Citation: | Wenjing Tang, Haiyan Yan, Xiaojun Chen, Yanan Pu, Xin Qi, Liyang Dong, Chuan Su. hUCMSC-derived extracellular vesicles relieve cisplatin-induced granulosa cell apoptosis in mice by transferring anti-apoptotic miRNAs[J]. The Journal of Biomedical Research, 2025, 39(1): 36-49. DOI: 10.7555/JBR.37.20230310 |
Premature ovarian insufficiency (POI) caused by chemotherapy is a common complication in female cancer survivors of childbearing age. Traditional methods, including mesenchymal stem cell (MSC) transplant and hormone replacement therapy, have limited clinical application because of their drawbacks, and more methods need to be developed. In the current study, the potential effects and underlying mechanisms of human umbilical cord MSC-derived extracellular vesicles (hUCMSC-EVs) were investigated in a cisplatin (CDDP)-induced POI mouse model and a human granulosa cell (GC) line. The results showed that hUCMSC-EVs significantly attenuated body weight loss, ovarian weight loss, ovary atrophy, and follicle loss in moderate-dose (1.5 mg/kg) CDDP-induced POI mice, similar to the effects observed with hUCMSCs. We further found that the hUCMSC-EVs inhibited CDDP-induced ovarian GC apoptosis by upregulating anti-apoptotic miRNA levels in GCs, thereby downregulating the mRNA levels of multiple pro-apoptotic genes. In general, our findings indicate that the moderate-dose chemotherapy may be a better choice for clinical oncotherapy, considering effective rescue of the oncotherapy-induced ovarian damage with hUCMSC-EVs. Additionally, multiple miRNAs in hUCMSC-EVs may potentially be used to inhibit the chemotherapy-induced ovarian GC apoptosis, thereby restoring ovarian function and improving the life quality of female cancer patients.
We thank Professor Li Jing from State Key Laboratory of Reproductive Medicine and Offspring Health for offering us biological materials in this research. We thank Jinyang Cai from the State Key Laboratory of Reproductive Medicine and Offspring Health for assistance in microscopy.
Financial support for the current study was provided by the grant from "Blue Engineering" Excellent Young Teacher Foundation in Colleges and Universities of Jiangsu Province (Grant No. KY101R202207 to Xiaojun Chen).
CLC number: R711.75; R730.53, Document code: A
The authors reported no conflict of interests.
[1] |
Rebar RW, Keator CS. Expanding our knowledge of premature ovarian insufficiency[J]. Fertil Steril, 2021, 115(2): 328–329. doi: 10.1016/j.fertnstert.2020.09.145
|
[2] |
Armeni E, Paschou SA, Goulis DG, et al. Hormone therapy regimens for managing the menopause and premature ovarian insufficiency[J]. Best Pract Res Clin Endocrinol Metab, 2021, 35(6): 101561. doi: 10.1016/j.beem.2021.101561
|
[3] |
Rossetti R, Ferrari I, Bonomi M, et al. Genetics of primary ovarian insufficiency[J]. Clin Genet, 2017, 91(2): 183–198. doi: 10.1111/cge.12921
|
[4] |
Zhang S, Zhu D, Mei X, et al. Advances in biomaterials and regenerative medicine for primary ovarian insufficiency therapy[J]. Bioact Mater, 2021, 6(7): 1957–1972. doi: 10.1016/j.bioactmat.2020.12.008
|
[5] |
Gargus E, Deans R, Anazodo A, et al. Management of primary ovarian insufficiency symptoms in survivors of childhood and adolescent cancer[J]. J Natl Compr Canc Netw, 2018, 16(9): 1137–1149. doi: 10.6004/jnccn.2018.7023
|
[6] |
Romani AMP. Cisplatin in cancer treatment[J]. Biochem Pharmacol, 2022, 206: 115323. doi: 10.1016/j.bcp.2022.115323
|
[7] |
