3.8

CiteScore

2.4

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Juan Zhou, Yiran Xu, Luyao Wang, Yu Cong, Ke Huang, Xinxing Pan, Guangquan Liu, Wenqu Li, Chenchen Dai, Pengfei Xu, Xuemei Jia. LncRNA IDH1-AS1 sponges miR-518c-5p to suppress proliferation of epithelial ovarian cancer cell by targeting RMB47[J]. The Journal of Biomedical Research, 2024, 38(1): 51-65. DOI: 10.7555/JBR.37.20230097
Citation: Juan Zhou, Yiran Xu, Luyao Wang, Yu Cong, Ke Huang, Xinxing Pan, Guangquan Liu, Wenqu Li, Chenchen Dai, Pengfei Xu, Xuemei Jia. LncRNA IDH1-AS1 sponges miR-518c-5p to suppress proliferation of epithelial ovarian cancer cell by targeting RMB47[J]. The Journal of Biomedical Research, 2024, 38(1): 51-65. DOI: 10.7555/JBR.37.20230097

LncRNA IDH1-AS1 sponges miR-518c-5p to suppress proliferation of epithelial ovarian cancer cell by targeting RMB47

More Information
  • Corresponding author:

    Xuemei Jia, Department of Gynecology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, Jiangsu 210004, China. E-mail: xmjia@njmu.edu.cn; Pengfei Xu, Nanjing Maternity and Child Health Medical Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, 123 Mochou Rd, Nanjing, Jiangsu 210004, China. E-mail: pengfeixu@njmu.edu.cn

  • △These authors contributed equally to this work.

  • Received Date: April 17, 2023
  • Revised Date: August 21, 2023
  • Accepted Date: August 28, 2023
  • Available Online: September 01, 2023
  • Published Date: November 19, 2023
  • Long noncoding RNA (lncRNA) IDH1 antisense RNA 1 (IDH1-AS1) is involved in the progression of multiple cancers, but its role in epithelial ovarian cancer (EOC) is unknown. Therefore, we investigated the expression levels of IDH1-AS1 in EOC cells and normal ovarian epithelial cells by quantitative real-time PCR (qPCR). We first evaluated the effects of IDH1-AS1 on the proliferation, migration, and invasion of EOC cells through cell counting kit-8, colony formation, EdU, transwell, wound-healing, and xenograft assays. We then explored the downstream targets of IDH1-AS1 and verified the results by a dual-luciferase reporter, qPCR, rescue experiments, and Western blotting. We found that the expression levels of IDH1-AS1 were lower in EOC cells than in normal ovarian epithelial cells. High IDH1-AS1 expression of EOC patients from the Gene Expression Profiling Interactive Analysis database indicated a favorable prognosis, because IDH1-AS1 inhibited cell proliferation and xenograft tumor growth of EOC. IDH1-AS1 sponged miR-518c-5p whose overexpression promoted EOC cell proliferation. The miR-518c-5p mimic also reversed the proliferation-inhibiting effect induced by IDH1-AS1 overexpression. Furthermore, we found that RNA binding motif protein 47 (RBM47) was the downstream target of miR-518c-5p, that upregulation of RBM47 inhibited EOC cell proliferation, and that RBM47 overexpressing plasmid counteracted the proliferation-promoting effect caused by the IDH1-AS1 knockdown. Taken together, IDH1-AS1 may suppress EOC cell proliferation and tumor growth via the miR-518c-5p/RBM47 axis.

  • We acknowledge and appreciate our institutional colleagues for their experimental technical support.

    CLC number: R73-3, Document code: A

    The authors reported no conflict of interests.

