4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Xinli Liu. Bone site-specific delivery of siRNA[J]. The Journal of Biomedical Research, 2016, 30(4): 264-271. DOI: 10.7555/JBR.30.20150110
Citation: Xinli Liu. Bone site-specific delivery of siRNA[J]. The Journal of Biomedical Research, 2016, 30(4): 264-271. DOI: 10.7555/JBR.30.20150110

Bone site-specific delivery of siRNA

Funds: 

the Cancer Prevention Research Institute of Texas (CPRIT, RP150656, X.L.) and National Institute of Health (NIH/NCI, R15CA182769,X.L.)

More Information
  • Received Date: August 04, 2015
  • Revised Date: August 24, 2015
  • Small interfering RNAs (siRNA) have enormous potential as therapeutics to target and treat various bone disor-ders such as osteoporosis and cancer bone metastases. However, effective and specifc delivery of siRNA therapeu-tics to bone and bone-specifc cells in vivo is very challenging. To realize the full therapeutic potential of siRNA intreating bone disorders, a safe and effcient, tissue- and cell-specifc delivery system must be developed. This review focuses on recent advances in bone site-specifc delivery of siRNA at the tissue or cellular level. Bone-targeted nanoparticulate siRNA carriers and various bone-targeted moieties such as bisphosphonates, oligopeptides (Asp)8and (AspSerSer)6, and aptamers are highlighted. Incorporation of these bone-seeking targeting moieties into siRNA carriers allows for recognition of different sub-tissue functional domains of bone and also specifc cell types residing in bone tissue. It also provides a means for bone-formation surface-, bone-resorption surface-, or osteoblast- specifc targeting and transportation of siRNA therapeutics. The discussion mainly focuses on systemic and local bone-specifc delivery of siRNA in osteoporosis and bone metastasis preclinical models.
  • Related Articles

    [1]Xingxing Sun, Jun Wang, Qing Yan, Weizhu Ju, Fengxiang Zhang, Gang Yang, Kai Gu, Hailei Liu, Zidun wang, Xiaohong Jiang, Mingfang Li, Di Xu, Yi Xu, Hongwu Chen, Minglong Chen. Epicardial adipose tissue around the superior vena cava: A single center study of factors related to atrial fibrillation[J]. The Journal of Biomedical Research, 2022, 36(6): 401-408. DOI: 10.7555/JBR.36.20220047
    [2]Mo-qiu Jia, Yong-jin Wang, Kang Fu, Han Jiao, Jia Sun, Yuanqing Gao. Orexin receptor type 2 agonism inhibits thermogenesis in brown adipose tissue by attenuating afferent innervation[J]. The Journal of Biomedical Research, 2022, 36(3): 195-207. DOI: 10.7555/JBR.36.20220033
    [3]Wenqian Xia, Xiao Han, Lin Wang. E26 transformation-specific 1 is implicated in the inhibition of osteogenic differentiation induced by chronic high glucose by directly regulating Runx2 expression[J]. The Journal of Biomedical Research, 2022, 36(1): 39-47. DOI: 10.7555/JBR.35.20210123
    [4]Higgins Victoria, Adeli Khosrow. Postprandial dyslipidemia in insulin resistant states in adolescent populations[J]. The Journal of Biomedical Research, 2020, 34(5): 328-342. DOI: 10.7555/JBR.34.20190094
    [5]Faraj May. LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: a focus on white adipose tissue[J]. The Journal of Biomedical Research, 2020, 34(4): 251-259. DOI: 10.7555/JBR.34.20190124
    [6]Grapentine Sophie, Bakovic Marica. Significance of bilayer-forming phospholipids for skeletal muscle insulin sensitivity and mitochondrial function[J]. The Journal of Biomedical Research, 2020, 34(1): 1-13. DOI: 10.7555/JBR.33.20180104
    [7]Guilaine Boyce, Emily Button, Sonja Soo, Cheryl Wellington,. The pleiotropic vasoprotective functions of high density lipoproteins (HDL)[J]. The Journal of Biomedical Research, 2018, 32(3): 164-182. DOI: 10.7555/JBR.31.20160103
    [8]Leijian Guan, Kaixuan Xu, Shuyang Xu, Ningning Li, Xinru Wang, Yankai Xia, Di Wu. Profiles of metabolic gene expression in the white adipose tissue, liver and hypothalamus in leptin knockout (LepΔI14/ΔI14 ) rats[J]. The Journal of Biomedical Research, 2017, 31(6): 528-540. DOI: 10.7555/JBR.31.20170021
    [9]Ya-Hong Ma, Caiguo Yu, Abudurexiti Kayoumu, Xin Guo, Zhili Ji, George Liu. Maternal inheritance of severe hypertriglyceridemia impairs glucose metabolism in offspring[J]. The Journal of Biomedical Research, 2015, 29(2): 125-131. DOI: 10.7555/JBR.29.20140139
    [10]Keh-Dong Shiang, Fouad Kandeel. A computational model of the human glucose-insulin regulatory system[J]. The Journal of Biomedical Research, 2010, 24(5): 347-364. DOI: 10.1016/S1674-8301(10)60048-6
  • Cited by

    Periodical cited type(6)

    1. Lv Y, Xu L, He Z, et al. The association between pregnancy levels of blood lipids and the risk of preterm birth. Sci Rep, 2024, 14(1): 10800. DOI:10.1038/s41598-024-61119-x
    2. Fuior EV, Zvintzou E, Filippatos T, et al. Peroxisome Proliferator-Activated Receptor α in Lipoprotein Metabolism and Atherosclerotic Cardiovascular Disease. Biomedicines, 2023, 11(10): 2696. DOI:10.3390/biomedicines11102696
    3. Zvintzou E, Xepapadaki E, Skroubis G, et al. High-Density Lipoprotein in Metabolic Disorders and Beyond: An Exciting New World Full of Challenges and Opportunities. Pharmaceuticals (Basel), 2023, 16(6): 855. DOI:10.3390/ph16060855
    4. Florea G, Tudorache IF, Fuior EV, et al. Apolipoprotein A-II, a Player in Multiple Processes and Diseases. Biomedicines, 2022, 10(7): 1578. DOI:10.3390/biomedicines10071578
    5. Thakkar H, Vincent V, Roy A, et al. Determinants of high-density lipoprotein (HDL) functions beyond proteome in Asian Indians: exploring the fatty acid profile of HDL phospholipids. Mol Cell Biochem, 2022, 477(2): 559-570. DOI:10.1007/s11010-021-04304-0
    6. Huang J, Yang Y, He P. Serum apolipoprotein A-II and alpha-2-antiplasmin levels in midtrimester can be used as predictors of preterm delivery. J Int Med Res, 2020, 48(9): 300060520952280. DOI:10.1177/0300060520952280

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3240) PDF downloads (569) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return