Liu C, Pan B, Yang L, et al. Beta defensin 3 enhances ovarian granulosa cell proliferation and migration via ERK1/2 pathway in vitro[J]. Biol Reprod, 2019, 100(4): 1057–1065. doi: 10.1093/biolre/ioy246
|
[8] |
Wang Q, Li X, Wang Q, et al. Heat shock pretreatment improves mesenchymal stem cell viability by heat shock proteins and autophagy to prevent cisplatin-induced granulosa cell apoptosis[J]. Stem Cell Res Ther, 2019, 10(1): 348. doi: 10.1186/s13287-019-1425-4
|
[9] |
Mikhael S, Punjala-Patel A, Gavrilova-Jordan L. Hypothalamic-pituitary-ovarian axis disorders impacting female fertility[J]. Biomedicines, 2019, 7(1): 5. doi: 10.3390/biomedicines7010005
|
[10] |
Matsuda F, Inoue N, Manabe N, et al. Follicular growth and atresia in mammalian ovaries: regulation by survival and death of granulosa cells[J]. J Reprod Dev, 2012, 58(1): 44–50. doi: 10.1262/jrd.2011-012
|
[11] |
Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges[J]. Cell Stem Cell, 2020, 27(4): 523–531. doi: 10.1016/j.stem.2020.09.014
|
[12] |
Xie Q, Liu R, Jiang J, et al. What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment?[J]. Stem Cell Res Ther, 2020, 11(1): 519. doi: 10.1186/s13287-020-02011-z
|
[13] |
Lelek J, Zuba-Surma EK. Perspectives for future use of extracellular vesicles from umbilical cord- and adipose tissue-derived mesenchymal stem/stromal cells in regenerative therapies-synthetic review[J]. Int J Mol Sci, 2020, 21(3): 799. doi: 10.3390/ijms21030799
|
[14] |
Kotani A, Ito M, Kudo K. Non-coding RNAs and lipids mediate the function of extracellular vesicles in cancer cross-talk[J]. Semin Cancer Biol, 2021, 74: 121–133. doi: 10.1016/j.semcancer.2021.04.017
|
[15] |
Polonio AM, García-Velasco JA, Herraiz S. Stem cell paracrine signaling for treatment of premature ovarian insufficiency[J]. Front Endocrinol, 2021, 11: 626322. doi: 10.3389/fendo.2020.626322
|
[16] |
Pan R, Ryan J, Pan D, et al. Augmenting NK cell-based immunotherapy by targeting mitochondrial apoptosis[J]. Cell, 2022, 185(9): 1521–1538.e18. doi: 10.1016/j.cell.2022.03.030
|
[17] |
Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases[J]. Signal Transduct Target Ther, 2022, 7(1): 272. doi: 10.1038/s41392-022-01134-4
|
[18] |
Dong L, Pu Y, Zhang L, et al. Human umbilical cord mesenchymal stem cell-derived extracellular vesicles promote lung adenocarcinoma growth by transferring miR-410[J]. Cell Death Dis, 2018, 9(2): 218. doi: 10.1038/s41419-018-0323-5
|
[19] |
Wang Z, Wang Y, Yang T, et al. Study of the reparative effects of menstrual-derived stem cells on premature ovarian failure in mice[J]. Stem Cell Res Ther, 2017, 8(1): 11. doi: 10.1186/s13287-016-0458-1
|
[20] |
Chen W, Xu X, Wang L, et al. Low expression of Mfn2 is associated with mitochondrial damage and apoptosis of ovarian tissues in the premature ovarian failure model[J]. PLoS One, 2015, 10(9): e0136421. doi: 10.1371/journal.pone.0136421
|
[21] |
Gouy S, Ferron G, Glehen O, et al. Results of a multicenter phase I dose-finding trial of hyperthermic intraperitoneal cisplatin after neoadjuvant chemotherapy and complete cytoreductive surgery and followed by maintenance bevacizumab in initially unresectable ovarian cancer[J]. Gynecol Oncol, 2016, 142(2): 237–242. doi: 10.1016/j.ygyno.2016.05.032
|
[22] |
Qu Q, Liu L, Cui Y, et al. miR-126-3p containing exosomes derived from human umbilical cord mesenchymal stem cells promote angiogenesis and attenuate ovarian granulosa cell apoptosis in a preclinical rat model of premature ovarian failure[J]. Stem Cell Res Ther, 2022, 13(1): 352. doi: 10.1186/s13287-022-03056-y
