4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Lihong Chen, Lianxiang Li, Feng Chen, Dalin He. Immunoexpression and prognostic role of p53 in different subtypes of epithelial ovarian carcinoma[J]. The Journal of Biomedical Research, 2012, 26(4): 274-277. DOI: 10.7555/JBR.26.20110103
Citation: Lihong Chen, Lianxiang Li, Feng Chen, Dalin He. Immunoexpression and prognostic role of p53 in different subtypes of epithelial ovarian carcinoma[J]. The Journal of Biomedical Research, 2012, 26(4): 274-277. DOI: 10.7555/JBR.26.20110103

Immunoexpression and prognostic role of p53 in different subtypes of epithelial ovarian carcinoma

More Information
  • Received Date: September 10, 2011
  • We sought to investigate the significance of p53 expression for epithelial ovarian carcinoma. In this study, we used immunohistochemical method to investigate the expression patterns of p53 in different subtypes of epithelial ovarian carcinoma. We found that the expressions of p53 protein in epithelial ovarian cancer (pituita, serosity and intima) were 88.9%, 75% and 100%, respectively, while the recurrence rates among three cancer subtypes were significantly different (33.3%, 12.5% and 0%, respectively; P < 0.05). Compared with patients without lymph node metastasis, the expression of p53 in patients with lymph node metastasis was significantly strong (68.75% and 100%, respectively; P < 0.05). However, the recurrence rate in the patients with lymph node metastasis (40%) was higher than that without lymph node metastasis (6.25%, P < 0.05). The expressions of p53 protein in ovarian cancer between Ⅰ-Ⅱ (25%) stage and Ⅱ-Ⅳ stage (100%) were significantly different (P < 0.05), and the recur-rence rates between the two groups were significantly different (0% and 31.25%, respectively, P < 0.05). There-fore, p53 protein has an intimate relationship with the malignant degree and the prognosis of ovarian cancer.
  • Related Articles

    [1]Zhaoye Qian, Zhe Zhang, Lanqi Cen, Yaohua Ke, Jie Shao, Manman Tian, Baorui Liu. Mycobacterium smegmatis enhances shikonin-induced immunogenic cell death—an efficient in situ tumor vaccine strategy[J]. The Journal of Biomedical Research, 2024, 38(4): 369-381. DOI: 10.7555/JBR.38.20240049
    [2]Lulu Fan, Hao Wang, Shuai Ben, Yifei Cheng, Silu Chen, Zhutao Ding, Lingyan Zhao, Shuwei Li, Meilin Wang, Gong Cheng. Genetic variant in a BaP-activated super-enhancer increases prostate cancer risk by promoting AhR-mediated FAM227A expression[J]. The Journal of Biomedical Research, 2024, 38(2): 149-162. DOI: 10.7555/JBR.37.20230049
    [3]Cui Qi, Jiaqi Zhang, Yuanyuan Wang, Mingyan Lin, Jun Gao, Haiying Lu. Valproic acid enhances neurosphere formation in cultured rat embryonic cortical cells through TGFβ1 signaling[J]. The Journal of Biomedical Research, 2022, 36(2): 127-140. DOI: 10.7555/JBR.36.20210109
    [4]Xu Wenbin, Yan Han, Xu Lulu, Li Mingna, Gao Wentao, Jiang Kuirong, Wu Junli, Miao Yi. Correlation between radiologic features on contrast-enhanced CT and pathological tumor grades in pancreatic neuroendocrine neoplasms[J]. The Journal of Biomedical Research, 2021, 35(3): 179-188. DOI: 10.7555/JBR.34.20200039
    [5]Yang Lukun, Tautz Timothy, Zhang Shulin, Fomina Alla, Liu Hong. The current status of malignant hyperthermia[J]. The Journal of Biomedical Research, 2020, 34(2): 75-85. DOI: 10.7555/JBR.33.20180089
    [6]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [7]Cuiying Li, Haiyan Gong, Lijun Ling, Liwen Du, Tong Su, Shui Wang, Jie Wang. Diagnostic performance of contrast-enhanced ultrasound and enhanced magnetic resonance for breast nodules[J]. The Journal of Biomedical Research, 2018, 32(3): 198-207. DOI: 10.7555/JBR.32.20180015
    [8]Nolan B. Ayers, Chenming Sun, Shi-You Chen. Transforming growth factor-β signaling in systemic sclerosis[J]. The Journal of Biomedical Research, 2018, 32(1): 3-12. DOI: 10.7555/JBR.31.20170034
    [9]Jun Han, Chuanbing Shi, Xiaogang Dong, Jie Wang, Hao Wen, Baolin Wang, Zhenyu He. Laparoscopic abdomino-perineal resection for patients with anorectal malignant melanoma: a report of 4 cases[J]. The Journal of Biomedical Research, 2016, 30(5): 436-440. DOI: 10.7555/JBR.27.20120099
    [10]Subhasree Nag, Jiangjiang Qin, Kalkunte S. Srivenugopal, Minghai Wang, Ruiwen Zhang. The MDM2-p53 pathway revisited[J]. The Journal of Biomedical Research, 2013, 27(4): 254-271. DOI: 10.7555/JBR.27.20130030
  • Cited by

    Periodical cited type(5)

    1. Langyan S, Bhardwaj R, Kumari J, et al. Nutritional Diversity in Native Germplasm of Maize Collected From Three Different Fragile Ecosystems of India. Front Nutr, 2022, 9: 812599. DOI:10.3389/fnut.2022.812599
    2. Juvinao-Quintero DL, Cardenas A, Perron P, et al. Associations between an integrated component of maternal glycemic regulation in pregnancy and cord blood DNA methylation. Epigenomics, 2021, 13(18): 1459-1472. DOI:10.2217/epi-2021-0220
    3. Zhang J, Wu X. Predict Health Care Accessibility for Texas Medicaid Gap. Healthcare (Basel), 2021, 9(9): 1214. DOI:10.3390/healthcare9091214
    4. Ayati M, Koyutürk M. PoCos: Population Covering Locus Sets for Risk Assessment in Complex Diseases. PLoS Comput Biol, 2016, 12(11): e1005195. DOI:10.1371/journal.pcbi.1005195
    5. Zhang Q, Zhao Y, Zhang R, et al. A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies. PLoS One, 2016, 11(6): e0156895. DOI:10.1371/journal.pone.0156895

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3942) PDF downloads (103) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return