Citation: | Zhu Ping, Shan Xia, Liu Jinhui, Zhou Xin, Zhang Huo, Wang Tongshan, Wu Jianqing, Zhu Wei, Liu Ping. miR-3622b-5p regulates cisplatin resistance of human gastric cancer cell line by targeting BIRC5[J]. The Journal of Biomedical Research, 2019, 33(6): 382-390. DOI: 10.7555/JBR.33.20180078 |
[1] |
Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012[J]. Int J Cancer, 2015, 136(5): E359–E386. doi: 10.1002/ijc.29210
|
[2] |
Cunningham D, Allum WH, Stenning SP, et al. Perioperative chemotherapy versus surgery alone for resectable gastroesophageal cancer[J]. N Engl J Med, 2006, 355(1): 11–20. doi: 10.1056/NEJMoa055531
|
[3] |
Hwang JH. Understanding gastric cancer risk factors: we need to close the gap[J]. Gut Liver, 2018, 12(1): 1–2. doi: 10.5009/gnl17503
|
[4] |
Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14[J]. Cell, 1993, 75(5): 843–854. doi: 10.1016/0092-8674(93)90529-Y
|
[5] |
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281–297. doi: 10.1016/S0092-8674(04)00045-5
|
[6] |
Zhao HN, Yu XT, Ding YF, et al. MiR-770-5p inhibits cisplatin chemoresistance in human ovarian cancer by targeting ERCC2[J]. Oncotarget, 2016, 7(33): 53254–53268.
|
[7] |
Wang L, Chen Y, Jiang Y, et al. MiR-199a-3p affects the multi-chemoresistance of osteosarcoma through targeting AK4[J]. BMC Cancer, 2018, 18(1): 631. doi: 10.1186/s12885-018-4460-0
|
[8] |
Huang LM, Hu CQ, Cao H, et al. MicroRNA-29c increases the chemosensitivity of pancreatic cancer cells by inhibiting USP22 mediated autophagy[J]. Cell Physiol Biochem, 2018, 47(2): 747–758. doi: 10.1159/000490027
|
[9] |
Wang M, Cai WR, Meng R, et al. miR-485-5p suppresses breast cancer progression and chemosensitivity by targeting survivin[J]. Biochem Biophys Res Commun, 2018, 501(1): 48–54. doi: 10.1016/j.bbrc.2018.04.129
|
[10] |
Lu MJ, Wang TS, He MF, et al. Tumor suppressor role of miR-3622b-5p in ERBB2-positive cancer[J]. Oncotarget, 2017, 8(14): 23008–23019.
|
[11] |
Qiu TZ, Zhou X, Wang J, et al. MiR-145, miR-133a and miR-133b inhibit proliferation, migration, invasion and cell cycle progression via targeting transcription factor Sp1 in gastric cancer[J]. FEBS Lett, 2014, 588(7): 1168–1177. doi: 10.1016/j.febslet.2014.02.054
|
[12] |
Zhao DS, Chen Y, Jiang H, et al. Serum miR-210 and miR-30a expressions tend to revert to fetal levels in Chinese adult patients with chronic heart failure[J]. Cardiovasc Pathol, 2013, 22(6): 444–450. doi: 10.1016/j.carpath.2013.04.001
|
[13] |
Zhou X, Zhu W, Li H, et al. Diagnostic value of a plasma microRNA signature in gastric cancer: a microRNA expression analysis[J]. Sci Rep, 2015, 5: 11251. doi: 10.1038/srep11251
|
[14] |
Zhu W, Shan X, Wang TS, et al. miR-181b modulates multidrug resistance by targeting BCL2 in human cancer cell lines[J]. Int J Cancer, 2010, 127(11): 2520–2529. doi: 10.1002/ijc.25260
|
[15] |
Zhu W, Xu HG, Zhu DX, et al. miR-200bc/429 cluster modulates multidrug resistance of human cancer cell lines by targeting BCL2 and XIAP[J]. Cancer Chemother Pharmacol, 2012, 69(3): 723–731. doi: 10.1007/s00280-011-1752-3
|
[16] |
Xia L, Zhang DX, Du R, et al. miR-15b and miR-16 modulate multidrug resistance by targeting BCL2 in human gastric cancer cells[J]. Int J Cancer, 2008, 123(2): 372–379. doi: 10.1002/ijc.23501
|
[17] |
Zhu DX, Zhu W, Fang C, et al. miR-181a/b significantly enhances drug sensitivity in chronic lymphocytic leukemia cells via targeting multiple anti-apoptosis genes[J]. Carcinogenesis, 2012, 33(7): 1294–1301. doi: 10.1093/carcin/bgs179
|
[18] |
Holohan C, van Schaeybroeck S, Longley DB, et al. Cancer drug resistance: an evolving paradigm[J]. Nat Rev Cancer, 2013, 13(10): 714–726. doi: 10.1038/nrc3599
|
[19] |
Hayes JD, Wolf CR. Molecular mechanisms of drug resistance[J]. Biochem J, 1990, 272(2): 281–295. doi: 10.1042/bj2720281
|
[20] |
Sharma SV, Lee DY, Li BH, et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations[J]. Cell, 2010, 141(1): 69–80. doi: 10.1016/j.cell.2010.02.027
|
[21] |
Fojo T. Multiple paths to a drug resistance phenotype: mutations, translocations, deletions and amplification of coding genes or promoter regions, epigenetic changes and microRNAs[J]. Drug Resist Updat, 2007, 10(1–2): 59–67.