  • [1]
    Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1): 17–48. doi: 10.3322/caac.21763
    [2]
    Wang M, Zhang J, Wu Y. Tumor metabolism rewiring in epithelial ovarian cancer[J]. J Ovarian Res, 2023, 16(1): 108. doi: 10.1186/s13048-023-01196-0
    [3]
    Kuroki L, Guntupalli SR. Treatment of epithelial ovarian cancer[J]. BMJ, 2020, 371: m3773. doi: 10.1136/bmj.m3773
    [4]
    Salamini-Montemurri M, Lamas-Maceiras M, Lorenzo-Catoira L, et al. Identification of lncRNAs deregulated in epithelial ovarian cancer based on a gene expression profiling meta-analysis[J]. Int J Mol Sci, 2023, 24(13): 10798. doi: 10.3390/ijms241310798
    [5]
    Zhao S, Zhang X, Chen S, et al. Natural antisense transcripts in the biological hallmarks of cancer: powerful regulators hidden in the dark[J]. J Exp Clin Cancer Res, 2020, 39(1): 187. doi: 10.1186/s13046-020-01700-0
    [6]
    Xu F, Huang M, Chen Q, et al. LncRNA HIF1A-AS1 promotes gemcitabine resistance of pancreatic cancer by enhancing glycolysis through modulating the AKT/YB1/HIF1α pathway[J]. Cancer Res, 2021, 81(22): 5678–5691. doi: 10.1158/0008-5472.CAN-21-0281
    [7]
    Yang L, Chen Y, Liu N, et al. Low expression of TRAF3IP2-AS1 promotes progression of NONO-TFE3 translocation renal cell carcinoma by stimulating N6-methyladenosine of PARP1 mRNA and downregulating PTEN[J]. J Hematol Oncol, 2021, 14(1): 46. doi: 10.1186/s13045-021-01059-5
    [8]
    Liu Y, Zhang P, Wu Q, et al. Long non-coding RNA NR2F1-AS1 induces breast cancer lung metastatic dormancy by regulating NR2F1 and ΔNp63[J]. Nat Commun, 2021, 12(1): 5232. doi: 10.1038/s41467-021-25552-0
    [9]
    Xiang S, Gu H, Jin L, et al. LncRNA IDH1-AS1 links the functions of c-Myc and HIF1α via IDH1 to regulate the Warburg effect[J]. Proc Natl Acad Sci U S A, 2018, 115(7): E1465–E1474. doi: 10.1073/pnas.1711257115
    [10]
    Zhang N, Li Z, Bai F, et al. PAX5-induced upregulation of IDH1-AS1 promotes tumor growth in prostate cancer by regulating ATG5-mediated autophagy[J]. Cell Death Dis, 2019, 10(10): 734. doi: 10.1038/s41419-019-1932-3
    [11]
    Wang J, Quan Y, Lv J, et al. LncRNA IDH1-AS1 suppresses cell proliferation and tumor growth in glioma[J]. Biochem Cell Biol, 2020, 98(5): 556–564. doi: 10.1139/bcb-2019-0465
    [12]
    Braga EA, Fridman MV, Moscovtsev AA, et al. LncRNAs in ovarian cancer progression, metastasis, and main pathways: ceRNA and alternative mechanisms[J]. Int J Mol Sci, 2020, 21(22): 8855. doi: 10.3390/ijms21228855
    [13]
    Klar M, Hasenburg A, Hasanov M, et al. Prognostic factors in young ovarian cancer patients: An analysis of four prospective phase III intergroup trials of the AGO Study Group, GINECO and NSGO[J]. Eur J Cancer, 2016, 66: 114–124. doi: 10.1016/j.ejca.2016.07.014
    [14]
    Chang LC, Huang CF, Lai MS, et al. Prognostic factors in epithelial ovarian cancer: a population-based study[J]. PLoS One, 2018, 13(3): e0194993. doi: 10.1371/journal.pone.0194993
    [15]
    Rosendahl M, Høgdall CK, Mosgaard BJ. Restaging and survival analysis of 4036 ovarian cancer patients according to the 2013 FIGO classification for ovarian, fallopian tube, and primary peritoneal cancer[J]. Int J Gynecol Cancer, 2016, 26(4): 680–687. doi: 10.1097/IGC.0000000000000675
    [16]
    Peres LC, Cushing-Haugen KL, Köbel M, et al. Invasive epithelial ovarian cancer survival by histotype and disease stage[J]. J Natl Cancer Inst, 2019, 111(1): 60–68. doi: 10.1093/jnci/djy071
    [17]
    Martinez A, Pomel C, Filleron T, et al. Prognostic relevance of celiac lymph node involvement in ovarian cancer[J]. Int J Gynecol Cancer, 2014, 24(1): 48–53. doi: 10.1097/IGC.0000000000000041
    [18]
    Ataseven B, Grimm C, Harter P, et al. Prognostic value of lymph node ratio in patients with advanced epithelial ovarian cancer[J]. Gynecol Oncol, 2014, 135(3): 435–440. doi: 10.1016/j.ygyno.2014.10.003
