4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Cui Qi, Jiaqi Zhang, Yuanyuan Wang, Mingyan Lin, Jun Gao, Haiying Lu. Valproic acid enhances neurosphere formation in cultured rat embryonic cortical cells through TGFβ1 signaling[J]. The Journal of Biomedical Research, 2022, 36(2): 127-140. DOI: 10.7555/JBR.36.20210109
Citation: Cui Qi, Jiaqi Zhang, Yuanyuan Wang, Mingyan Lin, Jun Gao, Haiying Lu. Valproic acid enhances neurosphere formation in cultured rat embryonic cortical cells through TGFβ1 signaling[J]. The Journal of Biomedical Research, 2022, 36(2): 127-140. DOI: 10.7555/JBR.36.20210109

Valproic acid enhances neurosphere formation in cultured rat embryonic cortical cells through TGFβ1 signaling

More Information
  • Corresponding author:

    Jun Gao, Department of Neurobiology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Jiangning District, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869347, E-mail: gaojun@njmu.edu.cn

    Haiying Lu, Department of Neurology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, GulouDistrict, Nanjing, Jiangsu 210008, China. Tel: +86-25-83116827, E-mail: hylunj@163.com

  • Received Date: July 15, 2021
  • Revised Date: November 29, 2021
  • Accepted Date: December 06, 2021
  • Available Online: February 14, 2022
  • This study aimed to investigate the effect and mechanism of valproic acid (VPA) on the neurosphere formation in rat embryonic cortical cells. We used free-floating neurosphere formation as a model system to evaluate the VPA on the proliferation of neural stem cells (NSCs). We found a time- and dose-dependent increase in neurosphere formation and NSC proliferation after VPA treatment. Further RNA-seq analysis demonstrated that the upregulated TGFβ1 signaling might attribute to the effect of VPA on the neurosphere formation and NSC proliferation. Consistently, the neurosphere formation and NSC proliferation were blocked by the treatment with SB431542, an inhibitor of TGFβ1 receptor. Moreover, in a coculture system, NSCs treated with VPA significantly reduced the oxygen-glucose deprivation-induced neuronal apoptosis. Taken together, our results showed that VPA could enhance neurosphere formation and NSC proliferation by activating TGFβ1, which might be a novel therapeutic strategy for neurological disorders.
  • [1]
    Lindvall O, Kokaia Z. Stem cells for the treatment of neurological disorders[J]. Nature, 2006, 441(7097): 1094–1096. doi: 10.1038/nature04960
    [2]
    Pastrana E, Silva-Vargas V, Doetsch F. Eyes wide open: a critical review of sphere-formation as an assay for stem cells[J]. Cell Stem Cell, 2011, 8(5): 486–498. doi: 10.1016/j.stem.2011.04.007
    [3]
    Tang H, Zhu J. Epigenetics and neural stem cell commitment[J]. Neurosci Bull, 2007, 23(4): 241–248. doi: 10.1007/s12264-007-0036-8
    [4]
    Sun G, Fu C, Shen C, et al. Histone deacetylases in neural stem cells and induced pluripotent stem cells[J]. J Biomed Biotechnol, 2011, 2011: 835968. doi: 10.1155/2011/835968
    [5]
    Lagger G, O'Carroll D, Rembold M, et al. Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression[J]. EMBO J, 2002, 21(11): 2672–2681. doi: 10.1093/emboj/21.11.2672
    [6]
    Montgomery RL, Hsieh J, Barbosa AC, et al. Histone deacetylases 1 and 2 control the progression of neural precursors to neurons during brain development[J]. Proc Natl Acad Sci USA, 2009, 106(19): 7876–7881. doi: 10.1073/pnas.0902750106
    [7]
    Sun G, Yu RT, Evans RM, et al. Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation[J]. Proc Natl Acad Sci USA, 2007, 104(39): 15282–15287. doi: 10.1073/pnas.0704089104
    [8]
    Qiu X, Xiao X, Li N, et al. Histone deacetylases inhibitors (HDACis) as novel therapeutic application in various clinical diseases[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2017, 72: 60–72. doi: 10.1016/j.pnpbp.2016.09.002
    [9]
    Jung GA, Yoon JY, Moon BS, et al. Valproic acid induces differentiation and inhibition of proliferation in neural progenitor cells via the beta-catenin-Ras-ERK-p21Cip/WAF1 pathway[J]. BMC Cell Biol, 2008, 9: 66. doi: 10.1186/1471-2121-9-66
    [10]
    Hao Y, Creson T, Zhang L, et al. Mood stabilizer valproate promotes ERK pathway-dependent cortical neuronal growth and neurogenesis[J]. J Neurosci, 2004, 24(29): 6590–6599. doi: 10.1523/JNEUROSCI.5747-03.2004
