4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Zhu Ping, Shan Xia, Liu Jinhui, Zhou Xin, Zhang Huo, Wang Tongshan, Wu Jianqing, Zhu Wei, Liu Ping. miR-3622b-5p regulates cisplatin resistance of human gastric cancer cell line by targeting BIRC5[J]. The Journal of Biomedical Research, 2019, 33(6): 382-390. DOI: 10.7555/JBR.33.20180078
Citation: Zhu Ping, Shan Xia, Liu Jinhui, Zhou Xin, Zhang Huo, Wang Tongshan, Wu Jianqing, Zhu Wei, Liu Ping. miR-3622b-5p regulates cisplatin resistance of human gastric cancer cell line by targeting BIRC5[J]. The Journal of Biomedical Research, 2019, 33(6): 382-390. DOI: 10.7555/JBR.33.20180078

miR-3622b-5p regulates cisplatin resistance of human gastric cancer cell line by targeting BIRC5

More Information
  • Corresponding author:

    Jianqing Wu, Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China. Tel: +86-25-68136930, E-mail: jwuny@njmu.edu.cn

    Wei Zhu and Ping Liu, Department of Oncology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029,China. Tel: +86-25-68136930, E-mails: zhuwei@njmu.edu.cnand liupinga28@163.com

  • Received Date: August 16, 2018
  • Revised Date: May 13, 2019
  • Accepted Date: June 03, 2019
  • Available Online: August 14, 2019
  • Many evidences showed that drug resistance of gastric cancer cells could be regulated by the abnormal expression of microRNAs (miRNAs), a post-transcriptional regulator of gene expression. Thus, we investigated the role of miR-3622b-5p in the development of cisplatin (DDP) resistance in human gastric cancer cell lines. A set of biochemical assays were used to elucidate the mechanism by which miR-3622b-5p regulates drug resistance in cancer cells. The expression of miR-3622b-5p was measured by quantitative real-time PCR and showed that miR-3622b-5p was significantly downregulated in the plasma of patients with acquired drug resistance to platinum-based chemotherapy for gastric cancer. miR-3622b-5p was also found significantly downregulated in DDP-resistant gastric cancer cell line SGC7901/DDP, compared with the parental SGC7901 cells. An in vitro drug sensitivity assay showed that overexpression of miR-3622b-5p sensitized SGC7901/DDP cells to DDP. The luciferase activity of reporters constructed by BIRC5 3′-untranslated regions in SGC7901/DDP cells suggested that BIRC5 was target gene of miR-3622b-5p. Ecpotic miR-3622b-5p expression in SGC7901/DDP cells significantly repressed the expression of the BIRC5 and sensitized the cells to DDP-induced apoptosis. By contrast, treatment with miR-3622b-5p inhibitor increased the protein expression of BIRC5 and led to a lower proportion of apoptotic cells in the SGC7901 cells. In conclusion, our findings suggest that miR-3622b-5p regulates DDP resistance of human gastric cancer cells at least in part by repressing the expression of BIRC5. Altering miR-3622b-5p expression may be a potential therapeutic strategy for the treatment of chemoresistance in gastric cancer in the future.
  • [1]
    Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359–E386. doi: 10.1002/ijc.29210
    [2]
    Cunningham D, Allum WH, Stenning SP, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer[J]. N Engl J Med, 2006, 355(1): 11–20. doi: 10.1056/NEJMoa055531
    [3]
    Hwang JH. Understanding gastric cancer risk factors: we need to close the gap[J]. Gut Liver, 2018, 12(1): 1–2. doi: 10.5009/gnl17503
    [4]
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843–854. doi: 10.1016/0092-8674(93)90529-Y
    [5]
    Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281–297. doi: 10.1016/S0092-8674(04)00045-5
    [6]
    Zhao HN, Yu XT, Ding YF, et al. MiR-770-5p inhibits cisplatin chemoresistance in human ovarian cancer by targeting ERCC2[J]. Oncotarget, 2016, 7(33): 53254–53268.
    [7]
    Wang L, Chen Y, Jiang Y, et al. MiR-199a-3p affects the multi-chemoresistance of osteosarcoma through targeting AK4[J]. BMC Cancer, 2018, 18(1): 631. doi: 10.1186/s12885-018-4460-0
    [8]
    Huang LM, Hu CQ, Cao H, et al. MicroRNA-29c increases the chemosensitivity of pancreatic cancer cells by inhibiting USP22 mediated autophagy[J]. Cell Physiol Biochem, 2018, 47(2): 747–758. doi: 10.1159/000490027
