4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Wenqian Xia, Xiao Han, Lin Wang. E26 transformation-specific 1 is implicated in the inhibition of osteogenic differentiation induced by chronic high glucose by directly regulating Runx2 expression[J]. The Journal of Biomedical Research, 2022, 36(1): 39-47. DOI: 10.7555/JBR.35.20210123
Citation: Wenqian Xia, Xiao Han, Lin Wang. E26 transformation-specific 1 is implicated in the inhibition of osteogenic differentiation induced by chronic high glucose by directly regulating Runx2 expression[J]. The Journal of Biomedical Research, 2022, 36(1): 39-47. DOI: 10.7555/JBR.35.20210123

E26 transformation-specific 1 is implicated in the inhibition of osteogenic differentiation induced by chronic high glucose by directly regulating Runx2 expression

More Information
  • Corresponding author:

    Xiao Han, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869426, E-mail: hanxiao@njmu.edu.cn

    Lin Wang, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 1 Shanghai Road, Nanjing, Jiangsu 210009, China. Tel: +86-25-69593065, E-mail: lw603@njmu.edu.cn

  • Received Date: July 27, 2021
  • Revised Date: October 07, 2021
  • Accepted Date: October 14, 2021
  • Available Online: December 29, 2021
  • Chronic high glucose (HG) plays a crucial role in the pathogenesis of diabetes-induced osteoporosis by inhibiting the differentiation and proliferation of osteoblasts. This study aims to examine the role of E26 transformation-specific 1 (ETS1) in the inhibition of osteoblast differentiation and proliferation caused by chronic HG, as well as the underlying mechanism. Chronic HG treatment downregulated ETS1 expression and inhibited differentiation and proliferation of MC3T3-E1 cells. Downregulation of ETS1 expression inhibited the differentiation and proliferation of MC3T3-E1 cells under normal glucose conditions, and ETS1 overexpression attenuated the damage to cells exposed to chronic HG. In addition, ETS1 overexpression reversed the decrease in runt-related transcription factor 2 (Runx2) expression in MC3T3-E1 cells treated with chronic HG. Using chromatin immunoprecipitation (ChIP) and luciferase reporter assays, we confirmed that ETS1 directly bound to and increased the activity of the Runx2 promoter. In summary, our study suggested that ETS1 was involved in the inhibitory effect of chronic HG on osteogenic differentiation and proliferation and may be a potential therapeutic target for diabetes-induced osteoporosis.
  • [1]
    Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis[J]. Am J Obstet Gynecol, 2006, 194(2 Suppl 1): S3–S11. doi: 10.1016/j.ajog.2005.08.047
    [2]
    Ala M, Jafari RM, Dehpour AR. Diabetes mellitus and osteoporosis correlation: challenges and hopes[J]. Curr Diabetes Rev, 2020, 16(9): 984–1001. doi: 10.2174/1573399816666200324152517
    [3]
    Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol, 2018, 14(2): 88–98. doi: 10.1038/nrendo.2017.151
    [4]
    Cheng F, Carroll L, Joglekar MV, et al. Diabetes, metabolic disease, and telomere length[J]. Lancet Diabetes Endocrinol, 2021, 9(2): 117–126. doi: 10.1016/S2213-8587(20)30365-X
    [5]
    Qu B, Gong K, Yang HS, et al. MiR-449 overexpression inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via suppressing Sirt1/Fra-1 pathway in high glucose and free fatty acids microenvironment[J]. Biochem Biophys Res Commun, 2018, 496(1): 120–126. doi: 10.1016/j.bbrc.2018.01.009
    [6]
    Wang R, Zhang Y, Jin F, et al. High-glucose-induced miR-214–3p inhibits BMSCs osteogenic differentiation in type 1 diabetes mellitus[J]. Cell Death Discov, 2019, 5: 143. doi: 10.1038/s41420-019-0223-1
    [7]
    Yang L, Liu J, Shan Q, et al. High glucose inhibits proliferation and differentiation of osteoblast in alveolar bone by inducing pyroptosis[J]. Biochem Biophys Res Commun, 2020, 522(2): 471–478. doi: 10.1016/j.bbrc.2019.11.080
    [8]
    Zhai Z, Chen W, Hu Q, et al. High glucose inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via regulating miR-493–5p/ZEB2 signalling[J]. J Biochem, 2020, 167(6): 613–621. doi: 10.1093/jb/mvaa011
    [9]
    Zhou R, Ma Y, Tao Z, et al. Melatonin inhibits glucose-induced apoptosis in osteoblastic cell line through PERK-eIF2α-ATF4 pathway[J]. Front Pharmacol, 2020, 11: 602307. doi: 10.3389/fphar.2020.602307
    [10]
    Mohsin S, Baniyas MM, AlDarmaki RS, et al. An update on therapies for the treatment of diabetes-induced osteoporosis[J]. Expert Opin Biol Ther, 2019, 19(9): 937–948. doi: 10.1080/14712598.2019.1618266
    [11]
