. NLRP3 inflammasome activation in gestational diabetes mellitus placentas is associated with hydrogen sulfide synthetase deficiency. Exp Ther Med, 2022, 23(1): 94.
DOI:10.3892/etm.2021.11017
|
16. |
Zhou M, Chen JY, Chao ML, et al. S-nitrosylation of c-Jun N-terminal kinase mediates pressure overload-induced cardiac dysfunction and fibrosis. Acta Pharmacol Sin, 2022, 43(3): 602-612.
DOI:10.1038/s41401-021-00674-9
|
17. |
Rose P, Zhu YZ, Moore PK. Hydrogen Sulfide and the Immune System. Adv Exp Med Biol, 2021, 1315: 99-128.
DOI:10.1007/978-981-16-0991-6_5
|
18. |
Wang YZ, Ngowi EE, Wang D, et al. The Potential of Hydrogen Sulfide Donors in Treating Cardiovascular Diseases. Int J Mol Sci, 2021, 22(4): 2194.
DOI:10.3390/ijms22042194
|
19. |
Gáll T, Pethő D, Nagy A, et al. Therapeutic Potential of Carbon Monoxide (CO) and Hydrogen Sulfide (H2S) in Hemolytic and Hemorrhagic Vascular Disorders-Interaction between the Heme Oxygenase and H2S-Producing Systems. Int J Mol Sci, 2020, 22(1): 47.
DOI:10.3390/ijms22010047
|
20. |
Mohammad G, Radhakrishnan R, Kowluru RA. Hydrogen Sulfide: A Potential Therapeutic Target in the Development of Diabetic Retinopathy. Invest Ophthalmol Vis Sci, 2020, 61(14): 35.
DOI:10.1167/iovs.61.14.35
|
21. |
Rahman MA, Glasgow JN, Nadeem S, et al. The Role of Host-Generated H2S in Microbial Pathogenesis: New Perspectives on Tuberculosis. Front Cell Infect Microbiol, 2020, 10: 586923.
DOI:10.3389/fcimb.2020.586923
|
22. |
Wang H, Shi X, Qiu M, et al. Hydrogen Sulfide Plays an Important Role by Influencing NLRP3 inflammasome. Int J Biol Sci, 2020, 16(14): 2752-2760.
DOI:10.7150/ijbs.47595
|
23. |
Tian Y, Song H, Qin W, et al. Mammalian STE20-Like Kinase 2 Promotes Lipopolysaccharides-Mediated Cardiomyocyte Inflammation and Apoptosis by Enhancing Mitochondrial Fission. Front Physiol, 2020, 11: 897.
DOI:10.3389/fphys.2020.00897
|