Citation: | Li Xin, Yang Jian, Chen Xia, Cao Dandan, Xu Eugene Yujun. PUM1 represses CDKN1B translation and contributes to prostate cancer progression[J]. The Journal of Biomedical Research, 2021, 35(5): 371-382. DOI: 10.7555/JBR.35.20210067 |
[1] |
Wurth L, Gebauer F. RNA–binding proteins, multifaceted translational regulators in cancer[J]. Biochim Biophys Acta-Gene Regul Mech, 2015, 1849(7): 881–886. doi: 10.1016/j.bbagrm.2014.10.001
|
[2] |
Abdelmohsen K, Gorospe M. Posttranscriptional regulation of cancer traits by HuR[J]. Wileys RNA, 2010, 1(2): 214–229. doi: 10.1002/wrna.4
|
[3] |
Vellky JE, McSweeney ST, Ricke EA, et al. RNA–binding protein DDX3 mediates posttranscriptional regulation of androgen receptor: a mechanism of castration resistance[J]. Proc Natl Acad Sci U S A, 2020, 117(45): 28092–28101. doi: 10.1073/pnas.2008479117
|
[4] |
Bradner JE, Hnisz D, Young RA. Transcriptional addiction in cancer[J]. Cell, 2017, 168(4): 629–643. doi: 10.1016/j.cell.2016.12.013
|
[5] |
Goldstrohm AC, Hall TMT, McKenney KM. Post–transcriptional regulatory functions of mammalian pumilio proteins[J]. Trends Genet, 2018, 34(12): 972–990. doi: 10.1016/j.tig.2018.09.006
|
[6] |
Wickens M, Bernstein DS, Kimble J, et al. A PUF family portrait: 3′ UTR regulation as a way of life[J]. Trends Genet, 2002, 18(3): 150–157. doi: 10.1016/S0168-9525(01)02616-6
|
[7] |
Zamore PD, Williamson JR, Lehmann R. The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA–binding proteins[J]. RNA, 1997, 3(12): 1421–1433. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1369583/
|
[8] |
Chen D, Zheng W, Lin AP, et al. Pumilio 1 suppresses multiple activators of p53 to safeguard spermatogenesis[J]. Curr Biol, 2012, 22(5): 420–425. doi: 10.1016/j.cub.2012.01.039
|
[9] |
Gennarino VA, Singh RK, White JJ, et al. Pumilio1 haploinsufficiency leads to SCA1–like neurodegeneration by increasing wild–type Ataxin1 levels[J]. Cell, 2015, 160(6): 1087–1098. doi: 10.1016/j.cell.2015.02.012
|
[10] |
Mak W, Fang C, Holden T, et al. An important role of pumilio 1 in regulating the development of the mammalian female germline[J]. Biol Reprod, 2016, 94(6): 1–11. doi: 10.1095/biolreprod.115.137497
|
[11] |
Xu EY, Chang R, Salmon NA, et al. A gene trap mutation of a murine homolog of the Drosophila stem cell factor Pumilio results in smaller testes but does not affect litter size or fertility[J]. Mol Reprod Dev, 2007, 74(7): 912–921. doi: 10.1002/mrd.20687
|
[12] |
Zhang M, Chen D, Xia J, et al. Post–transcriptional regulation of mouse neurogenesis by Pumilio proteins[J]. Genes Dev, 2017, 31(13): 1354–1369. doi: 10.1101/gad.298752.117
|
[13] |
Lin K, Zhang S, Chen J, et al. Generation and functional characterization of a conditional Pumilio2 null allele[J]. J Biomed Res, 2017, 32(6): 434–441. doi: 10.7555/JBR.32.20170117
|
[14] |
Gennarino VA, Palmer EE, McDonell LM, et al. A mild PUM1 mutation is associated with adult–onset ataxia, whereas haploinsufficiency causes developmental delay and seizures[J]. Cell, 2018, 172(5): 924–936. doi: 10.1016/j.cell.2018.02.006
|
[15] |
Lin K, Qiang W, Zhu M, et al. Mammalian Pum1 and Pum2 control body size via translational regulation of the cell cycle inhibitor Cdkn1b[J]. Cell Rep, 2019, 26(9): 2434–2450. doi: 10.1016/j.celrep.2019.01.111
|
[16] |
Lin K, Zhang S, Shi Q, et al. Essential requirement of mammalian Pumilio family in embryonic development[J]. Mol Biol Cell, 2018, 29(24): 2911–2968. doi: 10.1091/mbc.E18-10-0673
|
[17] |
Chu IM, Hengst L, Slingerland JM. The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy[J]. Nat Rev Cancer, 2008, 8(4): 253–267. doi: 10.1038/nrc2347
|
[18] |
Kuczyk M, Machtens S, Hradil K, et al. Predictive value of decreased p27Kip1 protein expression for the recurrence–free and long–term survival of prostate cancer patients[J]. Br J Cancer, 1999, 81(6): 1052–1058. doi: 10.1038/sj.bjc.6690806
