Citation: | Wenqian Xia, Xiao Han, Lin Wang. E26 transformation-specific 1 is implicated in the inhibition of osteogenic differentiation induced by chronic high glucose by directly regulating Runx2 expression[J]. The Journal of Biomedical Research, 2022, 36(1): 39-47. DOI: 10.7555/JBR.35.20210123 |
[1] |
Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis[J]. Am J Obstet Gynecol, 2006, 194(2 Suppl 1): S3–S11. doi: 10.1016/j.ajog.2005.08.047
|
[2] |
Ala M, Jafari RM, Dehpour AR. Diabetes mellitus and osteoporosis correlation: challenges and hopes[J]. Curr Diabetes Rev, 2020, 16(9): 984–1001. doi: 10.2174/1573399816666200324152517
|
[3] |
Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol, 2018, 14(2): 88–98. doi: 10.1038/nrendo.2017.151
|
[4] |
Cheng F, Carroll L, Joglekar MV, et al. Diabetes, metabolic disease, and telomere length[J]. Lancet Diabetes Endocrinol, 2021, 9(2): 117–126. doi: 10.1016/S2213-8587(20)30365-X
|
[5] |
Qu B, Gong K, Yang HS, et al. MiR-449 overexpression inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via suppressing Sirt1/Fra-1 pathway in high glucose and free fatty acids microenvironment[J]. Biochem Biophys Res Commun, 2018, 496(1): 120–126. doi: 10.1016/j.bbrc.2018.01.009
|
[6] |
Wang R, Zhang Y, Jin F, et al. High-glucose-induced miR-214–3p inhibits BMSCs osteogenic differentiation in type 1 diabetes mellitus[J]. Cell Death Discov, 2019, 5: 143. doi: 10.1038/s41420-019-0223-1
|
[7] |
Yang L, Liu J, Shan Q, et al. High glucose inhibits proliferation and differentiation of osteoblast in alveolar bone by inducing pyroptosis[J]. Biochem Biophys Res Commun, 2020, 522(2): 471–478. doi: 10.1016/j.bbrc.2019.11.080
|
[8] |
Zhai Z, Chen W, Hu Q, et al. High glucose inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via regulating miR-493–5p/ZEB2 signalling[J]. J Biochem, 2020, 167(6): 613–621. doi: 10.1093/jb/mvaa011
|
[9] |
Zhou R, Ma Y, Tao Z, et al. Melatonin inhibits glucose-induced apoptosis in osteoblastic cell line through PERK-eIF2α-ATF4 pathway[J]. Front Pharmacol, 2020, 11: 602307. doi: 10.3389/fphar.2020.602307
|
[10] |
Mohsin S, Baniyas MM, AlDarmaki RS, et al. An update on therapies for the treatment of diabetes-induced osteoporosis[J]. Expert Opin Biol Ther, 2019, 19(9): 937–948. doi: 10.1080/14712598.2019.1618266
|
[11] |
Casie Chetty S, Sumanas S. Ets1 functions partially redundantly with Etv2 to promote embryonic vasculogenesis and angiogenesis in zebrafish[J]. Dev Biol, 2020, 465(1): 11–22. doi: 10.1016/j.ydbio.2020.06.007
|
[12] |
Li R, Dong Y, Li F. ETS Proto-Oncogene 1 suppresses MicroRNA-128 transcription to promote osteogenic differentiation through the HOXA13/β-catenin axis[J]. Front Physiol, 2021, 12: 626248. doi: 10.3389/fphys.2021.626248
|
[13] |
Taveirne S, Wahlen S, Van Loocke W, et al. The transcription factor ETS1 is an important regulator of human NK cell development and terminal differentiation[J]. Blood, 2020, 136(3): 288–298. doi: 10.1182/blood.2020005204
|
[14] |
Tomar S, Plotnik JP, Haley J, et al. ETS1 induction by the microenvironment promotes ovarian cancer metastasis through focal adhesion kinase[J]. Cancer Lett, 2018, 414: 190–204. doi: 10.1016/j.canlet.2017.11.012
|
[15] |
Fan Q, Li Y, Sun Q, et al. miR-532–3p inhibits osteogenic differentiation in MC3T3-E1 cells by downregulating ETS1[J]. Biochem Biophys Res Commun, 2020, 525(2): 498–504. doi: 10.1016/j.bbrc.2020.02.126