    [19]
    Wu S, Ding L, Xu H, et al. The long non-coding RNA IDH1-AS1 promotes prostate cancer progression by enhancing IDH1 enzyme activity[J]. Onco Targets Ther, 2020, 13: 7897–7906. doi: 10.2147/OTT.S251915
    [20]
    Chen L. Linking long noncoding RNA localization and function[J]. Trends Biochem Sci, 2016, 41(9): 761–772. doi: 10.1016/j.tibs.2016.07.003
    [21]
    Fernandes JCR, Acuña SM, Aoki JI, et al. Long non-coding RNAs in the regulation of gene expression: physiology and disease[J]. Non-Coding RNA, 2019, 5(1): 17. doi: 10.3390/ncrna5010017
    [22]
    Fan Y, Wang L, Han X, et al. LncRNA ASB16-AS1 accelerates cellular process and chemoresistance of ovarian cancer cells by regulating GOLM1 expression via targeting miR-3918[J]. Biochem Biophys Res Commun, 2023, 675: 1–9. doi: 10.1016/j.bbrc.2023.06.068
    [23]
    Su M, Huang P, Li Q. Long noncoding RNA SNHG6 promotes the malignant phenotypes of ovarian cancer cells via miR-543/YAP1 pathway[J]. Heliyon, 2023, 9(5): e16291. doi: 10.1016/j.heliyon.2023.e16291
    [24]
    Li Y, Zhu X, Zhang C, et al. Long noncoding RNA FTX promotes epithelial-mesenchymal transition of epithelial ovarian cancer through modulating miR-7515/TPD52 and activating Met/Akt/mTOR[J]. Histol Histopathol, 2023, 9: 18620. doi: 10.14670/HH-18-620
    [25]
    Flor I, Bullerdiek J. The dark side of a success story: microRNAs of the C19MC cluster in human tumours[J]. J Pathol, 2012, 227(3): 270–274. doi: 10.1002/path.4014
    [26]
    Dyrskjøt L, Ostenfeld MS, Bramsen JB, et al. Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro[J]. Cancer Res, 2009, 69(11): 4851–4860. doi: 10.1158/0008-5472.CAN-08-4043
    [27]
    Zhao J, Yang J, Lin J, et al. Identification of miRNAs associated with tumorigenesis of retinoblastoma by miRNA microarray analysis[J]. Childs Nerv Syst, 2009, 25(1): 13–20. doi: 10.1007/s00381-008-0701-x
    [28]
    Kinouchi M, Uchida D, Kuribayashi N, et al. Involvement of miR-518c-5p to growth and metastasis in oral cancer[J]. PLoS One, 2014, 9(12): e115936. doi: 10.1371/journal.pone.0115936
    [29]
    He J, Han Z, Luo J, et al. Hsa_Circ_0007843 acts as a miR-518c-5p sponge to regulate the migration and invasion of colon cancer SW480 cells[J]. Front Genet, 2020, 11: 9. doi: 10.3389/fgene.2020.00009
    [30]
    Fossat N, Radziewic T, Jones V, et al. Conditional restoration and inactivation of Rbm47 reveal its tissue-context requirement for viability and growth[J]. Genesis, 2016, 54(3): 115–122. doi: 10.1002/dvg.22920
    [31]
    Radine C, Peters D, Reese A, et al. The RNA-binding protein RBM47 is a novel regulator of cell fate decisions by transcriptionally controlling the p53-p21-axis[J]. Cell Death Differ, 2020, 27(4): 1274–1285. doi: 10.1038/s41418-019-0414-6
    [32]
    Sakurai T, Isogaya K, Sakai S, et al. RNA-binding motif protein 47 inhibits Nrf2 activity to suppress tumor growth in lung adenocarcinoma[J]. Oncogene, 2016, 35(38): 5000–5009. doi: 10.1038/onc.2016.35
    [33]
    Guo T, You K, Chen X, et al. RBM47 inhibits hepatocellular carcinoma progression by targeting UPF1 as a DNA/RNA regulator[J]. Cell Death Discov, 2022, 8(1): 320. doi: 10.1038/s41420-022-01112-3
    [34]
    Qin Y, Sun W, Wang Z, et al. RBM47/SNHG5/FOXO3 axis activates autophagy and inhibits cell proliferation in papillary thyroid carcinoma[J]. Cell Death Dis, 2022, 13(3): 270. doi: 10.1038/s41419-022-04728-6
    [35]
    Shen D, Jiang Y, Li J, et al. The RNA-binding protein RBM47 inhibits non-small cell lung carcinoma metastasis through modulation of AXIN1 mRNA stability and Wnt/β-catentin signaling[J]. Surg Oncol, 2020, 34: 31–39. doi: 10.1016/j.suronc.2020.02.011
  • Related Articles