|
[22] |
Helleday T, Petermann E, Lundin C, et al. DNA repair pathways as targets for cancer therapy[J]. Nat Rev Cancer, 2008, 8(3): 193–204. doi: 10.1038/nrc2342
|
[23] |
Selvakumaran M, Pisarcik DA, Bao RD, et al. Enhanced cisplatin cytotoxicity by disturbing the nucleotide excision repair pathway in ovarian cancer cell lines[J]. Cancer Res, 2003, 63(6): 1311–1316.
|
[24] |
Liu HN, Peng Q, Yang G, et al. miR-181b inhibits chemoresistance in cisplatin-resistant H446 small cell lung cancer cells by targeting Bcl-2[J]. Arch Med Sci, 2018, 14(4): 745–751.
|
[25] |
Gao JL, Wu N, Liu XH, et al. MicroRNA-142-3p inhibits cell proliferation and chemoresistance in ovarian cancer via targeting sirtuin 1[J]. Exp Ther Med, 2018, 15(6): 5205–5214.
|
[26] |
Feng Q, He P, Wang Y. MicroRNA-223-3p regulates cell chemo-sensitivity by targeting FOXO3 in prostatic cancer[J]. Gene, 2018, 658: 152–158. doi: 10.1016/j.gene.2018.03.013
|
[27] |
Chen X, Duan N, Zhang CG, et al. Survivin and tumorigenesis: molecular mechanisms and therapeutic strategies[J]. J Cancer, 2016, 7(3): 314–323. doi: 10.7150/jca.13332
|
[28] |
Xiong CH, Liu HP, Chen ZX, et al. Prognostic role of survivin in renal cell carcinoma: a system review and meta-analysis[J]. Eur J Intern Med, 2016, 33: 102–107. doi: 10.1016/j.ejim.2016.06.009
|
[29] |
Peery RC, Liu JY, Zhang JT. Targeting survivin for therapeutic discovery: past, present, and future promises[J]. Drug Discov Today, 2017, 22(10): 1466–1477. doi: 10.1016/j.drudis.2017.05.009
|
[30] |
Nabilsi NH, Broaddus RR, Loose DS. DNA methylation inhibits p53-mediated survivin repression[J]. Oncogene, 2009, 28(19): 2046–2050. doi: 10.1038/onc.2009.62
|
[31] |
Huang JC, Lyu H, Wang JX, et al. MicroRNA regulation and therapeutic targeting of survivin in cancer[J]. Am J Cancer Res, 2015, 5(1): 20–31.
