4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Wenqian Xia, Xiao Han, Lin Wang. E26 transformation-specific 1 is implicated in the inhibition of osteogenic differentiation induced by chronic high glucose by directly regulating Runx2 expression[J]. The Journal of Biomedical Research, 2022, 36(1): 39-47. DOI: 10.7555/JBR.35.20210123
Citation: Wenqian Xia, Xiao Han, Lin Wang. E26 transformation-specific 1 is implicated in the inhibition of osteogenic differentiation induced by chronic high glucose by directly regulating Runx2 expression[J]. The Journal of Biomedical Research, 2022, 36(1): 39-47. DOI: 10.7555/JBR.35.20210123

E26 transformation-specific 1 is implicated in the inhibition of osteogenic differentiation induced by chronic high glucose by directly regulating Runx2 expression

More Information
  • Corresponding author:

    Xiao Han, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China. Tel: +86-25-86869426, E-mail: hanxiao@njmu.edu.cn

    Lin Wang, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, 1 Shanghai Road, Nanjing, Jiangsu 210009, China. Tel: +86-25-69593065, E-mail: lw603@njmu.edu.cn

  • Received Date: July 27, 2021
  • Revised Date: October 07, 2021
  • Accepted Date: October 14, 2021
  • Available Online: December 29, 2021
  • Chronic high glucose (HG) plays a crucial role in the pathogenesis of diabetes-induced osteoporosis by inhibiting the differentiation and proliferation of osteoblasts. This study aims to examine the role of E26 transformation-specific 1 (ETS1) in the inhibition of osteoblast differentiation and proliferation caused by chronic HG, as well as the underlying mechanism. Chronic HG treatment downregulated ETS1 expression and inhibited differentiation and proliferation of MC3T3-E1 cells. Downregulation of ETS1 expression inhibited the differentiation and proliferation of MC3T3-E1 cells under normal glucose conditions, and ETS1 overexpression attenuated the damage to cells exposed to chronic HG. In addition, ETS1 overexpression reversed the decrease in runt-related transcription factor 2 (Runx2) expression in MC3T3-E1 cells treated with chronic HG. Using chromatin immunoprecipitation (ChIP) and luciferase reporter assays, we confirmed that ETS1 directly bound to and increased the activity of the Runx2 promoter. In summary, our study suggested that ETS1 was involved in the inhibitory effect of chronic HG on osteogenic differentiation and proliferation and may be a potential therapeutic target for diabetes-induced osteoporosis.
  • [1]
    Lane NE. Epidemiology, etiology, and diagnosis of osteoporosis[J]. Am J Obstet Gynecol, 2006, 194(2 Suppl 1): S3–S11. doi: 10.1016/j.ajog.2005.08.047
    [2]
    Ala M, Jafari RM, Dehpour AR. Diabetes mellitus and osteoporosis correlation: challenges and hopes[J]. Curr Diabetes Rev, 2020, 16(9): 984–1001. doi: 10.2174/1573399816666200324152517
    [3]
    Zheng Y, Ley SH, Hu FB. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications[J]. Nat Rev Endocrinol, 2018, 14(2): 88–98. doi: 10.1038/nrendo.2017.151
    [4]
    Cheng F, Carroll L, Joglekar MV, et al. Diabetes, metabolic disease, and telomere length[J]. Lancet Diabetes Endocrinol, 2021, 9(2): 117–126. doi: 10.1016/S2213-8587(20)30365-X
    [5]
    Qu B, Gong K, Yang HS, et al. MiR-449 overexpression inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via suppressing Sirt1/Fra-1 pathway in high glucose and free fatty acids microenvironment[J]. Biochem Biophys Res Commun, 2018, 496(1): 120–126. doi: 10.1016/j.bbrc.2018.01.009
    [6]
    Wang R, Zhang Y, Jin F, et al. High-glucose-induced miR-214–3p inhibits BMSCs osteogenic differentiation in type 1 diabetes mellitus[J]. Cell Death Discov, 2019, 5: 143. doi: 10.1038/s41420-019-0223-1
    [7]
    Yang L, Liu J, Shan Q, et al. High glucose inhibits proliferation and differentiation of osteoblast in alveolar bone by inducing pyroptosis[J]. Biochem Biophys Res Commun, 2020, 522(2): 471–478. doi: 10.1016/j.bbrc.2019.11.080
    [8]
    Zhai Z, Chen W, Hu Q, et al. High glucose inhibits osteogenic differentiation of bone marrow mesenchymal stem cells via regulating miR-493–5p/ZEB2 signalling[J]. J Biochem, 2020, 167(6): 613–621. doi: 10.1093/jb/mvaa011
    [9]
    Zhou R, Ma Y, Tao Z, et al. Melatonin inhibits glucose-induced apoptosis in osteoblastic cell line through PERK-eIF2α-ATF4 pathway[J]. Front Pharmacol, 2020, 11: 602307. doi: 10.3389/fphar.2020.602307
    [10]
    Mohsin S, Baniyas MM, AlDarmaki RS, et al. An update on therapies for the treatment of diabetes-induced osteoporosis[J]. Expert Opin Biol Ther, 2019, 19(9): 937–948. doi: 10.1080/14712598.2019.1618266