    Casie Chetty S, Sumanas S. Ets1 functions partially redundantly with Etv2 to promote embryonic vasculogenesis and angiogenesis in zebrafish[J]. Dev Biol, 2020, 465(1): 11–22. doi: 10.1016/j.ydbio.2020.06.007
    [12]
    Li R, Dong Y, Li F. ETS Proto-Oncogene 1 suppresses MicroRNA-128 transcription to promote osteogenic differentiation through the HOXA13/β-catenin axis[J]. Front Physiol, 2021, 12: 626248. doi: 10.3389/fphys.2021.626248
    [13]
    Taveirne S, Wahlen S, Van Loocke W, et al. The transcription factor ETS1 is an important regulator of human NK cell development and terminal differentiation[J]. Blood, 2020, 136(3): 288–298. doi: 10.1182/blood.2020005204
    [14]
    Tomar S, Plotnik JP, Haley J, et al. ETS1 induction by the microenvironment promotes ovarian cancer metastasis through focal adhesion kinase[J]. Cancer Lett, 2018, 414: 190–204. doi: 10.1016/j.canlet.2017.11.012
    [15]
    Fan Q, Li Y, Sun Q, et al. miR-532–3p inhibits osteogenic differentiation in MC3T3-E1 cells by downregulating ETS1[J]. Biochem Biophys Res Commun, 2020, 525(2): 498–504. doi: 10.1016/j.bbrc.2020.02.126
    [16]
    Vary CPH, Li V, Raouf A, et al. Involvement of Ets transcription factors and targets in osteoblast differentiation and matrix mineralization[J]. Exp Cell Res, 2000, 257(1): 213–222. doi: 10.1006/excr.2000.4879
    [17]
    Du ZJ, Kamei M, Suzuki M, et al. Coordinated expression of Ets-1, pERK1/2, and VEGF in retina of streptozotocin-induced diabetic rats[J]. Ophthalmic Res, 2007, 39(4): 224–231. doi: 10.1159/000104831
    [18]
    Seeger FH, Chen L, Spyridopoulos I, et al. Downregulation of ETS rescues diabetes-induced reduction of endothelial progenitor cells[J]. PLoS One, 2009, 4(2): e4529. doi: 10.1371/journal.pone.0004529
    [19]
    Geng XD, Wang WW, Feng Z, et al. Identification of key genes and pathways in diabetic nephropathy by bioinformatics analysis[J]. J Diabetes Investig, 2019, 10(4): 972–984. doi: 10.1111/jdi.12986
    [20]
    Wang WK, Lu QH, Zhang JN, et al. HMGB1 mediates hyperglycaemia-induced cardiomyocyte apoptosis via ERK/Ets-1 signalling pathway[J]. J Cell Mol Med, 2014, 18(11): 2311–2320. doi: 10.1111/jcmm.12399
    [21]
    Chen F, Sha M, Wang Y, et al. Transcription factor Ets-1 links glucotoxicity to pancreatic beta cell dysfunction through inhibiting PDX-1 expression in rodent models[J]. Diabetologia, 2016, 59(2): 316–324. doi: 10.1007/s00125-015-3805-3
    [22]
    Liu D, Wang K, Li K, et al. Ets-1 deficiency alleviates nonalcoholic steatohepatitis via weakening TGF-β1 signaling-mediated hepatocyte apoptosis[J]. Cell Death Dis, 2019, 10(6): 458. doi: 10.1038/s41419-019-1672-4
    [23]
    Lo IC, Lin TM, Chou LH, et al. Ets-1 mediates platelet-derived growth factor-BB-induced thrombomodulin expression in human vascular smooth muscle cells[J]. Cardiovasc Res, 2009, 81(4): 771–779. doi: 10.1093/cvr/cvn351
    [24]
    Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2[J]. Int J Mol Sci, 2019, 20(7): 1694. doi: 10.3390/ijms20071694
    [25]
    Vimalraj S, Arumugam B, Miranda PJ, et al. Runx2: Structure, function, and phosphorylation in osteoblast differentiation[J]. Int J Biol Macromol, 2015, 78: 202–208. doi: 10.1016/j.ijbiomac.2015.04.008
    [26]
    Wang X, Schröder HC, Feng Q, et al. Isoquercitrin and polyphosphate co-enhance mineralization of human osteoblast-like SaOS-2 cells via separate activation of two RUNX2 cofactors AFT6 and Ets1[J]. Biochem Pharmacol, 2014, 89(3): 413–421. doi: 10.1016/j.bcp.2014.03.020
    [27]
    Chen Y, Hu Y, Yang L, et al. Runx2 alleviates high glucose-suppressed osteogenic differentiation via PI3K/AKT/GSK3β/β-catenin pathway[J]. Cell Biol Int, 2017, 41(8): 822–832. doi: 10.1002/cbin.10779
    [28]
    Kichenbrand C, Grossin L, Menu P, et al. Behaviour of human dental pulp stem cell in high glucose condition: impact on proliferation and osteogenic differentiation[J]. Arch Oral Biol, 2020, 118: 104859. doi: 10.1016/j.archoralbio.2020.104859
    [29]
    Zheng DH, Han ZQ, Wang XX, et al. Erythropoietin attenuates high glucose-induced oxidative stress and inhibition of osteogenic differentiation in periodontal ligament stem cell (PDLSCs)[J]. Chem Biol Interact, 2019, 305: 40–47. doi: 10.1016/j.cbi.2019.03.007
    [30]
    Zhang Y, Hassan MQ, Xie RL, et al. Co-stimulation of the bone-related Runx2 P1 promoter in mesenchymal cells by SP1 and ETS transcription factors at polymorphic purine-rich DNA sequences (Y-repeats)[J]. J Biol Chem, 2009, 284(5): 3125–3135. doi: 10.1074/jbc.M807466200
  • Related Articles

