Citation: | Siyun Zhou, Yan Li, Wenqing Sun, Dongyu Ma, Yi Liu, Demin Cheng, Guanru Li, Chunhui Ni. circPVT1 promotes silica-induced epithelial-mesenchymal transition by modulating the miR-497-5p/TCF3 axis[J]. The Journal of Biomedical Research, 2024, 38(2): 163-174. DOI: 10.7555/JBR.37.20220249 |
Epithelial-mesenchymal transition (EMT) is a vital pathological feature of silica-induced pulmonary fibrosis. However, whether circRNA is involved in the process remains unclear. The present study aimed to investigate the role of circPVT1 in the silica-induced EMT and the underlying mechanisms. We found that an elevated expression of circPVT1 promoted EMT and enhanced the migratory capacity of silica-treated epithelial cells. The isolation of cytoplasmic and nuclear separation assay showed that circPVT1 was predominantly expressed in the cytoplasm. RNA immunoprecipitation assay and RNA pull-down experiment indicated that cytoplasmic-localized circPVT1 was capable of binding to miR-497-5p. Furthermore, we found that miR-497-5p attenuated the silica-induced EMT process by targeting transcription factor 3 (TCF3), an E-cadherin transcriptional repressor, in the silica-treated epithelial cells. Collectively, these results reveal a novel role of the circPVT1/miR-497-5p/TCF3 axis in the silica-induced EMT process in lung epithelial cells. Once validated, this finding may provide a potential theoretical basis for the development of interventions and treatments for pulmonary fibrosis.
This research was funded by the National Natural Science Foundation of China (Grant No. 82073518).
We acknowledge and appreciate our colleagues for their valuable efforts and comments on this paper.
CLC number: R135.2, Document code: A
The authors reported no conflict of interests.
[1] |
Leung CC, Yu ITS, Chen W. Silicosis[J]. Lancet, 2012, 379(9830): 2008–2018. doi: 10.1016/S0140-6736(12)60235-9
|
[2] |
Hoy RF, Chambers DC. Silica-related diseases in the modern world[J]. Allergy, 2020, 75(11): 2805–2817. doi: 10.1111/all.14202
|
[3] |
Rockey DC, Bell PD, Hill JA. Fibrosis-A common pathway to organ injury and failure[J]. N Engl J Med, 2015, 372(12): 1138–1149. doi: 10.1056/NEJMra1300575
|
[4] |
Stone RC, Pastar I, Ojeh N, et al. Epithelial-mesenchymal transition in tissue repair and fibrosis[J]. Cell Tissue Res, 2016, 365(3): 495–506. doi: 10.1007/s00441-016-2464-0
|
[5] |
Jayachandran J, Srinivasan H, Mani KP. Molecular mechanism involved in epithelial to mesenchymal transition[J]. Arch Biochem Biophys, 2021, 710: 108984. doi: 10.1016/j.abb.2021.108984
|
[6] |
Marconi GD, Fonticoli L, Rajan TS, et al. Epithelial-mesenchymal transition (EMT): the type-2 EMT in wound healing, tissue regeneration and organ fibrosis[J]. Cells, 2021, 10(7): 1587. doi: 10.3390/cells10071587
|
[7] |
Yang Y, Lei W, Jiang S, et al. CircRNAs: decrypting the novel targets of fibrosis and aging[J]. Ageing Res Rev, 2021, 70: 101390. doi: 10.1016/j.arr.2021.101390
|
[8] |
Yang L, Liu X, Zhang N, et al. Investigation of circular RNAs and related genes in pulmonary fibrosis based on bioinformatics analysis[J]. J Cell Biochem, 2019, 120(7): 11022–11032. doi: 10.1002/jcb.28380
|
[9] |
Li J, Li P, Zhang G, et al. CircRNA TADA2A relieves idiopathic pulmonary fibrosis by inhibiting proliferation and activation of fibroblasts[J]. Cell Death Dis, 2020, 11(7): 553. doi: 10.1038/s41419-020-02747-9