    [11]
    Dozawa M, Kono H, Sato Y, et al. Valproic acid, a histone deacetylase inhibitor, regulates cell proliferation in the adult zebrafish optic tectum[J]. Dev Dyn, 2014, 243(11): 1401–1415. doi: 10.1002/dvdy.24173
    [12]
    Zhou Q, Dalgard CL, Wynder C, et al. Valproic acid inhibits neurosphere formation by adult subventricular cells by a lithium-sensitive mechanism[J]. Neurosci Lett, 2011, 500(3): 202–206. doi: 10.1016/j.neulet.2011.06.037
    [13]
    Dorsky RI, Moon RT, Raible DW. Environmental signals and cell fate specification in premigratory neural crest[J]. Bioessays, 2000, 22(8): 708–716. doi: 10.1002/1521-1878(200008)22:8<708::AID-BIES4>3.0.CO;2-N
    [14]
    Go HS, Kim KC, Choi CS, et al. Prenatal exposure to valproic acid increases the neural progenitor cell pool and induces macrocephaly in rat brain via a mechanism involving the GSK-3β/β-catenin pathway[J]. Neuropharmacology, 2012, 63(6): 1028–1041. doi: 10.1016/j.neuropharm.2012.07.028
    [15]
    Calabrese V, Cornelius C, Dinkova-Kostova AT, et al. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders[J]. Antiox Redox Signal, 2010, 13(11): 1763–1811. doi: 10.1089/ars.2009.3074
    [16]
    Calabrese EJ, Calabrese V, Giordano J. Demonstrated hormetic mechanisms putatively subserve riluzole-induced effects in neuroprotection against amyotrophic lateral sclerosis (ALS): implications for research and clinical practice[J]. Ageing Res Rev, 2021, 67: 101273. doi: 10.1016/j.arr.2021.101273
    [17]
    Martino G, Pluchino S. The therapeutic potential of neural stem cells[J]. Nat Rev Neurosci, 2006, 7(5): 395–406. doi: 10.1038/nrn1908
    [18]
    Liu Q, Fan X, Zhu J, et al. Co-culturing improves the OGD-injured neuron repairing and NSCs differentiation via Notch pathway activation[J]. Neurosci Lett, 2014, 559: 1–6. doi: 10.1016/j.neulet.2013.11.027
    [19]
    Siracusa R, Scuto M, Fusco R, et al. Anti-inflammatory and anti-oxidant activity of Hidrox® in rotenone-induced parkinson's disease in mice[J]. Antioxidants (Basel), 2020, 9(9): 824. doi: 10.3390/antiox9090824
    [20]
    Miquel S, Champ C, Day J, et al. Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions[J]. Ageing Res Rev, 2018, 42: 40–55. doi: 10.1016/j.arr.2017.12.004
    [21]
    Calabrese E J, Mattson M P, Dhawan G, et al. Hormesis: A potential strategic approach to the treatment of neurodegenerative disease[J]. Int Rev Neurobiol, 2020, 155: 271–301. doi: 10.1016/bs.irn.2020.03.024
    [22]
    Abdulhaleem FAM, Song X, Kawano R, et al. Akhirin regulates the proliferation and differentiation of neural stem cells in intact and injured mouse spinal cord[J]. Dev Neurobiol, 2015, 75(5): 494–504. doi: 10.1002/dneu.22238
    [23]
    Wang Q, Zhou C, Li X, et al. TGF-β1 promotes gap junctions formation in chondrocytes via Smad3/Smad4 signalling[J]. Cell Prolif, 2019, 52(2): e12544. doi: 10.1111/cpr.12544
    [24]
    Yu Y, Li J, Zhou H, et al. Functional importance of the TGF-β1/Smad3 signaling pathway in oxygen-glucose-deprived (OGD) microglia and rats with cerebral ischemia[J]. Int J Biol Macromol, 2018, 116: 537–544. doi: 10.1016/j.ijbiomac.2018.04.113
    [25]
    Lamouille S, Derynck R. Cell size and invasion in TGF-β-induced epithelial to mesenchymal transition is regulated by activation of the mTOR pathway[J]. J Cell Biol, 2007, 178(3): 437–451. doi: 10.1083/jcb.200611146
    [26]
    Martin-Gallausiaux C, Béguet-Crespel F, Marinelli L, et al. Butyrate produced by gut commensal bacteria activates TGF-β1 expression through the transcription factor SP1 in human intestinal epithelial cells[J]. Sci Rep, 2018, 8(1): 9742. doi: 10.1038/s41598-018-28048-y
    [27]
    Zhang C, Zhang E, Yang L, et al. Histone deacetylase inhibitor treated cell sheet from mouse tendon stem/progenitor cells promotes tendon repair[J]. Biomaterials, 2018, 172: 66–82. doi: 10.1016/j.biomaterials.2018.03.043
    [28]
    James D, Levine AJ, Besser D, et al. TGFβ/activin/nodal signaling is necessary for the maintenance of pluripotency in human embryonic stem cells[J]. Development, 2005, 132(6): 1273–1282. doi: 10.1242/dev.01706
  • Related Articles