|
[19] |
Polyak K. The p27Kip1 tumor suppressor gene: still a suspect or proven guilty?[J]. Cancer Cell, 2006, 10(5): 352–354. doi: 10.1016/j.ccr.2006.10.015
|
[20] |
Miles WO, Lembo A, Volorio A, et al. Alternative polyadenylation in triple–negative breast tumors allows NRAS and c–JUN to bypass PUMILIO posttranscriptional regulation[J]. Cancer Res, 2016, 76(24): 7231–7241. doi: 10.1158/0008-5472.CAN-16-0844
|
[21] |
Miles WO, Tschöp K, Herr A, et al. Pumilio facilitates miRNA regulation of the E2F3 oncogene[J]. Genes Dev, 2012, 26(4): 356–368. doi: 10.1101/gad.182568.111
|
[22] |
Naudin C, Hattabi A, Michelet F, et al. PUMILIO/FOXP1 signaling drives expansion of hematopoietic stem/progenitor and leukemia cells[J]. Blood, 2017, 129(18): 2493–2506. doi: 10.1182/blood-2016-10-747436
|
[23] |
Uhlen M, Zhang C, Lee S, et al. A pathology atlas of the human cancer transcriptome[J]. Science, 2017, 357(6352): eaan2507. doi: 10.1126/science.aan2507
|
[24] |
AACR Project GENIE Consortium. AACR project GENIE: powering precision medicine through an international consortium[J]. Cancer Discov, 2017, 7(8): 818–831. doi: 10.1158/2159-8290.CD-17-0151
|
[25] |
De Marzo AM, Meeker AK, Epstein JI, et al. Prostate stem cell compartments: expression of the cell cycle inhibitor p27Kip1 in normal, hyperplastic, and neoplastic cells[J]. Am J Pathol, 1998, 153(3): 911–919. doi: 10.1016/S0002-9440(10)65632-5
|
[26] |
Koff A. How to decrease p27Kip1 levels during tumor development[J]. Cancer Cell, 2006, 9(2): 75–76. doi: 10.1016/j.ccr.2006.01.020
|
[27] |
Bencivenga D, Caldarelli I, Stampone E, et al. p27Kip1 and human cancers: a reappraisal of a still enigmatic protein[J]. Cancer Lett, 2017, 403: 354–365. doi: 10.1016/j.canlet.2017.06.031
|
[28] |
Bochis OV, Irimie A, Pichler M, et al. , Irimie, A., Pichler M, et al. (2015). The Role of Skp2 and its Substrate CDKN1B (p27) in Colorectal Cancer[J]. J Gastrointestin Liver Dis, 2015, 24(2): 225–34. doi: 10.15403/jgld.2014.1121.242.skp2
|
[29] |
Kim C, Jeong DE, Heo S, et al. Reduced expression of the RNA–binding protein HuD in pancreatic neuroendocrine tumors correlates with low p27Kip1 levels and poor prognosis[J]. J Pathol, 2018, 246(2): 231–243. doi: 10.1002/path.5135
|
[30] |
Lee S, Kopp F, Chang TC, et al. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins[J]. Cell, 2016, 164(1-2): 69–80. doi: 10.1016/j.cell.2015.12.017
|
[31] |
Tichon A, Gil N, Lubelsky Y, et al. A conserved abundant cytoplasmic long noncoding RNA modulates repression by Pumilio proteins in human cells[J]. Nat Commun, 2016, 7(1): 12209. doi: 10.1038/ncomms12209
|
[32] |
Chang BL, Zheng SL, Isaacs SD, et al. A polymorphism in the CDKN1B gene is associated with increased risk of hereditary prostate cancer[J]. Cancer Res, 2004, 64(6): 1997–1999. doi: 10.1158/0008-5472.CAN-03-2340
|
[33] |
DeMarzo AM, Nelson WG, Isaacs WB, et al. Pathological and molecular aspects of prostate cancer[J]. Lancet, 2003, 361(9361): 955–964. doi: 10.1016/S0140-6736(03)12779-1
|
[34] |
Beltran H, Prandi D, Mosquera JM, et al. Divergent clonal evolution of castration–resistant neuroendocrine prostate cancer[J]. Nat Med, 2016, 22(3): 298–305. doi: 10.1038/nm.4045
|
[35] |
Mayr C, Bartel DP. Widespread shortening of 3′ UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells[J]. Cell, 2009, 138(4): 673–684. doi: 10.1016/j.cell.2009.06.016
|
[1] | Minqin Xu, Lihua Zhang, Lan Lin, Zhiyi Qiang, Wei Liu, Jian Yang. Cisplatin increases carboxylesterases through increasing PXR mediated by the decrease of DEC1[J]. The Journal of Biomedical Research, 2023, 37(6): 431-447. DOI: 10.7555/JBR.37.20230047 |
[2] | Yue Xiao, Yue Peng, Chi Zhang, Wei Liu, Kehan Wang, Jing Li. hucMSC-derived exosomes protect ovarian reserve and restore ovarian function in cisplatin treated mice[J]. The Journal of Biomedical Research, 2023, 37(5): 382-393. DOI: 10.7555/JBR.36.20220166 |