|
[10] |
Yao W, Li Y, Han L, et al. The CDR1as/miR-7/TGFBR2 axis modulates EMT in silica-induced pulmonary fibrosis[J]. Toxicol Sci, 2018, 166(2): 465–478. doi: 10.1093/toxsci/kfy221
|
[11] |
Chen J, Li Y, Zheng Q, et al. Circular RNA profile identifies circPVT1 as a proliferative factor and prognostic marker in gastric cancer[J]. Cancer Lett, 2017, 388: 208–219. doi: 10.1016/j.canlet.2016.12.006
|
[12] |
Adhikary J, Chakraborty S, Dalal S, et al. Circular PVT1: an oncogenic non-coding RNA with emerging clinical importance[J]. J Clin Pathol, 2019, 72(8): 513–519. doi: 10.1136/jclinpath-2019-205891
|
[13] |
Ghafouri-Fard S, Khoshbakht T, Taheri M, et al. A concise review on the role of CircPVT1 in tumorigenesis, drug sensitivity, and cancer prognosis[J]. Front Oncol, 2021, 11: 762960. doi: 10.3389/fonc.2021.762960
|
[14] |
Zheng X, Rui S, Wang X, et al. circPVT1 regulates medullary thyroid cancer growth and metastasis by targeting miR-455-5p to activate CXCL12/CXCR4 signaling[J]. J Exp Clin Cancer Res, 2021, 40(1): 157. doi: 10.1186/s13046-021-01964-0
|
[15] |
Li T, Xing Y, Zhang G, et al. Circular RNA Plasmacytoma Variant Translocation 1 (CircPVT1) knockdown ameliorates hypoxia-induced bladder fibrosis by regulating the miR-203/Suppressor of Cytokine Signaling 3 (SOCS3) signaling axis[J]. Bioengineered, 2022, 13(1): 1288–1303. doi: 10.1080/21655979.2021.2001221
|
[16] |
Qin S, Zhao Y, Lim G, et al. Circular RNA PVT1 acts as a competing endogenous RNA for miR-497 in promoting non-small cell lung cancer progression[J]. Biomed Pharmacother, 2019, 111: 244–250. doi: 10.1016/j.biopha.2018.12.007
|
[17] |
Verduci L, Ferraiuolo M, Sacconi A, et al. The oncogenic role of circPVT1 in head and neck squamous cell carcinoma is mediated through the mutant p53/YAP/TEAD transcription-competent complex[J]. Genome Biol, 2017, 18(1): 237. doi: 10.1186/s13059-017-1368-y
|
[18] |
Wong CH, Lou UK, Fung FK, et al. CircRTN4 promotes pancreatic cancer progression through a novel CircRNA-miRNA-lncRNA pathway and stabilizing epithelial-mesenchymal transition protein[J]. Mol Cancer, 2022, 21(1): 10. doi: 10.1186/s12943-021-01481-w
|
[19] |
Peng Z, Zhang Y, Shi D, et al. miR-497-5p/SALL4 axis promotes stemness phenotype of choriocarcinoma and forms a feedback loop with DNMT-mediated epigenetic regulation[J]. Cell Death Dis, 2021, 12(11): 1046. doi: 10.1038/s41419-021-04315-1
|
[20] |
Zhang Y, Wang F, Zhou D, et al. Genome-wide analysis of aberrantly expressed microRNAs in bronchoalveolar lavage fluid from patients with silicosis[J]. Ind Health, 2016, 54(4): 361–369. doi: 10.2486/indhealth.2015-0170
|
[21] |
Li Y, Sun W, Pan H, et al. LncRNA-PVT1 activates lung fibroblasts via miR-497-5p and is facilitated by FOXM1[J]. Ecotoxicol Environ Saf, 2021, 213: 112030. doi: 10.1016/j.ecoenv.2021.112030
|
[22] |
Slattery C, Ryan MP, McMorrow T. E2A proteins: regulators of cell phenotype in normal physiology and disease[J]. Int J Biochem Cell Biol, 2008, 40(8): 1431–1436. doi: 10.1016/j.biocel.2007.05.014
|
[23] |
Bates MA, Brandenberger C, Langohr I, et al. Silica triggers inflammation and ectopic lymphoid neogenesis in the lungs in parallel with accelerated onset of systemic autoimmunity and glomerulonephritis in the lupus-prone NZBWF1 mouse[J]. PLoS One, 2015, 10(5): e0125481. doi: 10.1371/journal.pone.0125481
|
[24] |