    [1]Fei Qin, Hao Yu, Changrong Xu, Huihui Chen, Jianling Bai. Safety of axitinib and sorafenib monotherapy for patients with renal cell carcinoma: a meta-analysis[J]. The Journal of Biomedical Research, 2018, 32(1): 30-38. DOI: 10.7555/JBR.32.20170080
    [2]Xu Hu, Linfei Jiang, Chenhui Tang, Yuehong Ju, Li Jiu, Yongyue Wei, Li Guo, Yang Zhao. Association of three single nucleotide polymorphisms of ESR1 with breast cancer susceptibility: a meta-analysis[J]. The Journal of Biomedical Research, 2017, 31(3): 213-225. DOI: 10.7555/JBR.31.20160087
    [3]Wei Qian, Kuanfeng Xu, Wenting Jia, Ling Lan, Xuqin Zheng, Xueyang Yang, Dai Cui. Association between TSHR gene polymorphism and the risk of Graves' disease: a meta-analysis[J]. The Journal of Biomedical Research, 2016, 30(6): 466-475. DOI: 10.7555/JBR.30.20140144
    [4]Peng Zou, Lin Zhao, Haitao Xu, Ping Chen, Aihua Gu, Ning Liu, Peng Zhao, Ailin Lu. Hsa-mir-499 rs3746444 polymorphism and cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2012, 26(4): 253-259. DOI: 10.7555/JBR.26.20110122
    [5]Zhiqiang Yin, Jiali Xu, Dan Luo. Efficacy and tolerance of tacrolimus and pimecrolimus for atopic dermatitis: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(6): 385-391. DOI: 10.1016/S1674-8301(11)60051-1
    [6]Liang Zong, Ping Chen, Yinbing Chen, Guohao Shi. Pouch Roux-en-Y vs No Pouch Roux-en-Y following total gastrectomy: a meta-analysis based on 12 studies[J]. The Journal of Biomedical Research, 2011, 25(2): 90-99. DOI: 10.1016/S1674-8301(11)60011-0
    [7]Lifeng Zhang, Ning Shao, Qianqian Yu, Lixin Hua, Yuanyuan Mi, Ninghan Feng. Association between p53 Pro72Arg polymorphism and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(1): 25-32. DOI: 10.1016/S1674-8301(11)60003-1
    [8]Donghua Li, Jie Wu. Association of the MTHFR C677T polymorphism and bone mineral density in postmenopausal women: a meta-analysis[J]. The Journal of Biomedical Research, 2010, 24(6): 417-423. DOI: 10.1016/S1674-8301(10)60056-5
    [9]Yuanyuan Mi, Qianqian Yu, Zhichao Min, Bin Xu, Lifeng Zhang, Wei Zhang, Ninghan Feng, Lixin Hua. Arg462Gln and Asp541Glu polymorphisms in ribonuclease L and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2010, 24(5): 365-373. DOI: 10.1016/S1674-8301(10)60049-8
    [10]Bingbing Wei, Yunyun Zhang, Bo Xi, Junkai Chang, Jinming Bai, Jiantang Su. CYP17 T27C polymorphism and prostate cancer risk:a meta-analysis based on 31 studies[J]. The Journal of Biomedical Research, 2010, 24(3): 233-241.
  • Other Related Supplements