[3] | Haozhe Xu, Yiming Zhou, Jing Guo, Tao Ling, Yujie Xu, Ting Zhao, Chuanxin Shi, Zhongping Su, Qiang You. Elevated extracellular calcium ions accelerate the proliferation and migration of HepG2 cells and decrease cisplatin sensitivity[J]. The Journal of Biomedical Research, 2023, 37(5): 340-354. DOI: 10.7555/JBR.37.20230067 |
[4] | Li Wanlin, Wu Min, Wang Qianqian, Xu Kun, Lin Fan, Wang Qianghu, Guo Renhua. A comparative genomics analysis of lung adenocarcinoma for Chinese population by using panel of recurrent mutations[J]. The Journal of Biomedical Research, 2021, 35(1): 11-20. DOI: 10.7555/JBR.34.20200068 |
[5] | Liu Shuying, Lu Shan. Antibody responses in COVID-19 patients[J]. The Journal of Biomedical Research, 2020, 34(6): 410-415. DOI: 10.7555/JBR.34.20200134 |
[6] | Zhu Ping, Shan Xia, Liu Jinhui, Zhou Xin, Zhang Huo, Wang Tongshan, Wu Jianqing, Zhu Wei, Liu Ping. miR-3622b-5p regulates cisplatin resistance of human gastric cancer cell line by targeting BIRC5[J]. The Journal of Biomedical Research, 2019, 33(6): 382-390. DOI: 10.7555/JBR.33.20180078 |
[7] | Aixia Zhang, Brian Cao. Generation and characterization of an anti-GP73 monoclonal antibody for immunoblotting and sandwich ELISA[J]. The Journal of Biomedical Research, 2012, 26(6): 467-473. DOI: 10.7555/JBR.26.20120057 |
[8] | Xinjian Liu, Xiaomin Feng, Qi Tang, Zhongcan Wang, Zhenning Qiu, Yuhua Li, Changjun Wang, Zhenqing Feng, Jin Zhu, Xiaohong Guan. Characterization and potential diagnostic application of monoclonal antibodies specific to rabies virus[J]. The Journal of Biomedical Research, 2010, 24(5): 395-403. DOI: 10.1016/S1674-8301(10)60053-X |
[9] | Chen Tao, Li Dan, Fuya ling, Gongzi Peng. In vivo and in vitro effects of QHF combined with chemotherapy on hepatocellular carcinoma[J]. The Journal of Biomedical Research, 2010, 24(2): 161-168. |
[10] | Daozhen Chen, Qiusha Tang, Wenqun Xue, Jingying Xiang, Li Zhang, Xinru Wang. The preparation and characterization of folate-conjugated human serum albumin magnetic cisplatin nanoparticles[J]. The Journal of Biomedical Research, 2010, 24(1): 26-32. |
1. | Nasimi Shad A, Moghbeli M. Integrins as the pivotal regulators of cisplatin response in tumor cells. Cell Commun Signal, 2024, 22(1): 265. DOI:10.1186/s12964-024-01648-0 |
2. | Li J, Peng L, Chen Q, et al. Integrin β1 in Pancreatic Cancer: Expressions, Functions, and Clinical Implications. Cancers (Basel), 2022, 14(14): 3377. DOI:10.3390/cancers14143377 |
3. | Dötzer K, Schlüter F, Koch FEV, et al. Integrin α2β1 Represents a Prognostic and Predictive Biomarker in Primary Ovarian Cancer. Biomedicines, 2021, 9(3): 289. DOI:10.3390/biomedicines9030289 |
4. | Khine HEE, Ecoy GAU, Roytrakul S, et al. Chemosensitizing activity of peptide from Lentinus squarrosulus (Mont.) on cisplatin-induced apoptosis in human lung cancer cells. Sci Rep, 2021, 11(1): 4060. DOI:10.1038/s41598-021-83606-1 |
5. | Moreira AM, Pereira J, Melo S, et al. The Extracellular Matrix: An Accomplice in Gastric Cancer Development and Progression. Cells, 2020, 9(2): 394. DOI:10.3390/cells9020394 |
6. | Haeger A, Alexander S, Vullings M, et al. Collective cancer invasion forms an integrin-dependent radioresistant niche. J Exp Med, 2020, 217(1): e20181184. DOI:10.1084/jem.20181184 |
7. | Yang XG, Zhu LC, Wang YJ, et al. Current Advance of Therapeutic Agents in Clinical Trials Potentially Targeting Tumor Plasticity. Front Oncol, 2019, 9: 887. DOI:10.3389/fonc.2019.00887 |
8. | Manini I, Ruaro ME, Sgarra R, et al. Semaphorin-7A on Exosomes: A Promigratory Signal in the Glioma Microenvironment. Cancers (Basel), 2019, 11(6): 758. DOI:10.3390/cancers11060758 |
9. | Raab-Westphal S, Marshall JF, Goodman SL. Integrins as Therapeutic Targets: Successes and Cancers. Cancers (Basel), 2017, 9(9): 110. DOI:10.3390/cancers9090110 |