|
[1] | Pavan Kumar Dhanyamraju, Trupti N. Patel. Melanoma therapeutics: a literature review[J]. The Journal of Biomedical Research, 2022, 36(2): 77-97. DOI: 10.7555/JBR.36.20210163 |
[2] | Yoon Su Young, Kim Si-Wook, Kim Dohun, Hong Jong-Myeon. Contained local compression on peri-ascending aortic area for postoperative bleeding control: a case report[J]. The Journal of Biomedical Research, 2021, 35(1): 72-74. DOI: 10.7555/JBR.34.20200085 |
[3] | Yang Lukun, Tautz Timothy, Zhang Shulin, Fomina Alla, Liu Hong. The current status of malignant hyperthermia[J]. The Journal of Biomedical Research, 2020, 34(2): 75-85. DOI: 10.7555/JBR.33.20180089 |
[4] | Didi Zhu, Jiamin Yuan, Rui Zhu, Yao Wang, Zhiyong Qian, Jiangang Zou. Pathway-based analysis of genome-wide association study of circadian phenotypes[J]. The Journal of Biomedical Research, 2018, 32(5): 361-370. DOI: 10.7555/JBR.32.20170102 |
[5] | Sang-Yong Eom, Dong-Hyuk Yim, Jung-Hyun Kim, Joo-Byung Chae, Yong-Dae Kim, Heon Kim. A pilot exome-wide association study of age-related cataract in Koreans[J]. The Journal of Biomedical Research, 2016, 30(3): 186-190. DOI: 10.7555/JBR.30.2016K0002 |
[6] | Shaoli Wang, Jingyun Zhang, Tao Sheng, Wei Lu, Dengshun Miao. Hippocampal ischemia causes deficits in local field potential and synaptic plasticity[J]. The Journal of Biomedical Research, 2015, 29(5): 370-379. DOI: 10.7555/JBR.29.20150010 |
[7] | Ping Zeng, Yang Zhao, Cheng Qian, Liwei Zhang, Ruyang Zhang, Jianwei Gou, Jin Liu, Liya Liu, Feng Chen. Statistical analysis for genome-wide association study[J]. The Journal of Biomedical Research, 2015, 29(4): 285-297. DOI: 10.7555/JBR.29.20140007 |
[8] | Chih-Kun Huang, Amit Garg, Hsin-Chih Kuao, Po-Chih Chang, Ming-Che Hsin. Bariatric surgery in old age: a comparative study of laparoscopic Roux-en-Y gastric bypass and sleeve gastrectomy in an Asia centre of excellence[J]. The Journal of Biomedical Research, 2015, 29(2): 118-124. DOI: 10.7555/JBR.29.20140108 |
[9] | Yaomin Zhu, Guixia Jing, Wei Yuan. Preoperative administration of intramuscular dezocine reduces postoperative pain for laparoscopic cholecystectomy[J]. The Journal of Biomedical Research, 2011, 25(5): 356-361. DOI: 10.1016/S1674-8301(11)60047-X |
[10] | Yangyang Zhang, Yanhu Wu, Biao Yuan, Xiang Liu, Sheng Zhao, Zhi Li, Yu Xia. Coronary artery bypass grafting with concomitant resection for carcinoma of lung[J]. The Journal of Biomedical Research, 2010, 24(1): 77-80. |
1. | Paolino G, Podo Brunetti A, De Rosa C, et al. Anorectal melanoma: systematic review of the current literature of an aggressive type of melanoma. Melanoma Res, 2024, 34(6): 487-496. DOI:10.1097/CMR.0000000000001003 |
2. | Illa SK, Mumtaz S, Nath S, et al. Characterization of runs of Homozygosity revealed genomic inbreeding and patterns of selection in indigenous sahiwal cattle. J Appl Genet, 2024, 65(1): 167-180. DOI:10.1007/s13353-023-00816-1 |
3. | Ugonabo O, Mohamed M, Ezeh E, et al. A Rare Metastatic Primary Rectal Melanoma in a Geriatric Male. J Med Cases, 2022, 13(8): 369-373. DOI:10.14740/jmc3929 |
4. | Si M, Cao X. Considering Computational Mathematics IGHG3 as Malignant Melanoma Is Associated with Immune Infiltration of Malignant Melanoma. Biomed Res Int, 2022, 2022: 4168937. DOI:10.1155/2022/4168937 |
5. | Nonaka K, Kudou K, Sasaki S, et al. Primary anorectal malignant melanoma with laparoscopic abdominoperineal resection: a case study and review of the relevant literature. Int Cancer Conf J, 2020, 9(3): 116-122. DOI:10.1007/s13691-020-00401-x |
6. | Heo JR, Hwang KA, Kim SU, et al. A Potential Therapy Using Engineered Stem Cells Prevented Malignant Melanoma in Cellular and Xenograft Mouse Models. Cancer Res Treat, 2019, 51(2): 797-811. DOI:10.4143/crt.2018.364 |