    [1]Zhaoye Qian, Zhe Zhang, Lanqi Cen, Yaohua Ke, Jie Shao, Manman Tian, Baorui Liu. Mycobacterium smegmatis enhances shikonin-induced immunogenic cell death—an efficient in situ tumor vaccine strategy[J]. The Journal of Biomedical Research, 2024, 38(4): 369-381. DOI: 10.7555/JBR.38.20240049
    [2]Lulu Fan, Hao Wang, Shuai Ben, Yifei Cheng, Silu Chen, Zhutao Ding, Lingyan Zhao, Shuwei Li, Meilin Wang, Gong Cheng. Genetic variant in a BaP-activated super-enhancer increases prostate cancer risk by promoting AhR-mediated FAM227A expression[J]. The Journal of Biomedical Research, 2024, 38(2): 149-162. DOI: 10.7555/JBR.37.20230049
    [3]Cui Qi, Jiaqi Zhang, Yuanyuan Wang, Mingyan Lin, Jun Gao, Haiying Lu. Valproic acid enhances neurosphere formation in cultured rat embryonic cortical cells through TGFβ1 signaling[J]. The Journal of Biomedical Research, 2022, 36(2): 127-140. DOI: 10.7555/JBR.36.20210109
    [4]Xu Wenbin, Yan Han, Xu Lulu, Li Mingna, Gao Wentao, Jiang Kuirong, Wu Junli, Miao Yi. Correlation between radiologic features on contrast-enhanced CT and pathological tumor grades in pancreatic neuroendocrine neoplasms[J]. The Journal of Biomedical Research, 2021, 35(3): 179-188. DOI: 10.7555/JBR.34.20200039
    [5]Yang Lukun, Tautz Timothy, Zhang Shulin, Fomina Alla, Liu Hong. The current status of malignant hyperthermia[J]. The Journal of Biomedical Research, 2020, 34(2): 75-85. DOI: 10.7555/JBR.33.20180089
    [6]Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065
    [7]Cuiying Li, Haiyan Gong, Lijun Ling, Liwen Du, Tong Su, Shui Wang, Jie Wang. Diagnostic performance of contrast-enhanced ultrasound and enhanced magnetic resonance for breast nodules[J]. The Journal of Biomedical Research, 2018, 32(3): 198-207. DOI: 10.7555/JBR.32.20180015
    [8]Nolan B. Ayers, Chenming Sun, Shi-You Chen. Transforming growth factor-β signaling in systemic sclerosis[J]. The Journal of Biomedical Research, 2018, 32(1): 3-12. DOI: 10.7555/JBR.31.20170034
    [9]Jun Han, Chuanbing Shi, Xiaogang Dong, Jie Wang, Hao Wen, Baolin Wang, Zhenyu He. Laparoscopic abdomino-perineal resection for patients with anorectal malignant melanoma: a report of 4 cases[J]. The Journal of Biomedical Research, 2016, 30(5): 436-440. DOI: 10.7555/JBR.27.20120099
    [10]Subhasree Nag, Jiangjiang Qin, Kalkunte S. Srivenugopal, Minghai Wang, Ruiwen Zhang. The MDM2-p53 pathway revisited[J]. The Journal of Biomedical Research, 2013, 27(4): 254-271. DOI: 10.7555/JBR.27.20130030
  • Cited by

    Periodical cited type(5)

    1. Langyan S, Bhardwaj R, Kumari J, et al. Nutritional Diversity in Native Germplasm of Maize Collected From Three Different Fragile Ecosystems of India. Front Nutr, 2022, 9: 812599. DOI:10.3389/fnut.2022.812599
    2. Juvinao-Quintero DL, Cardenas A, Perron P, et al. Associations between an integrated component of maternal glycemic regulation in pregnancy and cord blood DNA methylation. Epigenomics, 2021, 13(18): 1459-1472. DOI:10.2217/epi-2021-0220
    3. Zhang J, Wu X. Predict Health Care Accessibility for Texas Medicaid Gap. Healthcare (Basel), 2021, 9(9): 1214. DOI:10.3390/healthcare9091214
    4. Ayati M, Koyutürk M. PoCos: Population Covering Locus Sets for Risk Assessment in Complex Diseases. PLoS Comput Biol, 2016, 12(11): e1005195. DOI:10.1371/journal.pcbi.1005195
    5. Zhang Q, Zhao Y, Zhang R, et al. A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies. PLoS One, 2016, 11(6): e0156895. DOI:10.1371/journal.pone.0156895

    Other cited types(0)

Catalog

    Article Metrics

    Article views (840) PDF downloads (238) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return