    [9]
    Wang M, Cai WR, Meng R, et al. miR-485-5p suppresses breast cancer progression and chemosensitivity by targeting survivin[J]. Biochem Biophys Res Commun, 2018, 501(1): 48–54. doi: 10.1016/j.bbrc.2018.04.129
    [10]
    Lu MJ, Wang TS, He MF, et al. Tumor suppressor role of miR-3622b-5p in ERBB2-positive cancer[J]. Oncotarget, 2017, 8(14): 23008–23019.
    [11]
    Qiu TZ, Zhou X, Wang J, et al. MiR-145, miR-133a and miR-133b inhibit proliferation, migration, invasion and cell cycle progression via targeting transcription factor Sp1 in gastric cancer[J]. FEBS Lett, 2014, 588(7): 1168–1177. doi: 10.1016/j.febslet.2014.02.054
    [12]
    Zhao DS, Chen Y, Jiang H, et al. Serum miR-210 and miR-30a expressions tend to revert to fetal levels in Chinese adult patients with chronic heart failure[J]. Cardiovasc Pathol, 2013, 22(6): 444–450. doi: 10.1016/j.carpath.2013.04.001
    [13]
    Zhou X, Zhu W, Li H, et al. Diagnostic value of a plasma microRNA signature in gastric cancer: a microRNA expression analysis[J]. Sci Rep, 2015, 5: 11251. doi: 10.1038/srep11251
    [14]
    Zhu W, Shan X, Wang TS, et al. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines[J]. Int J Cancer, 2010, 127(11): 2520–2529. doi: 10.1002/ijc.25260
    [15]
    Zhu W, Xu HG, Zhu DX, et al. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP[J]. Cancer Chemother Pharmacol, 2012, 69(3): 723–731. doi: 10.1007/s00280-011-1752-3
    [16]
    Xia L, Zhang DX, Du R, et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells[J]. Int J Cancer, 2008, 123(2): 372–379. doi: 10.1002/ijc.23501
    [17]
    Zhu DX, Zhu W, Fang C, et al. miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes[J]. Carcinogenesis, 2012, 33(7): 1294–1301. doi: 10.1093/carcin/bgs179
    [18]
    Holohan C, van Schaeybroeck S, Longley DB, et al. Cancer drug resistance: an evolving paradigm[J]. Nat Rev Cancer, 2013, 13(10): 714–726. doi: 10.1038/nrc3599
    [19]
    Hayes JD, Wolf CR. Molecular mechanisms of drug resistance[J]. Biochem J, 1990, 272(2): 281–295. doi: 10.1042/bj2720281
    [20]
    Sharma SV, Lee DY, Li BH, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations[J]. Cell, 2010, 141(1): 69–80. doi: 10.1016/j.cell.2010.02.027
    [21]
    Fojo T. Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs[J]. Drug Resist Updat, 2007, 10(1–2): 59–67.
    [22]
    Helleday T, Petermann E, Lundin C, et al. DNA repair pathways as targets for cancer therapy[J]. Nat Rev Cancer, 2008, 8(3): 193–204. doi: 10.1038/nrc2342
    [23]
    Selvakumaran M, Pisarcik DA, Bao RD, et al. Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines[J]. Cancer Res, 2003, 63(6): 1311–1316.
    [24]
    Liu HN, Peng Q, Yang G, et al. miR-181b inhibits chemoresistance in cisplatin-resistant H446 small cell lung cancer cells by targeting Bcl-2[J]. Arch Med Sci, 2018, 14(4): 745–751.
    [25]
    Gao JL, Wu N, Liu XH, et al. MicroRNA-142-3p inhibits cell proliferation and chemoresistance in ovarian cancer via targeting sirtuin 1[J]. Exp Ther Med, 2018, 15(6): 5205–5214.
    [26]
    Feng Q, He P, Wang Y. MicroRNA-223-3p regulates cell chemo-sensitivity by targeting FOXO3 in prostatic cancer[J]. Gene, 2018, 658: 152–158. doi: 10.1016/j.gene.2018.03.013
    [27]
    Chen X, Duan N, Zhang CG, et al. Survivin and tumorigenesis: molecular mechanisms and therapeutic strategies[J]. J Cancer, 2016, 7(3): 314–323. doi: 10.7150/jca.13332
    [28]
    Xiong CH, Liu HP, Chen ZX, et al. Prognostic role of survivin in renal cell carcinoma: a system review and meta-analysis[J]. Eur J Intern Med, 2016, 33: 102–107. doi: 10.1016/j.ejim.2016.06.009
    [29]
    Peery RC, Liu JY, Zhang JT. Targeting survivin for therapeutic discovery: past, present, and future promises[J]. Drug Discov Today, 2017, 22(10): 1466–1477. doi: 10.1016/j.drudis.2017.05.009
    [30]
    Nabilsi NH, Broaddus RR, Loose DS. DNA methylation inhibits p53-mediated survivin repression[J]. Oncogene, 2009, 28(19): 2046–2050. doi: 10.1038/onc.2009.62
    [31]
    Huang JC, Lyu H, Wang JX, et al. MicroRNA regulation and therapeutic targeting of survivin in cancer[J]. Am J Cancer Res, 2015, 5(1): 20–31.
  • Related Articles

