4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Dongsheng Gu, Kelly E Schlotman, Jingwu Xie. Deciphering the role of hedgehog signaling in pancreatic cancer[J]. The Journal of Biomedical Research, 2016, 30(5): 353-360. DOI: 10.7555/JBR.30.20150107
Citation: Dongsheng Gu, Kelly E Schlotman, Jingwu Xie. Deciphering the role of hedgehog signaling in pancreatic cancer[J]. The Journal of Biomedical Research, 2016, 30(5): 353-360. DOI: 10.7555/JBR.30.20150107

Deciphering the role of hedgehog signaling in pancreatic cancer

Funds: 

the National Cancer Institute CA155086,Riley Children’s Foundation, Jeff Gurdon Children’s Research Foundation and Wells Center for Pediatric Research

More Information
  • Received Date: October 09, 2015
  • Pancreatic cancer, mostly pancreatic ductal adenocarcinoma (PDAC), is a leading cause of cancer-related death in the US, with a dismal median survival of 6 months. Thus, there is an urgent unmet need to identify ways to diagnose and to treat this deadly cancer. Although a number of genetic changes have been identified in pancreatic cancer, their mechanisms of action in tumor development, progression and metastasis are not completely understood. Hedgehog signaling, which plays a major role in embryonic development and stem cell regulation, is known to be activated in pancreatic cancer; however, specific inhibitors targeting the smoothened molecule failed to improve the condition of pancreatic cancer patients in clinical trials. Furthermore, results regarding the role of Hh signaling in pancreatic cancer are controversial with some reporting tumor promoting activities whereas others tumor suppressive actions. In this review, we will summarize what we know about hedgehog signaling in pancreatic cancer, and try to explain the contradicting roles of hedgehog signaling as well as the reason(s) behind the failed clinical trials. In addition to the canonical hedgehog signaling, we will also discuss several non-canonical hedgehog signaling mechanisms.
  • Related Articles

    [1]Tiwari-Heckler Shilpa, Jiang Z. Gordon, Popov Yury, J. Mukamal Kenneth. Daily high-dose aspirin does not lower APRI in the Aspirin-Myocardial Infarction Study[J]. The Journal of Biomedical Research, 2020, 34(2): 139-142. DOI: 10.7555/JBR.33.20190041
    [2]Tao Chun'ai, Gan Yongxin, Su Weidong, Li Zhutian, Tang Xiaolan. Effectiveness of hospital disinfection and experience learnt from 11 years of surveillance[J]. The Journal of Biomedical Research, 2019, 33(6): 408-413. DOI: 10.7555/JBR.33.20180118
    [3]Huan Liu, Shijiang Zhang, Yongfeng Shao, Xiaohu Lu, Weidong Gu, Buqing Ni, Qun Gu, Junjie Du. Biomechanical characterization of a novel ring connector for sutureless aortic anastomosis[J]. The Journal of Biomedical Research, 2018, 32(6): 454-460. DOI: 10.7555/JBR.31.20170011
    [4]Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023
    [5]Kaibo Lin, Shikun Zhang, Jieli Chen, Ding Yang, Mengyi Zhu, Eugene Yujun Xu. Generation and functional characterization of a conditional Pumilio2 null allele[J]. The Journal of Biomedical Research, 2018, 32(6): 434-441. DOI: 10.7555/JBR.32.20170117
    [6]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [7]Fengzhen Wang, Mingwan Zhang, Dongsheng Zhang, Yuan Huang, Li Chen, Sunmin Jiang, Kun Shi, Rui Li. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery[J]. The Journal of Biomedical Research, 2018, 32(6): 411-423. DOI: 10.7555/JBR.32.20160170
    [8]Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045
    [9]Yong Ji, Mingfeng Zheng, Shugao Ye, Jingyu Chen, Yijiang Chen. PTEN and Ki67 expression is associated with clinicopathologic features of non-small cell lung cancer[J]. The Journal of Biomedical Research, 2014, 28(6): 462-467. DOI: 10.7555/JBR.27.20130084
    [10]Xiaodong Yang, Ping Huang, Feng Wang, Zekuan Xu, Xiaonin Wang. Growth hormone receptor expression in human primary gastric adenocarcinoma[J]. The Journal of Biomedical Research, 2012, 26(5): 307-314. DOI: 10.7555/JBR.26.20110133
  • Cited by

    Periodical cited type(1)

    1. Tazesh S, Tamizi E, Siahi Shadbad M, et al. Comparative Stability of Two Anti-hyperpigmentation Agents: Kojic Acid as a Natural Metabolite and Its Di-Palmitate Ester, Under Oxidative Stress; Application to Pharmaceutical Formulation Design. Adv Pharm Bull, 2022, 12(2): 329-335. DOI:10.34172/apb.2022.031

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3642) PDF downloads (516) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return