Citation: | Nisha Gupta, Dan G. Duda. Role of stromal cell-derived factor 1α pathway in bone metastatic prostate cancer[J]. The Journal of Biomedical Research, 2016, 30(3): 181-185. DOI: 10.7555/JBR.30.20150114 |
[1] | Li Xin, Yang Jian, Chen Xia, Cao Dandan, Xu Eugene Yujun. PUM1 represses CDKN1B translation and contributes to prostate cancer progression[J]. The Journal of Biomedical Research, 2021, 35(5): 371-382. DOI: 10.7555/JBR.35.20210067 |
[2] | Haibo Tong, Chunlin Zou, Siyuan Qin, Jie Meng, Evan T. Keller, Jian Zhang, Yi Lu. Prostate cancer tends to metastasize in the bone-mimicking microenvironment via activating NF-kB signaling[J]. The Journal of Biomedical Research, 2018, 32(5): 343-353. DOI: 10.7555/JBR.32.20180035 |
[3] | Xinli Liu. Bone site-specific delivery of siRNA[J]. The Journal of Biomedical Research, 2016, 30(4): 264-271. DOI: 10.7555/JBR.30.20150110 |
[4] | Marwan Ghosn, Alain Dagher, Fadi El-Karak. Prostate-specific antigen doubling time and response to cabazitaxel in a hormone-resistant metastatic prostate cancer patient[J]. The Journal of Biomedical Research, 2015, 29(5): 420-422. DOI: 10.7555/JBR.28.20130148 |
[5] | William Weiben Zhang, Zhenqing Feng, Steven A Narod. Multiple therapeutic and preventive effects of 3,39-diindolylmethane on cancers including prostate cancer and high grade prostatic intraepithelial neoplasia[J]. The Journal of Biomedical Research, 2014, 28(5): 339-348. DOI: 10.7555/JBR.28.20140008 |
[6] | Tinghua Hu, Yu Yao, Shuo Yu, Hui Guo, Lili Han, Wenjuan Wang, Tao Tian, Yibin Hao, Zhiyan Liu, Kejun Nan, Shuhong Wang. Clinicopathologic significance of CXCR4 and Nrf2 in colorectal cancer[J]. The Journal of Biomedical Research, 2013, 27(4): 283-290. DOI: 10.7555/JBR.27.20130069 |
[7] | Qi Zheng, Kejun Nan, Yu Yao. Gastric cancer presenting with solitary gigantic pelvic metastasis[J]. The Journal of Biomedical Research, 2012, 26(4): 303-306. DOI: 10.7555/JBR.26.20110056 |
[8] | Lifeng Zhang, Ning Shao, Qianqian Yu, Lixin Hua, Yuanyuan Mi, Ninghan Feng. Association between p53 Pro72Arg polymorphism and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(1): 25-32. DOI: 10.1016/S1674-8301(11)60003-1 |
[9] | Yuanyuan Mi, Qianqian Yu, Zhichao Min, Bin Xu, Lifeng Zhang, Wei Zhang, Ninghan Feng, Lixin Hua. Arg462Gln and Asp541Glu polymorphisms in ribonuclease L and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2010, 24(5): 365-373. DOI: 10.1016/S1674-8301(10)60049-8 |
[10] | Bingbing Wei, Yunyun Zhang, Bo Xi, Junkai Chang, Jinming Bai, Jiantang Su. CYP17 T27C polymorphism and prostate cancer risk:a meta-analysis based on 31 studies[J]. The Journal of Biomedical Research, 2010, 24(3): 233-241. |
1. | Salimian F, Nabiuni M, Salehghamari E. Melittin Prevents Metastasis of Epidermal Growth Factor-Induced MDA-MB-231 Cells through The Inhibition of The SDF-1α/CXCR4 Signaling Pathway. Cell J, 2022, 24(2): 85-90. DOI:10.22074/cellj.2022.7626 |
2. | Yuan M, Zhu Z, Mao W, et al. Anlotinib Combined With Anti-PD-1 Antibodies Therapy in Patients With Advanced Refractory Solid Tumors: A Single-Center, Observational, Prospective Study. Front Oncol, 2021, 11: 683502. DOI:10.3389/fonc.2021.683502 |
3. | Karolczak K, Watala C. Blood Platelets as an Important but Underrated Circulating Source of TGFβ. Int J Mol Sci, 2021, 22(9): 4492. DOI:10.3390/ijms22094492 |
4. | Adekoya TO, Richardson RM. Cytokines and Chemokines as Mediators of Prostate Cancer Metastasis. Int J Mol Sci, 2020, 21(12): 4449. DOI:10.3390/ijms21124449 |
5. | Zhang X. Interactions between cancer cells and bone microenvironment promote bone metastasis in prostate cancer. Cancer Commun (Lond), 2019, 39(1): 76. DOI:10.1186/s40880-019-0425-1 |
6. | Hudson LG, Gillette JM, Kang H, et al. Ovarian Tumor Microenvironment Signaling: Convergence on the Rac1 GTPase. Cancers (Basel), 2018, 10(10): 358. DOI:10.3390/cancers10100358 |
7. | Zambon JP, Patel M, Hemal A, et al. Nonhuman primate model of persistent erectile and urinary dysfunction following radical prostatectomy: Feasibility of minimally invasive therapy. Neurourol Urodyn, 2018, 37(7): 2141-2150. DOI:10.1002/nau.23536 |
8. | Kim GS, Heo JR, Kim SU, et al. Cancer-Specific Inhibitory Effects of Genetically Engineered Stem Cells Expressing Cytosine Deaminase and Interferon-β Against Choriocarcinoma in Xenografted Metastatic Mouse Models. Transl Oncol, 2018, 11(1): 74-85. DOI:10.1016/j.tranon.2017.11.003 |
9. | Kim JY, Choi HG, Lee HM, et al. Effects of bisphenol compounds on the growth and epithelial mesenchymal transition of MCF-7 CV human breast cancer cells. J Biomed Res, 2017, 31(4): 358-369. DOI:10.7555/JBR.31.20160162 |
10. | Ramjiawan RR, Griffioen AW, Duda DG. Anti-angiogenesis for cancer revisited: Is there a role for combinations with immunotherapy?. Angiogenesis, 2017, 20(2): 185-204. DOI:10.1007/s10456-017-9552-y |