    [11]
    Casie Chetty S, Sumanas S. Ets1 functions partially redundantly with Etv2 to promote embryonic vasculogenesis and angiogenesis in zebrafish[J]. Dev Biol, 2020, 465(1): 11–22. doi: 10.1016/j.ydbio.2020.06.007
    [12]
    Li R, Dong Y, Li F. ETS Proto-Oncogene 1 suppresses MicroRNA-128 transcription to promote osteogenic differentiation through the HOXA13/β-catenin axis[J]. Front Physiol, 2021, 12: 626248. doi: 10.3389/fphys.2021.626248
    [13]
    Taveirne S, Wahlen S, Van Loocke W, et al. The transcription factor ETS1 is an important regulator of human NK cell development and terminal differentiation[J]. Blood, 2020, 136(3): 288–298. doi: 10.1182/blood.2020005204
    [14]
    Tomar S, Plotnik JP, Haley J, et al. ETS1 induction by the microenvironment promotes ovarian cancer metastasis through focal adhesion kinase[J]. Cancer Lett, 2018, 414: 190–204. doi: 10.1016/j.canlet.2017.11.012
    [15]
    Fan Q, Li Y, Sun Q, et al. miR-532–3p inhibits osteogenic differentiation in MC3T3-E1 cells by downregulating ETS1[J]. Biochem Biophys Res Commun, 2020, 525(2): 498–504. doi: 10.1016/j.bbrc.2020.02.126
    [16]
    Vary CPH, Li V, Raouf A, et al. Involvement of Ets transcription factors and targets in osteoblast differentiation and matrix mineralization[J]. Exp Cell Res, 2000, 257(1): 213–222. doi: 10.1006/excr.2000.4879
    [17]
    Du ZJ, Kamei M, Suzuki M, et al. Coordinated expression of Ets-1, pERK1/2, and VEGF in retina of streptozotocin-induced diabetic rats[J]. Ophthalmic Res, 2007, 39(4): 224–231. doi: 10.1159/000104831
    [18]
    Seeger FH, Chen L, Spyridopoulos I, et al. Downregulation of ETS rescues diabetes-induced reduction of endothelial progenitor cells[J]. PLoS One, 2009, 4(2): e4529. doi: 10.1371/journal.pone.0004529
    [19]
    Geng XD, Wang WW, Feng Z, et al. Identification of key genes and pathways in diabetic nephropathy by bioinformatics analysis[J]. J Diabetes Investig, 2019, 10(4): 972–984. doi: 10.1111/jdi.12986
    [20]
    Wang WK, Lu QH, Zhang JN, et al. HMGB1 mediates hyperglycaemia-induced cardiomyocyte apoptosis via ERK/Ets-1 signalling pathway[J]. J Cell Mol Med, 2014, 18(11): 2311–2320. doi: 10.1111/jcmm.12399
    [21]
    Chen F, Sha M, Wang Y, et al. Transcription factor Ets-1 links glucotoxicity to pancreatic beta cell dysfunction through inhibiting PDX-1 expression in rodent models[J]. Diabetologia, 2016, 59(2): 316–324. doi: 10.1007/s00125-015-3805-3
    [22]
    Liu D, Wang K, Li K, et al. Ets-1 deficiency alleviates nonalcoholic steatohepatitis via weakening TGF-β1 signaling-mediated hepatocyte apoptosis[J]. Cell Death Dis, 2019, 10(6): 458. doi: 10.1038/s41419-019-1672-4
    [23]
    Lo IC, Lin TM, Chou LH, et al. Ets-1 mediates platelet-derived growth factor-BB-induced thrombomodulin expression in human vascular smooth muscle cells[J]. Cardiovasc Res, 2009, 81(4): 771–779. doi: 10.1093/cvr/cvn351
    [24]
    Komori T. Regulation of proliferation, differentiation and functions of osteoblasts by Runx2[J]. Int J Mol Sci, 2019, 20(7): 1694. doi: 10.3390/ijms20071694
    [25]
    Vimalraj S, Arumugam B, Miranda PJ, et al. Runx2: Structure, function, and phosphorylation in osteoblast differentiation[J]. Int J Biol Macromol, 2015, 78: 202–208. doi: 10.1016/j.ijbiomac.2015.04.008
    [26]
    Wang X, Schröder HC, Feng Q, et al. Isoquercitrin and polyphosphate co-enhance mineralization of human osteoblast-like SaOS-2 cells via separate activation of two RUNX2 cofactors AFT6 and Ets1[J]. Biochem Pharmacol, 2014, 89(3): 413–421. doi: 10.1016/j.bcp.2014.03.020
    [27]
    Chen Y, Hu Y, Yang L, et al. Runx2 alleviates high glucose-suppressed osteogenic differentiation via PI3K/AKT/GSK3β/β-catenin pathway[J]. Cell Biol Int, 2017, 41(8): 822–832. doi: 10.1002/cbin.10779
    [28]
    Kichenbrand C, Grossin L, Menu P, et al. Behaviour of human dental pulp stem cell in high glucose condition: impact on proliferation and osteogenic differentiation[J]. Arch Oral Biol, 2020, 118: 104859. doi: 10.1016/j.archoralbio.2020.104859
    [29]
    Zheng DH, Han ZQ, Wang XX, et al. Erythropoietin attenuates high glucose-induced oxidative stress and inhibition of osteogenic differentiation in periodontal ligament stem cell (PDLSCs)[J]. Chem Biol Interact, 2019, 305: 40–47. doi: 10.1016/j.cbi.2019.03.007
    [30]
    Zhang Y, Hassan MQ, Xie RL, et al. Co-stimulation of the bone-related Runx2 P1 promoter in mesenchymal cells by SP1 and ETS transcription factors at polymorphic purine-rich DNA sequences (Y-repeats)[J]. J Biol Chem, 2009, 284(5): 3125–3135. doi: 10.1074/jbc.M807466200
  • Related Articles