|
[16] |
Vary CPH, Li V, Raouf A, et al. Involvement of Ets transcription factors and targets in osteoblast differentiation and matrix mineralization[J]. Exp Cell Res, 2000, 257(1): 213–222. doi: 10.1006/excr.2000.4879
|
[17] |
Du ZJ, Kamei M, Suzuki M, et al. Coordinated expression of Ets-1, pERK1/2, and VEGF in retina of streptozotocin-induced diabetic rats[J]. Ophthalmic Res, 2007, 39(4): 224–231. doi: 10.1159/000104831
|
[18] |
Seeger FH, Chen L, Spyridopoulos I, et al. Downregulation of ETS rescues diabetes-induced reduction of endothelial progenitor cells[J]. PLoS One, 2009, 4(2): e4529. doi: 10.1371/journal.pone.0004529
|
[19] |
Geng XD, Wang WW, Feng Z, et al. Identification of key genes and pathways in diabetic nephropathy by bioinformatics analysis[J]. J Diabetes Investig, 2019, 10(4): 972–984. doi: 10.1111/jdi.12986
|
[20] |
Wang WK, Lu QH, Zhang JN, et al. HMGB1 mediates hyperglycaemia-induced cardiomyocyte apoptosis via ERK/Ets-1 signalling pathway[J]. J Cell Mol Med, 2014, 18(11): 2311–2320. doi: 10.1111/jcmm.12399
|
[21] |
Chen F, Sha M, Wang Y, et al. Transcription factor Ets-1 links glucotoxicity to pancreatic beta cell dysfunction through inhibiting PDX-1 expression in rodent models[J]. Diabetologia, 2016, 59(2): 316–324. doi: 10.1007/s00125-015-3805-3
|
[22] |
Liu D, Wang K, Li K, et al. Ets-1 deficiency alleviates nonalcoholic steatohepatitis via weakening TGF-β1 signaling-mediated hepatocyte apoptosis[J]. Cell Death Dis, 2019, 10(6): 458. doi: 10.1038/s41419-019-1672-4
|
[23] |
Lo IC, Lin TM, Chou LH, et al. Ets-1 mediates platelet-derived growth factor-BB-induced thrombomodulin expression in human vascular smooth muscle cells[J]. Cardiovasc Res, 2009, 81(4): 771–779. doi: 10.1093/cvr/cvn351
|
[24] |
Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2[J]. Int J Mol Sci, 2019, 20(7): 1694. doi: 10.3390/ijms20071694
|
[25] |
Vimalraj S, Arumugam B, Miranda PJ, et al. Runx2: Structure, function, and phosphorylation in osteoblast differentiation[J]. Int J Biol Macromol, 2015, 78: 202–208. doi: 10.1016/j.ijbiomac.2015.04.008
|
[26] |
Wang X, Schröder HC, Feng Q, et al. Isoquercitrin and polyphosphate co-enhance mineralization of human osteoblast-like SaOS-2 cells via separate activation of two RUNX2 cofactors AFT6 and Ets1[J]. Biochem Pharmacol, 2014, 89(3): 413–421. doi: 10.1016/j.bcp.2014.03.020
|
[27] |
Chen Y, Hu Y, Yang L, et al. Runx2 alleviates high glucose-suppressed osteogenic differentiation via PI3K/AKT/GSK3β/β-catenin pathway[J]. Cell Biol Int, 2017, 41(8): 822–832. doi: 10.1002/cbin.10779
|
[28] |
Kichenbrand C, Grossin L, Menu P, et al. Behaviour of human dental pulp stem cell in high glucose condition: impact on proliferation and osteogenic differentiation[J]. Arch Oral Biol, 2020, 118: 104859. doi: 10.1016/j.archoralbio.2020.104859
|
[29] |
Zheng DH, Han ZQ, Wang XX, et al. Erythropoietin attenuates high glucose-induced oxidative stress and inhibition of osteogenic differentiation in periodontal ligament stem cell (PDLSCs)[J]. Chem Biol Interact, 2019, 305: 40–47. doi: 10.1016/j.cbi.2019.03.007
|
[30] |
Zhang Y, Hassan MQ, Xie RL, et al. Co-stimulation of the bone-related Runx2 P1 promoter in mesenchymal cells by SP1 and ETS transcription factors at polymorphic purine-rich DNA sequences (Y-repeats)[J]. J Biol Chem, 2009, 284(5): 3125–3135. doi: 10.1074/jbc.M807466200
|
