1. |
Swain S, Narayan RK, Mishra PR. Unraveling the interplay: exploring signaling pathways in pancreatic cancer in the context of pancreatic embryogenesis. Front Cell Dev Biol, 2024, 12: 1461278.
DOI:10.3389/fcell.2024.1461278
|
2. |
Mustafa M, Abbas K, Alam M, et al. Investigating underlying molecular mechanisms, signaling pathways, emerging therapeutic approaches in pancreatic cancer. Front Oncol, 2024, 14: 1427802.
DOI:10.3389/fonc.2024.1427802
|
3. |
Pramanik N, Gupta A, Ghanwatkar Y, et al. Recent advances in drug delivery and targeting for the treatment of pancreatic cancer. J Control Release, 2024, 366: 231-260.
DOI:10.1016/j.jconrel.2023.12.053
|
4. |
Oh K, Yoo YJ, Torre-Healy LA, et al. Coordinated single-cell tumor microenvironment dynamics reinforce pancreatic cancer subtype. Nat Commun, 2023, 14(1): 5226.
DOI:10.1038/s41467-023-40895-6
|
5. |
Jing J, Wu Z, Wang J, et al. Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Ther, 2023, 8(1): 315.
DOI:10.1038/s41392-023-01559-5
|
6. |
Zhao Y, Qin C, Zhao B, et al. Pancreatic cancer stemness: dynamic status in malignant progression. J Exp Clin Cancer Res, 2023, 42(1): 122.
DOI:10.1186/s13046-023-02693-2
|
7. |
Dai M, Chen S, Teng X, et al. KRAS as a Key Oncogene in the Clinical Precision Diagnosis and Treatment of Pancreatic Cancer. J Cancer, 2022, 13(11): 3209-3220.
DOI:10.7150/jca.76695
|
8. |
McCubrey JA, Meher AK, Akula SM, et al. Wild type and gain of function mutant TP53 can regulate the sensitivity of pancreatic cancer cells to chemotherapeutic drugs, EGFR/Ras/Raf/MEK, and PI3K/mTORC1/GSK-3 pathway inhibitors, nutraceuticals and alter metabolic properties. Aging (Albany NY), 2022, 14(8): 3365-3386.
DOI:10.18632/aging.204038
|
9. |
Singh K, Shishodia G, Koul HK. Pancreatic cancer: genetics, disease progression, therapeutic resistance and treatment strategies. J Cancer Metastasis Treat, 2021, 7: 60.
DOI:10.20517/2394-4722.2021.96
|
10. |
Hafezi S, Saber-Ayad M, Abdel-Rahman WM. Highlights on the Role of KRAS Mutations in Reshaping the Microenvironment of Pancreatic Adenocarcinoma. Int J Mol Sci, 2021, 22(19): 10219.
DOI:10.3390/ijms221910219
|
11. |
Asif PJ, Longobardi C, Hahne M, et al. The Role of Cancer-Associated Fibroblasts in Cancer Invasion and Metastasis. Cancers (Basel), 2021, 13(18): 4720.
DOI:10.3390/cancers13184720
|
12. |
Chai JY, Sugumar V, Alshawsh MA, et al. The Role of Smoothened-Dependent and -Independent Hedgehog Signaling Pathway in Tumorigenesis. Biomedicines, 2021, 9(9): 1188.
DOI:10.3390/biomedicines9091188
|
13. |
Chekmarev J, Azad MG, Richardson DR. The Oncogenic Signaling Disruptor, NDRG1: Molecular and Cellular Mechanisms of Activity. Cells, 2021, 10(9): 2382.
DOI:10.3390/cells10092382
|
14. |
Viswakarma N, Sondarva G, Principe DR, et al. Mixed Lineage Kinase 3 phosphorylates prolyl-isomerase PIN1 and potentiates GLI1 signaling in pancreatic cancer development. Cancer Lett, 2021, 515: 1-13.
DOI:10.1016/j.canlet.2021.04.015
|
15. |
Weighill D, Ben Guebila M, Glass K, et al. Gene Targeting in Disease Networks. Front Genet, 2021, 12: 649942.
DOI:10.3389/fgene.2021.649942
|
16. |
Carter EP, Coetzee AS, Tomas Bort E, et al. Dissecting FGF Signalling to Target Cellular Crosstalk in Pancreatic Cancer. Cells, 2021, 10(4): 847.
DOI:10.3390/cells10040847
|
17. |
Abrams SL, Akula SM, Meher AK, et al. GSK-3β Can Regulate the Sensitivity of MIA-PaCa-2 Pancreatic and MCF-7 Breast Cancer Cells to Chemotherapeutic Drugs, Targeted Therapeutics and Nutraceuticals. Cells, 2021, 10(4): 816.