Hao X, Jin Y, Zhang Y, et al. Inhibition of oncogenic src ameliorates silica-induced pulmonary fibrosis via PI3K/AKT pathway[J]. Int J Mol Sci, 2023, 24(1): 774. doi: 10.3390/ijms24010774
|
[25] |
Tian Y, Xia J, Yang G, et al. A2aR inhibits fibrosis and the EMT process in silicosis by regulating Wnt/β-catenin pathway[J]. Ecotoxicol Environ Saf, 2023, 249: 114410. doi: 10.1016/j.ecoenv.2022.114410
|
[26] |
Chauhan PS, Wagner JG, Benninghoff AD, et al. Rapid induction of pulmonary inflammation, autoimmune gene expression, and ectopic lymphoid neogenesis following acute silica exposure in lupus-prone mice[J]. Front Immunol, 2021, 12: 635138. doi: 10.3389/fimmu.2021.635138
|
[27] |
Wu Q, Gui W, Jiao B, et al. miR-138 inhibits epithelial-mesenchymal transition in silica-induced pulmonary fibrosis by regulating ZEB2[J]. Toxicology, 2021, 461: 152925. doi: 10.1016/j.tox.2021.152925
|
[28] |
Schulte H, Mühlfeld C, Brandenberger C. Age-related structural and functional changes in the mouse lung[J]. Front Physiol, 2019, 10: 1466. doi: 10.3389/fphys.2019.01466
|
[29] |
Shi J, Lv X, Zeng L, et al. CircPVT1 promotes proliferation of lung squamous cell carcinoma by binding to miR-30d/e[J]. J Exp Clin Cancer Res, 2021, 40(1): 193. doi: 10.1186/s13046-021-01976-w
|
[30] |
Liu F, Wu R, Guan L, et al. Knockdown of PVT1 suppresses colorectal cancer progression by regulating MiR-106b-5p/FJX1 axis[J]. Cancer Manag Res, 2020, 12: 8773–8785. doi: 10.2147/CMAR.S260537
|
[31] |
Guo Y, Guo Y, Chen C, et al. Circ3823 contributes to growth, metastasis and angiogenesis of colorectal cancer: involvement of miR-30c-5p/TCF7 axis[J]. Mol Cancer, 2021, 20(1): 93. doi: 10.1186/s12943-021-01372-0
|
[32] |
Patop IL, Wüst S, Kadener S. Past, present, and future of circRNAs[J]. EMBO J, 2019, 38(16): e100836. doi: 10.15252/embj.2018100836
|
[33] |
Xue T, Qiu X, Liu H, et al. Epigenetic regulation in fibrosis progress[J]. Pharmacol Res, 2021, 173: 105910. doi: 10.1016/j.phrs.2021.105910
|
[34] |
Ji X, Wu B, Fan J, et al. The anti-fibrotic effects and mechanisms of MicroRNA-486-5p in pulmonary fibrosis[J]. Sci Rep, 2015, 5: 14131. doi: 10.1038/srep14131
|
[35] |
Chen X, Shi C, Wang C, et al. The role of miR-497-5p in myofibroblast differentiation of LR-MSCs and pulmonary fibrogenesis[J]. Sci Rep, 2017, 7: 40958. doi: 10.1038/srep40958
|
[36] |
Wang H, Zheng G. Circ-GGA3 promotes the biological functions of human lens epithelial cells depending on the regulation of miR-497-5p/SMAD4 axis[J]. Biochem Biophys Res Commun, 2022, 598: 62–68. doi: 10.1016/j.bbrc.2021.09.082
|
[37] |
Zhang D, Chen X, Zheng D. A novel MIR503HG/miR-497-5p/CCL19 axis regulates high glucose-induced cell apoptosis, inflammation, and fibrosis in human HK-2 cells[J]. Appl Biochem Biotechnol, 2022, 194(5): 2061–2076. doi: 10.1007/s12010-021-03776-6
|
[38] |
Pang X, Shao L, Nie X, et al. Emodin attenuates silica-induced lung injury by inhibition of inflammation, apoptosis and epithelial-mesenchymal transition[J]. Int Immunopharmacol, 2021, 91: 107277. doi: 10.1016/j.intimp.2020.107277
|
[39] |
Guo J, Yang Z, Jia Q, et al. Pirfenidone inhibits epithelial-mesenchymal transition and pulmonary fibrosis in the rat silicosis model[J]. Toxicol Lett, 2019, 300: 59–66. doi: 10.1016/j.toxlet.2018.10.019
|
[40] |
Belle I, Zhuang Y. E proteins in lymphocyte development and lymphoid diseases[J]. Curr Top Dev Biol, 2014, 110: 153–187.