    [1]Pavan Kumar Dhanyamraju, Trupti N. Patel. Melanoma therapeutics: a literature review[J]. The Journal of Biomedical Research, 2022, 36(2): 77-97. DOI: 10.7555/JBR.36.20210163
    [2]Yoon Su Young, Kim Si-Wook, Kim Dohun, Hong Jong-Myeon. Contained local compression on peri-ascending aortic area for postoperative bleeding control: a case report[J]. The Journal of Biomedical Research, 2021, 35(1): 72-74. DOI: 10.7555/JBR.34.20200085
    [3]Yang Lukun, Tautz Timothy, Zhang Shulin, Fomina Alla, Liu Hong. The current status of malignant hyperthermia[J]. The Journal of Biomedical Research, 2020, 34(2): 75-85. DOI: 10.7555/JBR.33.20180089
    [4]Didi Zhu, Jiamin Yuan, Rui Zhu, Yao Wang, Zhiyong Qian, Jiangang Zou. Pathway-based analysis of genome-wide association study of circadian phenotypes[J]. The Journal of Biomedical Research, 2018, 32(5): 361-370. DOI: 10.7555/JBR.32.20170102
    [5]Sang-Yong Eom, Dong-Hyuk Yim, Jung-Hyun Kim, Joo-Byung Chae, Yong-Dae Kim, Heon Kim. A pilot exome-wide association study of age-related cataract in Koreans[J]. The Journal of Biomedical Research, 2016, 30(3): 186-190. DOI: 10.7555/JBR.30.2016K0002
    [6]Shaoli Wang, Jingyun Zhang, Tao Sheng, Wei Lu, Dengshun Miao. Hippocampal ischemia causes deficits in local field potential and synaptic plasticity[J]. The Journal of Biomedical Research, 2015, 29(5): 370-379. DOI: 10.7555/JBR.29.20150010
    [7]Ping Zeng, Yang Zhao, Cheng Qian, Liwei Zhang, Ruyang Zhang, Jianwei Gou, Jin Liu, Liya Liu, Feng Chen. Statistical analysis for genome-wide association study[J]. The Journal of Biomedical Research, 2015, 29(4): 285-297. DOI: 10.7555/JBR.29.20140007
    [8]Chih-Kun Huang, Amit Garg, Hsin-Chih Kuao, Po-Chih Chang, Ming-Che Hsin. Bariatric surgery in old age: a comparative study of laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy in an Asia centre of excellence[J]. The Journal of Biomedical Research, 2015, 29(2): 118-124. DOI: 10.7555/JBR.29.20140108
    [9]Yaomin Zhu, Guixia Jing, Wei Yuan. Preoperative administration of intramuscular dezocine reduces postoperative pain for laparoscopic cholecystectomy[J]. The Journal of Biomedical Research, 2011, 25(5): 356-361. DOI: 10.1016/S1674-8301(11)60047-X
    [10]Yangyang Zhang, Yanhu Wu, Biao Yuan, Xiang Liu, Sheng Zhao, Zhi Li, Yu Xia. Coronary artery bypass grafting with concomitant resection for carcinoma of lung[J]. The Journal of Biomedical Research, 2010, 24(1): 77-80.
  • Other Related Supplements

  • Cited by

    Periodical cited type(6)

    1. Paolino G, Podo Brunetti A, De Rosa C, et al. Anorectal melanoma: systematic review of the current literature of an aggressive type of melanoma. Melanoma Res, 2024, 34(6): 487-496. DOI:10.1097/CMR.0000000000001003
    2. Illa SK, Mumtaz S, Nath S, et al. Characterization of runs of Homozygosity revealed genomic inbreeding and patterns of selection in indigenous sahiwal cattle. J Appl Genet, 2024, 65(1): 167-180. DOI:10.1007/s13353-023-00816-1
    3. Ugonabo O, Mohamed M, Ezeh E, et al. A Rare Metastatic Primary Rectal Melanoma in a Geriatric Male. J Med Cases, 2022, 13(8): 369-373. DOI:10.14740/jmc3929
    4. Si M, Cao X. Considering Computational Mathematics IGHG3 as Malignant Melanoma Is Associated with Immune Infiltration of Malignant Melanoma. Biomed Res Int, 2022, 2022: 4168937. DOI:10.1155/2022/4168937
    5. Nonaka K, Kudou K, Sasaki S, et al. Primary anorectal malignant melanoma with laparoscopic abdominoperineal resection: a case study and review of the relevant literature. Int Cancer Conf J, 2020, 9(3): 116-122. DOI:10.1007/s13691-020-00401-x
    6. Heo JR, Hwang KA, Kim SU, et al. A Potential Therapy Using Engineered Stem Cells Prevented Malignant Melanoma in Cellular and Xenograft Mouse Models. Cancer Res Treat, 2019, 51(2): 797-811. DOI:10.4143/crt.2018.364

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3483) PDF downloads (72) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return