|
[23] |
O'Brien K, Breyne K, Ughetto S, et al. RNA delivery by extracellular vesicles in mammalian cells and its applications[J]. Nat Rev Mol Cell Biol, 2020, 21(10): 585–606. doi: 10.1038/s41580-020-0251-y
|
[24] |
Zhang Z, Zou X, Zhang R, et al. Human umbilical cord mesenchymal stem cell-derived exosomal miR-146a-5p reduces microglial-mediated neuroinflammation via suppression of the IRAK1/TRAF6 signaling pathway after ischemic stroke[J]. Aging (Albany NY), 2021, 13(2): 3060–3079. doi: 10.18632/aging.202466
|
[25] |
Zhu Z, Zhang Y, Zhang Y, et al. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate growth of VK2 vaginal epithelial cells through MicroRNAs in vitro[J]. Hum Reprod, 2019, 34(2): 248–260. doi: 10.1093/humrep/dey344
|
[26] |
Ding C, Zhu L, Shen H, et al. Exosomal miRNA-17-5p derived from human umbilical cord mesenchymal stem cells improves ovarian function in premature ovarian insufficiency by regulating SIRT7[J]. Stem Cells, 2020, 38(9): 1137–1148. doi: 10.1002/stem.3204
|
[27] |
Cao J, Wang B, Tang T, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury[J]. Theranostics, 2021, 11(11): 5248–5266. doi: 10.7150/thno.54550
|
[28] |
Wang Y, Lai X, Wu D, et al. Umbilical mesenchymal stem cell-derived exosomes facilitate spinal cord functional recovery through the miR-199a-3p/145-5p-mediated NGF/TrkA signaling pathway in rats[J]. Stem Cell Res Ther, 2021, 12(1): 117. doi: 10.1186/s13287-021-02148-5
|
[29] |
Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs[J]. Annu Rev Biochem, 2010, 79: 351–379. doi: 10.1146/annurev-biochem-060308-103103
|
[30] |
Sullivan SD, Sarrel PM, Nelson LM. Hormone replacement therapy in young women with primary ovarian insufficiency and early menopause[J]. Fertil Steril, 2016, 106(7): 1588–1599. doi: 10.1016/j.fertnstert.2016.09.046
|
[31] |
Bayefsky MJ, Sampson A, Blakemore JK, et al. Experiences and intentions of patients undergoing medically indicated oocyte or embryo cryopreservation: a qualitative study[J]. Hum Reprod, 2024, 39(1): 147–153. doi: 10.1093/humrep/dead228
|
[32] |
Tsang RY, Al-Fayea T, Au HJ. Cisplatin overdose: toxicities and management[J]. Drug Saf, 2009, 32(12): 1109–1122. doi: 10.2165/11316640-000000000-00000
|
[33] |
Meng X, Ma F, Yu D. The diverse effects of cisplatin on tumor microenvironment: insights and challenges for the delivery of cisplatin by nanoparticles[J]. Environ Res, 2024, 240(Pt 1): 117362.
|
[34] |
Federico C, Sun J, Muz B, et al. Localized delivery of cisplatin to cervical cancer improves its therapeutic efficacy and minimizes its side effect profile[J]. Int J Radiat Oncol Biol Phys, 2021, 109(5): 1483–1494. doi: 10.1016/j.ijrobp.2020.11.052
|
[35] |
Lange-Consiglio A, Capra E, Herrera V, et al. Application of perinatal derivatives in ovarian diseases[J]. Front Bioeng Biotechnol, 2022, 10: 811875. doi: 10.3389/fbioe.2022.811875
|
[36] |
Jing X, Xie M, Ding K, et al. Exosome-transmitted miR-769-5p confers cisplatin resistance and progression in gastric cancer by targeting CASP9 and promoting the ubiquitination degradation of p53[J]. Clin Transl Med, 2022, 12(5): e780. doi: 10.1002/ctm2.780
|
[37] |
Galluzzi L, Senovilla L, Vitale I, et al. Molecular mechanisms of cisplatin resistance[J]. Oncogene, 2012, 31(15): 1869–1883. doi: 10.1038/onc.2011.384
|
[38] |
Low WK, Kong SWW, Tan MGK. Ototoxicity from combined Cisplatin and radiation treatment: an in vitro study[J]. Int J Otolaryngol, 2010, 2010: 523976. doi: 10.1155/2010/523976