    [1]Zhu Chenchen, Jiang Haonan, Deng Wenjie, Zhao Shuo, Li Kaiquan, Wang Yuting, Wei Qinjun, Du Jun. Activation of p38/HSP27 pathway counters melatonin-induced inhibitory effect on proliferation of human gastric cancer cells[J]. The Journal of Biomedical Research, 2019, 33(5): 317-324. DOI: 10.7555/JBR.33.20180066
    [2]Xu Yuyu, Wang Pengqi, Xu Chaoqi, Shan Xiaoyun, Feng Qing. Acrylamide induces HepG2 cell proliferation through upregulation of miR-21 expression[J]. The Journal of Biomedical Research, 2019, 33(3): 181-191. DOI: 10.7555/JBR.31.20170016
    [3]Lintao Wang, Yanyan Peng, Kaikai Shi, Haixiao Wang, Jianlei Lu, Yanli Li, Changyan Ma. Osthole inhibits proliferation of human breast cancer cells by inducing cell cycle arrest and apoptosis[J]. The Journal of Biomedical Research, 2015, 29(2): 132-138. DOI: 10.7555/JBR.27.20120115
    [4]Ning Shi, Shi-You Chen. Mechanisms simultaneously regulate smooth muscle proliferation and differentiation[J]. The Journal of Biomedical Research, 2014, 28(1): 40-46. DOI: 10.7555/JBR.28.20130130
    [5]Zhida Sun, Rong Zhang, Huijuan Wang, Pengtao Jiang, Jiangquan Zhang, Mingshun Zhang, Lei Gu, Xiaofan Yang, Miaojia Zhang, Xiaohui Ji. Serum IL-10 from systemic lupus erythematosus patients suppresses the differentiation and function of monocyte-derived dendritic cells[J]. The Journal of Biomedical Research, 2012, 26(6): 456-466. DOI: 10.7555/JBR.26.20120115
    [6]Mei Ju, Kun Chen, Baozhu Chang, Heng Gu. UVA1 irradiation inhibits fibroblast proliferation and alleviates pathological changes of scleroderma in a mouse model[J]. The Journal of Biomedical Research, 2012, 26(2): 135-142. DOI: 10.1016/S1674-8301(12)60023-2
    [7]Wen Qiu, Yan Li, Jianbo Zhou, Chenhui Zhao, Jing Zhang, Kai Shan, Dan Zhao, Yingwei Wang. TSP-1 promotes glomerular mesangial cell proliferation and extracellular matrix secretion in Thy-1 nephritis rats[J]. The Journal of Biomedical Research, 2011, 25(6): 402-410. DOI: 10.1016/S1674-8301(11)60053-5
    [8]Xiangrong Zuo, Feng Zong, Hui Wang, Qiang Wang, Weiping Xie, Hong Wang. Iptakalim, a novel ATP-sensitive potassium channel opener, inhibits pulmonary arterial smooth muscle cell proliferation by downregulation of PKC-α[J]. The Journal of Biomedical Research, 2011, 25(6): 392-401. DOI: 10.1016/S1674-8301(11)60052-3
    [9]Ping Li, Xiaoming Lu, Yingyi Wang, Lihua Sun, Chunfa Qian, Wei Yan, Ning Liu, Yongping You, Zhen Fu. MiR-181b suppresses proliferation of and reduces chemoresistance to temozolomide in U87 glioma stem cells[J]. The Journal of Biomedical Research, 2010, 24(6): 436-443. DOI: 10.1016/S1674-8301(10)60058-9
    [10]Zhengxian Tao, Bo Chen, Yingming Zhao, Hongwu Chen, Liansheng Wang, Yonghong Yong, Kejiang Cao, Qifeng Yu, Danian Ke, Hua Wang, Zuze Wu, Zhijian Yang. HGF percutaneous endocardial injection induces cardiomyocyte proliferation and rescues cardiac function in pigs[J]. The Journal of Biomedical Research, 2010, 24(3): 198-206.
  • Cited by