|
[41] |
Semerad CL, Mercer EM, Inlay MA, et al. E2A proteins maintain the hematopoietic stem cell pool and promote the maturation of myelolymphoid and myeloerythroid progenitors[J]. Proc Natl Acad Sci U S A, 2009, 106(6): 1930–1935. doi: 10.1073/pnas.0808866106
|
[42] |
Xie G, Dong P, Chen H, et al. Decreased expression of ATF3, orchestrated by β-catenin/TCF3, miR-17-5p and HOXA11-AS, promoted gastric cancer progression via increased β-catenin and CEMIP[J]. Exp Mol Med, 2021, 53(11): 1706–1722. doi: 10.1038/s12276-021-00694-9
|
[43] |
Wilke AC, Doebele C, Zindel A, et al. SHMT2 inhibition disrupts the TCF3 transcriptional survival program in Burkitt lymphoma[J]. Blood, 2022, 139(4): 538–553. doi: 10.1182/blood.2021012081
|
[44] |
López-Menéndez C, Vázquez-Naharro A, Santos V, et al. E2A Modulates stemness, metastasis, and therapeutic resistance of breast cancer[J]. Cancer Res, 2021, 81(17): 4529–4544. doi: 10.1158/0008-5472.CAN-20-2685
|
[45] |
Xiong W, Zhang L, Liu H, et al. E2-mediated EMT by activation of β-catenin/Snail signalling during the development of ovarian endometriosis[J]. J Cell Mol Med, 2019, 23(12): 8035–8045. doi: 10.1111/jcmm.14668
|
[46] |
Slattery C, McMorrow T, Ryan MP. Overexpression of E2A proteins induces epithelial-mesenchymal transition in human renal proximal tubular epithelial cells suggesting a potential role in renal fibrosis[J]. FEBS Lett, 2006, 580(17): 4021–4030. doi: 10.1016/j.febslet.2006.06.039
|
[47] |
Jäger B, Seeliger B, Terwolbeck O, et al. The NLRP3-inflammasome-caspase-1 pathway is upregulated in idiopathic pulmonary fibrosis and acute exacerbations and is inducible by apoptotic A549 cells[J]. Front Immunol, 2021, 12: 642855. doi: 10.3389/fimmu.2021.642855
|
[48] |
Feng F, Cheng P, Xu S, et al. Tanshinone IIA attenuates silica-induced pulmonary fibrosis via Nrf2-mediated inhibition of EMT and TGF-β1/Smad signaling[J]. Chem Biol Interact, 2020, 319: 109024. doi: 10.1016/j.cbi.2020.109024
|
[1] | Liping Cheng, He Jin, Tianheng Xiao, Xiaoyu Yang, Tingting Zhao, Eugene Yujun Xu. Human circBOULE RNAs as potential biomarkers for sperm quality and male infertility[J]. The Journal of Biomedical Research, 2024, 38(5): 473-484. DOI: 10.7555/JBR.37.20230296 |
[2] | Zhang Weifeng, Chen Han, Zhang Guoxin, Jin Guangfu. A nomogram for predicting lymph node metastasis in superficial esophageal squamous cell carcinoma[J]. The Journal of Biomedical Research, 2021, 35(5): 361-370. DOI: 10.7555/JBR.35.20210034 |
[3] | He Xi, Xie Wenxiu, Li Huiling, Cui Yiqiang, Wang Ya, Guo Xuejiang, Sha Jiahao. The testis-specifically expressed gene Trim69 is not essential for fertility in mice[J]. The Journal of Biomedical Research, 2021, 35(1): 47-60. DOI: 10.7555/JBR.34.20200069 |
[4] | Huang Lei, Lu Qun, Du Jiangbo, Lv Hong, Tao Shiyao, Chen Shiyao, Li Xiuzhu, Han Xiumei, Zhou Kun, Xu Bo, Liu Xiaoyu, Ma Hongxia, Xia Yankai, Jin Guangfu, Shen Hongbing, Ling Xiufeng, Hu Zhibin, Tan Jichun, Diao Feiyang. Cumulative live birth rates of in vitro fertilization/intracytoplasmic sperm injection after multiple complete cycles in China[J]. The Journal of Biomedical Research, 2020, 34(5): 361-368. DOI: 10.7555/JBR.34.20200035 |
[5] | Slimen Itaf Ben, Boubchir Larbi, Seddik Hassene. Epileptic seizure prediction based on EEG spikes detection of ictal-preictal states[J]. The Journal of Biomedical Research, 2020, 34(3): 162-169. DOI: 10.7555/JBR.34.20190097 |
[6] | Wang Le Yi, McKelvey George M., Wang Hong. Multi-outcome predictive modelling of anesthesia patients[J]. The Journal of Biomedical Research, 2019, 33(6): 430-434. DOI: 10.7555/JBR.33.20180088 |
[7] | Young-Joo Yi, S. Kamala-Kannan, Jeong-Muk Lim, Byung-Taek Oh, Sang-Myeong Lee. Effects of difructose dianhydride (DFA)-IV on in vitro fertilization in pigs[J]. The Journal of Biomedical Research, 2017, 31(5): 453-461. DOI: 10.7555/JBR.31.20160115 |
[8] | Anna Karolina Zuk, Xuesong Wen, Stephen Dilworth, Dong Li, Lucy Ghali. Modeling and validating three dimensional human normal cervix and cervical cancer tissues in vitro[J]. The Journal of Biomedical Research, 2017, 31(3): 240-247. DOI: 10.7555/JBR.31.20160150 |
[9] | Seo-jin Park, Kyoung-Ha So, Sang-Hwan Hyun. Effect of zeaxanthin on porcine embryonic development during in vitro maturation[J]. The Journal of Biomedical Research, 2017, 31(2): 154-161. DOI: 10.7555/JBR.31.20160079 |
[10] | Eliza Shrestha, Yuebo Yang, Xiaomao Li, Yu Zhang. Successful conservative management with methotrexate and mifepristone of cervical pregnancy[J]. The Journal of Biomedical Research, 2011, 25(1): 71-73. DOI: 10.1016/S1674-8301(11)60009-2 |