[1] | Zhaoye Qian, Zhe Zhang, Lanqi Cen, Yaohua Ke, Jie Shao, Manman Tian, Baorui Liu. Mycobacterium smegmatis enhances shikonin-induced immunogenic cell death—an efficient in situ tumor vaccine strategy[J]. The Journal of Biomedical Research, 2024, 38(4): 369-381. DOI: 10.7555/JBR.38.20240049 |
[2] | Lulu Fan, Hao Wang, Shuai Ben, Yifei Cheng, Silu Chen, Zhutao Ding, Lingyan Zhao, Shuwei Li, Meilin Wang, Gong Cheng. Genetic variant in a BaP-activated super-enhancer increases prostate cancer risk by promoting AhR-mediated FAM227A expression[J]. The Journal of Biomedical Research, 2024, 38(2): 149-162. DOI: 10.7555/JBR.37.20230049 |
[3] | Cui Qi, Jiaqi Zhang, Yuanyuan Wang, Mingyan Lin, Jun Gao, Haiying Lu. Valproic acid enhances neurosphere formation in cultured rat embryonic cortical cells through TGFβ1 signaling[J]. The Journal of Biomedical Research, 2022, 36(2): 127-140. DOI: 10.7555/JBR.36.20210109 |
[4] | Xu Wenbin, Yan Han, Xu Lulu, Li Mingna, Gao Wentao, Jiang Kuirong, Wu Junli, Miao Yi. Correlation between radiologic features on contrast-enhanced CT and pathological tumor grades in pancreatic neuroendocrine neoplasms[J]. The Journal of Biomedical Research, 2021, 35(3): 179-188. DOI: 10.7555/JBR.34.20200039 |
[5] | Yang Lukun, Tautz Timothy, Zhang Shulin, Fomina Alla, Liu Hong. The current status of malignant hyperthermia[J]. The Journal of Biomedical Research, 2020, 34(2): 75-85. DOI: 10.7555/JBR.33.20180089 |
[6] | Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065 |
[7] | Cuiying Li, Haiyan Gong, Lijun Ling, Liwen Du, Tong Su, Shui Wang, Jie Wang. Diagnostic performance of contrast-enhanced ultrasound and enhanced magnetic resonance for breast nodules[J]. The Journal of Biomedical Research, 2018, 32(3): 198-207. DOI: 10.7555/JBR.32.20180015 |
[8] | Nolan B. Ayers, Chenming Sun, Shi-You Chen. Transforming growth factor-β signaling in systemic sclerosis[J]. The Journal of Biomedical Research, 2018, 32(1): 3-12. DOI: 10.7555/JBR.31.20170034 |
[9] | Jun Han, Chuanbing Shi, Xiaogang Dong, Jie Wang, Hao Wen, Baolin Wang, Zhenyu He. Laparoscopic abdomino-perineal resection for patients with anorectal malignant melanoma: a report of 4 cases[J]. The Journal of Biomedical Research, 2016, 30(5): 436-440. DOI: 10.7555/JBR.27.20120099 |
[10] | Subhasree Nag, Jiangjiang Qin, Kalkunte S. Srivenugopal, Minghai Wang, Ruiwen Zhang. The MDM2-p53 pathway revisited[J]. The Journal of Biomedical Research, 2013, 27(4): 254-271. DOI: 10.7555/JBR.27.20130030 |
1. | Langyan S, Bhardwaj R, Kumari J, et al. Nutritional Diversity in Native Germplasm of Maize Collected From Three Different Fragile Ecosystems of India. Front Nutr, 2022, 9: 812599. DOI:10.3389/fnut.2022.812599 |
2. | Juvinao-Quintero DL, Cardenas A, Perron P, et al. Associations between an integrated component of maternal glycemic regulation in pregnancy and cord blood DNA methylation. Epigenomics, 2021, 13(18): 1459-1472. DOI:10.2217/epi-2021-0220 |
3. | Zhang J, Wu X. Predict Health Care Accessibility for Texas Medicaid Gap. Healthcare (Basel), 2021, 9(9): 1214. DOI:10.3390/healthcare9091214 |
4. | Ayati M, Koyutürk M. PoCos: Population Covering Locus Sets for Risk Assessment in Complex Diseases. PLoS Comput Biol, 2016, 12(11): e1005195. DOI:10.1371/journal.pcbi.1005195 |
5. | Zhang Q, Zhao Y, Zhang R, et al. A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies. PLoS One, 2016, 11(6): e0156895. DOI:10.1371/journal.pone.0156895 |