    Periodical cited type(8)

    1. Danko M, Chromy L, Ferencik N, et al. Literature Review of an Anterior Deprogrammer to Determine the Centric Relation and Presentation of Cases. Bioengineering (Basel), 2023, 10(12): 1379. DOI:10.3390/bioengineering10121379
    2. Pollis M, Maoddi P, Letizia M, et al. Customized Appliance Device for Force Detection in Bruxism Individuals: An Observational Study. Int J Dent, 2022, 2022: 2524327. DOI:10.1155/2022/2524327
    3. Minakuchi H, Fujisawa M, Abe Y, et al. Managements of sleep bruxism in adult: A systematic review. Jpn Dent Sci Rev, 2022, 58: 124-136. DOI:10.1016/j.jdsr.2022.02.004
    4. Golanska P, Saczuk K, Domarecka M, et al. Temporomandibular Myofascial Pain Syndrome-Aetiology and Biopsychosocial Modulation. A Narrative Review. Int J Environ Res Public Health, 2021, 18(15): 7807. DOI:10.3390/ijerph18157807
    5. Pfeiffer K, El Khassawna T, Malhan D, et al. Is Biofeedback through an Intra-Aural Device an Effective Method to Treat Bruxism? Case Series and Initial Experience. Int J Environ Res Public Health, 2020, 18(1): 51. DOI:10.3390/ijerph18010051
    6. Bergmann A, Edelhoff D, Schubert O, et al. Effect of treatment with a full-occlusion biofeedback splint on sleep bruxism and TMD pain: a randomized controlled clinical trial. Clin Oral Investig, 2020, 24(11): 4005-4018. DOI:10.1007/s00784-020-03270-z
    7. Gao J, Liu L, Gao P, et al. Intelligent Occlusion Stabilization Splint with Stress-Sensor System for Bruxism Diagnosis and Treatment. Sensors (Basel), 2019, 20(1): 89. DOI:10.3390/s20010089
    8. Florjanski W, Malysa A, Orzeszek S, et al. Evaluation of Biofeedback Usefulness in Masticatory Muscle Activity Management-A Systematic Review. J Clin Med, 2019, 8(6): 766. DOI:10.3390/jcm8060766

    Other cited types(0)

Catalog

    Article Metrics

    Article views (844) PDF downloads (238) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return