4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Dongsheng Gu, Kelly E Schlotman, Jingwu Xie. Deciphering the role of hedgehog signaling in pancreatic cancer[J]. The Journal of Biomedical Research, 2016, 30(5): 353-360. DOI: 10.7555/JBR.30.20150107
Citation: Dongsheng Gu, Kelly E Schlotman, Jingwu Xie. Deciphering the role of hedgehog signaling in pancreatic cancer[J]. The Journal of Biomedical Research, 2016, 30(5): 353-360. DOI: 10.7555/JBR.30.20150107

Deciphering the role of hedgehog signaling in pancreatic cancer

Funds: 

the National Cancer Institute CA155086,Riley Children’s Foundation, Jeff Gurdon Children’s Research Foundation and Wells Center for Pediatric Research

More Information
  • Received Date: October 09, 2015
  • Pancreatic cancer, mostly pancreatic ductal adenocarcinoma (PDAC), is a leading cause of cancer-related death in the US, with a dismal median survival of 6 months. Thus, there is an urgent unmet need to identify ways to diagnose and to treat this deadly cancer. Although a number of genetic changes have been identified in pancreatic cancer, their mechanisms of action in tumor development, progression and metastasis are not completely understood. Hedgehog signaling, which plays a major role in embryonic development and stem cell regulation, is known to be activated in pancreatic cancer; however, specific inhibitors targeting the smoothened molecule failed to improve the condition of pancreatic cancer patients in clinical trials. Furthermore, results regarding the role of Hh signaling in pancreatic cancer are controversial with some reporting tumor promoting activities whereas others tumor suppressive actions. In this review, we will summarize what we know about hedgehog signaling in pancreatic cancer, and try to explain the contradicting roles of hedgehog signaling as well as the reason(s) behind the failed clinical trials. In addition to the canonical hedgehog signaling, we will also discuss several non-canonical hedgehog signaling mechanisms.
  • Related Articles

    [1]Yujuan Zhang, Kai Lu, Xu Wu, Hanting Liu, Junyi Xin, Xiaowei Wang, Weida Gong, Qinghong Zhao, Meilin Wang, Haiyan Chu, Mulong Du, Guoquan Tao, Zhengdong Zhang. Genetic variants in the Hedgehog signaling pathway genes are associated with gastric cancer risk in a Chinese Han population[J]. The Journal of Biomedical Research, 2022, 36(1): 22-31. DOI: 10.7555/JBR.35.20210091
    [2]Trupti N. Patel, Pavan Kumar Dhanyamraju. Role of aberrant Sonic hedgehog signaling pathway in cancers and developmental anomalies[J]. The Journal of Biomedical Research, 2022, 36(1): 1-9. DOI: 10.7555/JBR.35.20210139
    [3]Zhang Weifeng, Chen Han, Zhang Guoxin, Jin Guangfu. A nomogram for predicting lymph node metastasis in superficial esophageal squamous cell carcinoma[J]. The Journal of Biomedical Research, 2021, 35(5): 361-370. DOI: 10.7555/JBR.35.20210034
    [4]Shen Tian, Han Bo'ang, Leng Yan, Yan Sen, Shi Junfeng, Yue Shen, Cheng Steven Y. Sonic Hedgehog stimulates migration of MCF-7 breast cancer cells through Rac1[J]. The Journal of Biomedical Research, 2019, 33(5): 297-307. DOI: 10.7555/JBR.32.20180100
    [5]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [6]Haibo Tong, Chunlin Zou, Siyuan Qin, Jie Meng, Evan T. Keller, Jian Zhang, Yi Lu. Prostate cancer tends to metastasize in the bone-mimicking microenvironment via activating NF-kB signaling[J]. The Journal of Biomedical Research, 2018, 32(5): 343-353. DOI: 10.7555/JBR.32.20180035
    [7]Andrew Sulaiman, Zemin Yao, Lisheng Wang. Re-evaluating the role of epithelial-mesenchymal-transition in cancer progression[J]. The Journal of Biomedical Research, 2018, 32(2): 81-90. DOI: 10.7555/JBR.31.20160124
    [8]Nisha Gupta, Dan G. Duda. Role of stromal cell-derived factor 1α pathway in bone metastatic prostate cancer[J]. The Journal of Biomedical Research, 2016, 30(3): 181-185. DOI: 10.7555/JBR.30.20150114
    [9]Qi Zheng, Kejun Nan, Yu Yao. Gastric cancer presenting with solitary gigantic pelvic metastasis[J]. The Journal of Biomedical Research, 2012, 26(4): 303-306. DOI: 10.7555/JBR.26.20110056
    [10]Zhenyu He, Chuanbing Shi, Hao Wen, Fanglong Li, Baolin Wang, Jie Wang. The potential of carcinoembryonic antigen, p53, Ki-67 and glutathion Stransferase-π as clinico-histopathological markers for colorectal cancer[J]. The Journal of Biomedical Research, 2010, 24(1): 51-57.
  • Cited by