DOI:10.3390/cells10040816
|
18. |
Chippalkatti R, Abankwa D. Promotion of cancer cell stemness by Ras. Biochem Soc Trans, 2021, 49(1): 467-476.
DOI:10.1042/BST20200964
|
19. |
Mejia I, Bodapati S, Chen KT, et al. Pancreatic Adenocarcinoma Invasiveness and the Tumor Microenvironment: From Biology to Clinical Trials. Biomedicines, 2020, 8(10): 401.
DOI:10.3390/biomedicines8100401
|
20. |
He M, Henderson M, Muth S, et al. Preclinical mouse models for immunotherapeutic and non-immunotherapeutic drug development for pancreatic ductal adenocarcinoma. Ann Pancreat Cancer, 2020, 3: 7.
DOI:10.21037/apc.2020.03.03
|
21. |
Strapcova S, Takacova M, Csaderova L, et al. Clinical and Pre-Clinical Evidence of Carbonic Anhydrase IX in Pancreatic Cancer and Its High Expression in Pre-Cancerous Lesions. Cancers (Basel), 2020, 12(8): 2005.
DOI:10.3390/cancers12082005
|
22. |
Miller AL, Garcia PL, Yoon KJ. Developing effective combination therapy for pancreatic cancer: An overview. Pharmacol Res, 2020, 155: 104740.
DOI:10.1016/j.phrs.2020.104740
|
23. |
Baharudin R, Tieng FYF, Lee LH, et al. Epigenetics of SFRP1: The Dual Roles in Human Cancers. Cancers (Basel), 2020, 12(2): 445.
DOI:10.3390/cancers12020445
|
24. |
Sriram K, Salmerón C, Wiley SZ, et al. GPCRs in pancreatic adenocarcinoma: Contributors to tumour biology and novel therapeutic targets. Br J Pharmacol, 2020, 177(11): 2434-2455.
DOI:10.1111/bph.15028
|
25. |
Zaccari P, Cardinale V, Severi C, et al. Common features between neoplastic and preneoplastic lesions of the biliary tract and the pancreas. World J Gastroenterol, 2019, 25(31): 4343-4359.
DOI:10.3748/wjg.v25.i31.4343
|
26. |
Niyaz M, Khan MS, Mudassar S. Hedgehog Signaling: An Achilles' Heel in Cancer. Transl Oncol, 2019, 12(10): 1334-1344.
DOI:10.1016/j.tranon.2019.07.004
|
27. |
Singh AN, Sharma N. Epigenetic Modulators as Potential Multi-targeted Drugs Against Hedgehog Pathway for Treatment of Cancer. Protein J, 2019, 38(5): 537-550.
DOI:10.1007/s10930-019-09832-9
|
28. |
Kang X, Lin Z, Xu M, et al. Deciphering role of FGFR signalling pathway in pancreatic cancer. Cell Prolif, 2019, 52(3): e12605.
DOI:10.1111/cpr.12605
|
29. |
Ray P, Confeld M, Borowicz P, et al. PEG-b-poly (carbonate)-derived nanocarrier platform with pH-responsive properties for pancreatic cancer combination therapy. Colloids Surf B Biointerfaces, 2019, 174: 126-135.
DOI:10.1016/j.colsurfb.2018.10.069
|
30. |
Young K, Hughes DJ, Cunningham D, et al. Immunotherapy and pancreatic cancer: unique challenges and potential opportunities. Ther Adv Med Oncol, 2018, 10: 1758835918816281.
DOI:10.1177/1758835918816281
|
31. |
Kondratyeva LG, Chernov IP, Zinovyeva MV, et al. Heterogeneous Expression of Embryonal Development Master Regulator SOX9 in Patients with Pancreatic Cancer. Dokl Biochem Biophys, 2018, 481(1): 208-211.
DOI:10.1134/S1607672918040087
|
32. |
Kumar V, Mundra V, Peng Y, et al. Pharmacokinetics and biodistribution of polymeric micelles containing miRNA and small-molecule drug in orthotopic pancreatic tumor-bearing mice. Theranostics, 2018, 8(15): 4033-4049.
DOI:10.7150/thno.24945
|
33. |
Kondratyeva LG, Didych DA, Chernov IP, et al. Dependence of expression of regulatory master genes of embryonic development in pancreatic cancer cells on the intracellular concentration of the master regulator PDX1. Dokl Biochem Biophys, 2017, 475(1): 259-263.
DOI:10.1134/S1607672917040056
|