  • Cited by

    Periodical cited type(25)

    1. Song P, Liu T, Zhang Y, et al. Traditional Chinese medicine in the treatment of breast Cancer. Mol Cancer, 2025, 24(1): 209. DOI:10.1186/s12943-025-02416-5
    2. Sumorek-Wiadro J, Kapral-Piotrowska J, Zając A, et al. Proapoptotic and antimigration properties of osthole in combination with LY294002 against human glioma cells. Naunyn Schmiedebergs Arch Pharmacol, 2025, 398(3): 3147-3161. DOI:10.1007/s00210-024-03424-w
    3. Kordulewska NK, Król-Grzymała A. The Effect of Osthole on Transient Receptor Potential Channels: A Possible Alternative Therapy for Atopic Dermatitis. J Inflamm Res, 2024, 17: 881-898. DOI:10.2147/JIR.S425978
    4. Kordulewska NK, Król-Grzymała A. The Effect of Osthole on Transient Receptor Potential Channels: A Possible Alternative Therapy for Atopic Dermatitis. J Inflamm Res, 2024, 17: 881-898. DOI:10.2147/JIR.S425978
    5. Naeem A, Hu P, Yang M, et al. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules, 2022, 27(23): 8367. DOI:10.3390/molecules27238367
    6. Naeem A, Hu P, Yang M, et al. Natural Products as Anticancer Agents: Current Status and Future Perspectives. Molecules, 2022, 27(23): 8367. DOI:10.3390/molecules27238367
    7. Kordulewska NK, Topa J, Rozmus D, et al. Effects of Osthole on Inflammatory Gene Expression and Cytokine Secretion in Histamine-Induced Inflammation in the Caco-2 Cell Line. Int J Mol Sci, 2021, 22(24): 13634. DOI:10.3390/ijms222413634
    8. Mei J, Wang T, Zhao S, et al. Osthole Inhibits Breast Cancer Progression through Upregulating Tumor Suppressor GNG7. J Oncol, 2021, 2021: 6610511. DOI:10.1155/2021/6610511
    9. Mei J, Wang T, Zhao S, et al. Osthole Inhibits Breast Cancer Progression through Upregulating Tumor Suppressor GNG7. J Oncol, 2021, 2021: 6610511. DOI:10.1155/2021/6610511
    10. Abosharaf HA, Diab T, Atlam FM, et al. Osthole extracted from a citrus fruit that affects apoptosis on A549 cell line by histone deacetylasese inhibition (HDACs). Biotechnol Rep (Amst), 2020, 28: e00531. DOI:10.1016/j.btre.2020.e00531
    11. Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, et al. Drug Repurposing for Triple-Negative Breast Cancer. J Pers Med, 2020, 10(4): 200. DOI:10.3390/jpm10040200
    12. Kordulewska NK, Topa J, Tańska M, et al. Modulatory Effects of Osthole on Lipopolysaccharides-Induced Inflammation in Caco-2 Cell Monolayer and Co-Cultures with THP-1 and THP-1-Derived Macrophages. Nutrients, 2020, 13(1): 123. DOI:10.3390/nu13010123
    13. Ye J, Sun D, Yu Y, et al. Osthole resensitizes CD133+ hepatocellular carcinoma cells to cisplatin treatment via PTEN/AKT pathway. Aging (Albany NY), 2020, 12(14): 14406-14417. DOI:10.18632/aging.103484
    14. Wang B, Shen C, Li Y, et al. Oridonin overcomes the gemcitabine resistant PANC-1/Gem cells by regulating GST pi and LRP/1 ERK/JNK signalling. Onco Targets Ther, 2019, 12: 5751-5765. DOI:10.2147/OTT.S208924