    Periodical cited type(33)

    1. Swain S, Narayan RK, Mishra PR. Unraveling the interplay: exploring signaling pathways in pancreatic cancer in the context of pancreatic embryogenesis. Front Cell Dev Biol, 2024, 12: 1461278. DOI:10.3389/fcell.2024.1461278
    2. Mustafa M, Abbas K, Alam M, et al. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol, 2024, 14: 1427802. DOI:10.3389/fonc.2024.1427802
    3. Pramanik N, Gupta A, Ghanwatkar Y, et al. Recent advances in drug delivery and targeting for the treatment of pancreatic cancer. J Control Release, 2024, 366: 231-260. DOI:10.1016/j.jconrel.2023.12.053
    4. Oh K, Yoo YJ, Torre-Healy LA, et al. Coordinated single-cell tumor microenvironment dynamics reinforce pancreatic cancer subtype. Nat Commun, 2023, 14(1): 5226. DOI:10.1038/s41467-023-40895-6
    5. Jing J, Wu Z, Wang J, et al. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther, 2023, 8(1): 315. DOI:10.1038/s41392-023-01559-5
    6. Zhao Y, Qin C, Zhao B, et al. Pancreatic cancer stemness: dynamic status in malignant progression. J Exp Clin Cancer Res, 2023, 42(1): 122. DOI:10.1186/s13046-023-02693-2
    7. Dai M, Chen S, Teng X, et al. KRAS as a Key Oncogene in the Clinical Precision Diagnosis and Treatment of Pancreatic Cancer. J Cancer, 2022, 13(11): 3209-3220. DOI:10.7150/jca.76695
    8. McCubrey JA, Meher AK, Akula SM, et al. Wild type and gain of function mutant TP53 can regulate the sensitivity of pancreatic cancer cells to chemotherapeutic drugs, EGFR/Ras/Raf/MEK, and PI3K/mTORC1/GSK-3 pathway inhibitors, nutraceuticals and alter metabolic properties. Aging (Albany NY), 2022, 14(8): 3365-3386. DOI:10.18632/aging.204038
    9. Singh K, Shishodia G, Koul HK. Pancreatic cancer: genetics, disease progression, therapeutic resistance and treatment strategies. J Cancer Metastasis Treat, 2021, 7: 60. DOI:10.20517/2394-4722.2021.96
    10. Hafezi S, Saber-Ayad M, Abdel-Rahman WM. Highlights on the Role of KRAS Mutations in Reshaping the Microenvironment of Pancreatic Adenocarcinoma. Int J Mol Sci, 2021, 22(19): 10219. DOI:10.3390/ijms221910219
    11. Asif PJ, Longobardi C, Hahne M, et al. The Role of Cancer-Associated Fibroblasts in Cancer Invasion and Metastasis. Cancers (Basel), 2021, 13(18): 4720. DOI:10.3390/cancers13184720
    12. Chai JY, Sugumar V, Alshawsh MA, et al. The Role of Smoothened-Dependent and -Independent Hedgehog Signaling Pathway in Tumorigenesis. Biomedicines, 2021, 9(9): 1188. DOI:10.3390/biomedicines9091188
    13. Chekmarev J, Azad MG, Richardson DR. The Oncogenic Signaling Disruptor, NDRG1: Molecular and Cellular Mechanisms of Activity. Cells, 2021, 10(9): 2382. DOI:10.3390/cells10092382
    14. Viswakarma N, Sondarva G, Principe DR, et al. Mixed Lineage Kinase 3 phosphorylates prolyl-isomerase PIN1 and potentiates GLI1 signaling in pancreatic cancer development. Cancer Lett, 2021, 515: 1-13. DOI:10.1016/j.canlet.2021.04.015
    15. Weighill D, Ben Guebila M, Glass K, et al. Gene Targeting in Disease Networks. Front Genet, 2021, 12: 649942. DOI:10.3389/fgene.2021.649942
    16. Carter EP, Coetzee AS, Tomas Bort E, et al. Dissecting FGF Signalling to Target Cellular Crosstalk in Pancreatic Cancer. Cells, 2021, 10(4): 847. DOI:10.3390/cells10040847
    17. Abrams SL, Akula SM, Meher AK, et al. GSK-3β Can Regulate the Sensitivity of MIA-PaCa-2 Pancreatic and MCF-7 Breast Cancer Cells to Chemotherapeutic Drugs, Targeted Therapeutics and Nutraceuticals. Cells, 2021, 10(4): 816. DOI:10.3390/cells10040816