|
[39] |
Zhou J, Yao Z, Zheng Z, et al. G-MDSCs-derived exosomal miRNA-143-3p promotes proliferation via targeting of ITM2B in lung cancer[J]. Onco Targets Ther, 2020, 13: 9701–9719. doi: 10.2147/OTT.S256378
|
[40] |
Martins F, Santos I, da Cruz e silva OAB, et al. The role of the integral type II transmembrane protein BRI2 in health and disease[J]. Cell Mol Life Sci, 2021, 78(21-22): 6807–6822. doi: 10.1007/s00018-021-03932-5
|
[1] | Tiwari-Heckler Shilpa, Jiang Z. Gordon, Popov Yury, J. Mukamal Kenneth. Daily high-dose aspirin does not lower APRI in the Aspirin-Myocardial Infarction Study[J]. The Journal of Biomedical Research, 2020, 34(2): 139-142. DOI: 10.7555/JBR.33.20190041 |
[2] | Tao Chun'ai, Gan Yongxin, Su Weidong, Li Zhutian, Tang Xiaolan. Effectiveness of hospital disinfection and experience learnt from 11 years of surveillance[J]. The Journal of Biomedical Research, 2019, 33(6): 408-413. DOI: 10.7555/JBR.33.20180118 |
[3] | Huan Liu, Shijiang Zhang, Yongfeng Shao, Xiaohu Lu, Weidong Gu, Buqing Ni, Qun Gu, Junjie Du. Biomechanical characterization of a novel ring connector for sutureless aortic anastomosis[J]. The Journal of Biomedical Research, 2018, 32(6): 454-460. DOI: 10.7555/JBR.31.20170011 |
[4] | Minbo Zang, Qiao Zhou, Yunfei Zhu, Mingxi Liu, Zuomin Zhou. Effects of chemotherapeutic agent bendamustine for nonhodgkin lymphoma on spermatogenesis in mice[J]. The Journal of Biomedical Research, 2018, 32(6): 442-453. DOI: 10.7555/JBR.31.20170023 |
[5] | Kaibo Lin, Shikun Zhang, Jieli Chen, Ding Yang, Mengyi Zhu, Eugene Yujun Xu. Generation and functional characterization of a conditional Pumilio2 null allele[J]. The Journal of Biomedical Research, 2018, 32(6): 434-441. DOI: 10.7555/JBR.32.20170117 |
[6] | Huanqiang Wang, Congying Yang, Siyuan Wang, Tian Wang, Jingling Han, Kai Wei, Fucun Liu, Jida Xu, Xianzhen Peng, Jianming Wang. Cell-free plasma hypermethylated CASZ1, CDH13 and ING2 are promising biomarkers of esophageal cancer[J]. The Journal of Biomedical Research, 2018, 32(6): 424-433. DOI: 10.7555/JBR.32.20170065 |
[7] | Fengzhen Wang, Mingwan Zhang, Dongsheng Zhang, Yuan Huang, Li Chen, Sunmin Jiang, Kun Shi, Rui Li. Preparation, optimization, and characterization of chitosancoated solid lipid nanoparticles for ocular drug delivery[J]. The Journal of Biomedical Research, 2018, 32(6): 411-423. DOI: 10.7555/JBR.32.20160170 |
[8] | Christopher J. Danford, Zemin Yao, Z. Gordon Jiang. Non-alcoholic fatty liver disease: a narrative review of genetics[J]. The Journal of Biomedical Research, 2018, 32(6): 389-400. DOI: 10.7555/JBR.32.20180045 |
[9] | Yong Ji, Mingfeng Zheng, Shugao Ye, Jingyu Chen, Yijiang Chen. PTEN and Ki67 expression is associated with clinicopathologic features of non-small cell lung cancer[J]. The Journal of Biomedical Research, 2014, 28(6): 462-467. DOI: 10.7555/JBR.27.20130084 |
[10] | Xiaodong Yang, Ping Huang, Feng Wang, Zekuan Xu, Xiaonin Wang. Growth hormone receptor expression in human primary gastric adenocarcinoma[J]. The Journal of Biomedical Research, 2012, 26(5): 307-314. DOI: 10.7555/JBR.26.20110133 |
1. | Tazesh S, Tamizi E, Siahi Shadbad M, et al. Comparative Stability of Two Anti-hyperpigmentation Agents: Kojic Acid as a Natural Metabolite and Its Di-Palmitate Ester, Under Oxidative Stress; Application to Pharmaceutical Formulation Design. Adv Pharm Bull, 2022, 12(2): 329-335. DOI:10.34172/apb.2022.031 |