    15. Wang B, Shen C, Li Y, et al. Oridonin overcomes the gemcitabine resistant PANC-1/Gem cells by regulating GST pi and LRP/1 ERK/JNK signalling. Onco Targets Ther, 2019, 12: 5751-5765. DOI:10.2147/OTT.S208924
    16. Yang Y, Ren F, Tian Z, et al. Osthole Synergizes With HER2 Inhibitor, Trastuzumab in HER2-Overexpressed N87 Gastric Cancer by Inducing Apoptosis and Inhibition of AKT-MAPK Pathway. Front Pharmacol, 2018, 9: 1392. DOI:10.3389/fphar.2018.01392
    17. Liu Y, Dong X, Wang W, et al. Molecular Mechanisms of Apoptosis in HepaRG Cell Line Induced by Polyphyllin VI via the Fas Death Pathway and Mitochondrial-Dependent Pathway. Toxins (Basel), 2018, 10(5): 201. DOI:10.3390/toxins10050201
    18. Zhang S, Huang Q, Cai X, et al. Osthole Ameliorates Renal Fibrosis in Mice by Suppressing Fibroblast Activation and Epithelial-Mesenchymal Transition. Front Physiol, 2018, 9: 1650. DOI:10.3389/fphys.2018.01650
    19. Liu Y, Dong X, Wang W, et al. Molecular Mechanisms of Apoptosis in HepaRG Cell Line Induced by Polyphyllin VI via the Fas Death Pathway and Mitochondrial-Dependent Pathway. Toxins (Basel), 2018, 10(5): 201. DOI:10.3390/toxins10050201
    20. Zhu X, Song X, Xie K, et al. Osthole induces apoptosis and suppresses proliferation via the PI3K/Akt pathway in intrahepatic cholangiocarcinoma. Int J Mol Med, 2017, 40(4): 1143-1151. DOI:10.3892/ijmm.2017.3113
    21. Feng H, Lu JJ, Wang Y, et al. Osthole inhibited TGF β-induced epithelial-mesenchymal transition (EMT) by suppressing NF-κB mediated Snail activation in lung cancer A549 cells. Cell Adh Migr, 2017, 11(5-6): 464-475. DOI:10.1080/19336918.2016.1259058
    22. Li H, Wang Q, Dong L, et al. Morusin suppresses breast cancer cell growth in vitro and in vivo through C/EBPβ and PPARγ mediated lipoapoptosis. J Exp Clin Cancer Res, 2015, 34: 137. DOI:10.1186/s13046-015-0252-4
    23. Yang M, Zhu H, Hu T, et al. Association of CCND1 gene polymorphism with cervical cancer susceptibility in Caucasian population: a meta-analysis. Int J Clin Exp Med, 2015, 8(8): 12983-8.
    24. Ying J, Xu H, Wu D, et al. Emodin induces apoptosis of human osteosarcoma cells via mitochondria- and endoplasmic reticulum stress-related pathways. Int J Clin Exp Pathol, 2015, 8(10): 12837-44.
    25. Yang M, Zhu H, Hu T, et al. Association of CCND1 gene polymorphism with cervical cancer susceptibility in Caucasian population: a meta-analysis. Int J Clin Exp Med, 2015, 8(8): 12983-8.

    Other cited types(0)

Catalog

    Corresponding author: Xuemei Jia, xmjia@njmu.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Figures(6)  /  Tables(4)

    Article Metrics

    Article views (700) PDF downloads (381) Cited by(25)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return