    [1]Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387
    [2]Chen Li, Kerui Wang, Xingfeng Mao, Xiuxiu Liu, Yingmei Lu. Upregulated inwardly rectifying K+ current-mediated hypoactivity of parvalbumin interneuron underlies autism-like deficits in Bod1-deficient mice[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240394
    [3]Xu Yuyu, Wang Pengqi, Xu Chaoqi, Shan Xiaoyun, Feng Qing. Acrylamide induces HepG2 cell proliferation through upregulation of miR-21 expression[J]. The Journal of Biomedical Research, 2019, 33(3): 181-191. DOI: 10.7555/JBR.31.20170016
    [4]Nolan B. Ayers, Chenming Sun, Shi-You Chen. Transforming growth factor-β signaling in systemic sclerosis[J]. The Journal of Biomedical Research, 2018, 32(1): 3-12. DOI: 10.7555/JBR.31.20170034
    [5]Ning Shi, Shi-You Chen. Mechanisms simultaneously regulate smooth muscle proliferation and differentiation[J]. The Journal of Biomedical Research, 2014, 28(1): 40-46. DOI: 10.7555/JBR.28.20130130
    [6]Jiaxin Ye, Ping Ni, Lina Kang, Biao Xu. Apelin and vascular endothelial growth factor are associated with mobilization of endothelial progenitor cells after acute myocardial infarction[J]. The Journal of Biomedical Research, 2012, 26(6): 400-409. DOI: 10.7555/JBR.26.20120052
    [7]Ravi Prakash Rao, Ansima Singh, Arun K Jain, Bhartu Parsharthi Srinivasan. Dual therapy of rosiglitazone/pioglitazone with glimepiride on diabetic nephropathy in experimentally induced type 2 diabetes rats[J]. The Journal of Biomedical Research, 2011, 25(6): 411-417. DOI: 10.1016/S1674-8301(11)60054-7
    [8]Ping Li, Xiaoming Lu, Yingyi Wang, Lihua Sun, Chunfa Qian, Wei Yan, Ning Liu, Yongping You, Zhen Fu. MiR-181b suppresses proliferation of and reduces chemoresistance to temozolomide in U87 glioma stem cells[J]. The Journal of Biomedical Research, 2010, 24(6): 436-443. DOI: 10.1016/S1674-8301(10)60058-9
    [9]Haiyang?Qian, Zhifang?Song, Meilin?Wang, Xiaomin?Jia, Aiping?Li, Ye?Yang, Lianlian?Shen, Shasha?Wang, Chunhui?Ni, Jianwei?Zhou. Association of transforming growth factor-β1 gene variants with risk of coal workers pneumoconiosis[J]. The Journal of Biomedical Research, 2010, 24(4): 270-276. DOI: 10.1016/S1674-8301(10)60038-3
    [10]Wei Qin, Xin Chen, Peisheng Liu. Inhibition of TGF-β1 by eNOS gene transfer provides cardiac protection after myocardial infarction[J]. The Journal of Biomedical Research, 2010, 24(2): 145-152.

Catalog

    Article Metrics

    Article views (932) PDF downloads (90) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return