    18. Chippalkatti R, Abankwa D. Promotion of cancer cell stemness by Ras. Biochem Soc Trans, 2021, 49(1): 467-476. DOI:10.1042/BST20200964
    19. Mejia I, Bodapati S, Chen KT, et al. Pancreatic Adenocarcinoma Invasiveness and the Tumor Microenvironment: From Biology to Clinical Trials. Biomedicines, 2020, 8(10): 401. DOI:10.3390/biomedicines8100401
    20. He M, Henderson M, Muth S, et al. Preclinical mouse models for immunotherapeutic and non-immunotherapeutic drug development for pancreatic ductal adenocarcinoma. Ann Pancreat Cancer, 2020, 3: 7. DOI:10.21037/apc.2020.03.03
    21. Strapcova S, Takacova M, Csaderova L, et al. Clinical and Pre-Clinical Evidence of Carbonic Anhydrase IX in Pancreatic Cancer and Its High Expression in Pre-Cancerous Lesions. Cancers (Basel), 2020, 12(8): 2005. DOI:10.3390/cancers12082005
    22. Miller AL, Garcia PL, Yoon KJ. Developing effective combination therapy for pancreatic cancer: An overview. Pharmacol Res, 2020, 155: 104740. DOI:10.1016/j.phrs.2020.104740
    23. Baharudin R, Tieng FYF, Lee LH, et al. Epigenetics of SFRP1: The Dual Roles in Human Cancers. Cancers (Basel), 2020, 12(2): 445. DOI:10.3390/cancers12020445
    24. Sriram K, Salmerón C, Wiley SZ, et al. GPCRs in pancreatic adenocarcinoma: Contributors to tumour biology and novel therapeutic targets. Br J Pharmacol, 2020, 177(11): 2434-2455. DOI:10.1111/bph.15028
    25. Zaccari P, Cardinale V, Severi C, et al. Common features between neoplastic and preneoplastic lesions of the biliary tract and the pancreas. World J Gastroenterol, 2019, 25(31): 4343-4359. DOI:10.3748/wjg.v25.i31.4343
    26. Niyaz M, Khan MS, Mudassar S. Hedgehog Signaling: An Achilles' Heel in Cancer. Transl Oncol, 2019, 12(10): 1334-1344. DOI:10.1016/j.tranon.2019.07.004
    27. Singh AN, Sharma N. Epigenetic Modulators as Potential Multi-targeted Drugs Against Hedgehog Pathway for Treatment of Cancer. Protein J, 2019, 38(5): 537-550. DOI:10.1007/s10930-019-09832-9
    28. Kang X, Lin Z, Xu M, et al. Deciphering role of FGFR signalling pathway in pancreatic cancer. Cell Prolif, 2019, 52(3): e12605. DOI:10.1111/cpr.12605
    29. Ray P, Confeld M, Borowicz P, et al. PEG-b-poly (carbonate)-derived nanocarrier platform with pH-responsive properties for pancreatic cancer combination therapy. Colloids Surf B Biointerfaces, 2019, 174: 126-135. DOI:10.1016/j.colsurfb.2018.10.069
    30. Young K, Hughes DJ, Cunningham D, et al. Immunotherapy and pancreatic cancer: unique challenges and potential opportunities. Ther Adv Med Oncol, 2018, 10: 1758835918816281. DOI:10.1177/1758835918816281
    31. Kondratyeva LG, Chernov IP, Zinovyeva MV, et al. Heterogeneous Expression of Embryonal Development Master Regulator SOX9 in Patients with Pancreatic Cancer. Dokl Biochem Biophys, 2018, 481(1): 208-211. DOI:10.1134/S1607672918040087
    32. Kumar V, Mundra V, Peng Y, et al. Pharmacokinetics and biodistribution of polymeric micelles containing miRNA and small-molecule drug in orthotopic pancreatic tumor-bearing mice. Theranostics, 2018, 8(15): 4033-4049. DOI:10.7150/thno.24945
    33. Kondratyeva LG, Didych DA, Chernov IP, et al. Dependence of expression of regulatory master genes of embryonic development in pancreatic cancer cells on the intracellular concentration of the master regulator PDX1. Dokl Biochem Biophys, 2017, 475(1): 259-263. DOI:10.1134/S1607672917040056

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3641) PDF downloads (516) Cited by(33)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return