3.8

CiteScore

2.4

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Shuhan Chen, Xuchun Wang, Nan Yang, Yuechi Song, He Cheng, Yujie Sun. p53 exerts anticancer effects by regulating enhancer formation and activity[J]. The Journal of Biomedical Research, 2024, 38(4): 334-347. DOI: 10.7555/JBR.37.20230206
Citation: Shuhan Chen, Xuchun Wang, Nan Yang, Yuechi Song, He Cheng, Yujie Sun. p53 exerts anticancer effects by regulating enhancer formation and activity[J]. The Journal of Biomedical Research, 2024, 38(4): 334-347. DOI: 10.7555/JBR.37.20230206

p53 exerts anticancer effects by regulating enhancer formation and activity

More Information
  • Corresponding author:

    He Cheng and Yujie Sun, Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China. E-mails: chenghe@njmu.edu.cn (Cheng) and yujiesun@njmu.edu.cn (Sun)

  • Received Date: August 31, 2023
  • Revised Date: February 07, 2024
  • Accepted Date: March 04, 2024
  • Available Online: March 06, 2024
  • Published Date: May 28, 2024
  • The abnormality of the p53 tumor suppressor is crucial in lung cancer development, because p53 regulates target gene promoters to combat cancer. Recent studies have shown extensive p53 binding to enhancer elements. However, whether p53 exerts a tumor suppressor role by shaping the enhancer landscape remains poorly understood. In the current study, we employed several functional genomics approaches to assess the enhancer activity at p53 binding sites throughout the genome based on our established TP53 knockout (KO) human bronchial epithelial cells (BEAS-2B). A total of 943 active regular enhancers and 370 super-enhancers (SEs) disappeared upon the deletion of p53, indicating that p53 modulates the activity of hundreds of enhancer elements. We found that one p53-dependent SE, located on chromosome 9 and designated as KLF4-SE, regulated the expression of the Krüppel-like factor 4 (KLF4) gene. Furthermore, the deletion of p53 significantly decreased the KLF4-SE enhancer activity and the KLF4 expression, but increased colony formation ability in the nitrosamines 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced cell transformation model. Subsequently, in TP53 KO cells, the overexpression of KLF4 partially reversed the increased clonogenic capacity caused by p53 deficiency. Consistently, KLF4 expression also decreased in lung cancer tissues and cell lines. It appeared that overexpression of KLF4 significantly suppressed the proliferation and migration of lung cancer cells. Collectively, our results suggest that the regulation of enhancer formation and activity by p53 is an integral component of the p53 tumor suppressor function. Therefore, our findings offer some novel insights into the regulation mechanism of p53 in lung oncogenesis and introduce a new strategy for screening therapeutic targets.

  • This study was supported by grants from the National Natural Science Foundation of China (Grant No. 82072580).

    We thank the participants who generously gave their help in the study. We are grateful to Professor Chaojun Li, Professor Lin Xu, and Professor Yonggang Zhao for their friendly provision of cells.

    CLC number: R73, Document code: A

    The authors reported no conflict of interests.

  • [1]
    Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge[J]. Contemp Oncol, 2015, 19(1A): A68–A77. https://pubmed.ncbi.nlm.nih.gov/25691825/
    [2]
    Donehower LA, Soussi T, Korkut A, et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas[J]. Cell Rep, 2019, 28(11): 3010. doi: 10.1016/j.celrep.2019.08.061
    [3]
    Younger ST, Rinn JL. p53 regulates enhancer accessibility and activity in response to DNA damage[J]. Nucleic Acids Res, 2017, 45(17): 9889–9900. doi: 10.1093/nar/gkx577
    [4]
    Sur I, Taipale J. The role of enhancers in cancer[J]. Nat Rev Cancer, 2016, 16(8): 483–493. doi: 10.1038/nrc.2016.62
    [5]
    Field A, Adelman K. Evaluating enhancer function and transcription[J]. Annu Rev Biochem, 2020, 89: 213–234. doi: 10.1146/annurev-biochem-011420-095916
    [6]
    Sengupta S, George RE. Super-enhancer-driven transcriptional dependencies in cancer[J]. Trends Cancer, 2017, 3(4): 269–281. doi: 10.1016/j.trecan.2017.03.006
    [7]
    Mansour MR, Abraham BJ, Anders L, et al. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element[J]. Science, 2014, 346(6215): 1373–1377. doi: 10.1126/science.1259037
    [8]
    Oldridge DA, Wood AC, Weichert-Leahey N, et al. Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism[J]. Nature, 2015, 528(7582): 418–421. doi: 10.1038/nature15540
    [9]
    Zabidi MA, Stark A. Regulatory enhancer-core-promoter communication via transcription factors and cofactors[J]. Trends Genet, 2016, 32(12): 801–814. doi: 10.1016/j.tig.2016.10.003
    [10]
    Watt AC, Cejas P, DeCristo MJ, et al. CDK4/6 inhibition reprograms the breast cancer enhancer landscape by stimulating AP-1 transcriptional activity[J]. Nat Cancer, 2021, 2(1): 34–48. doi: 10.1038/s43018-020-00135-y
    [11]
    Sun Y, Zhou B, Mao F, et al. HOXA9 reprograms the enhancer landscape to promote leukemogenesis[J]. Cancer Cell, 2018, 34(4): 643–658.e5. doi: 10.1016/j.ccell.2018.08.018
    [12]
    Vyas P, Beno I, Xi Z, et al. Diverse p53/DNA binding modes expand the repertoire of p53 response elements[J]. Proc Natl Acad Sci USA, 2017, 114(40): 10624–10629. doi: 10.1073/pnas.1618005114
    [13]
    Melo CA, Drost J, Wijchers PJ, et al. eRNAs are required for p53-dependent enhancer activity and gene transcription[J]. Mol Cell, 2013, 49(3): 524–535. doi: 10.1016/j.molcel.2012.11.021
    [14]
    Korkmaz G, Lopes R, Ugalde AP, et al. Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9[J]. Nat Biotechnol, 2016, 34(2): 192–198. doi: 10.1038/nbt.3450
    [15]
    Ghaleb AM, Yang VW. Krüppel-like factor 4 (KLF4): what we currently know[J]. Gene, 2017, 611: 27–37. doi: 10.1016/j.gene.2017.02.025
    [16]
    He Z, He J, Xie K. KLF4 transcription factor in tumorigenesis[J]. Cell Death Discov, 2023, 9(1): 118. doi: 10.1038/s41420-023-01416-y
    [17]
    Wang X, Xia S, Li H, et al. The deubiquitinase USP10 regulates KLF4 stability and suppresses lung tumorigenesis[J]. Cell Death Differ, 2020, 27(6): 1747–1764. doi: 10.1038/s41418-019-0458-7
    [18]
    Hu W, Jia Y, Xiao X, et al. KLF4 downregulates hTERT expression and telomerase activity to inhibit lung carcinoma growth[J]. Oncotarget, 2016, 7(33): 52870–52887. doi: 10.18632/oncotarget.9141
    [19]
    Liu S, Yang H, Chen Y, et al. Krüppel-like factor 4 enhances sensitivity of cisplatin to lung cancer cells and inhibits regulating epithelial-to-mesenchymal transition[J]. Oncol Res, 2016, 24(2): 81–87. doi: 10.3727/096504016X14597766487717
    [20]
    Akaogi K, Nakajima Y, Ito I, et al. KLF4 suppresses estrogen-dependent breast cancer growth by inhibiting the transcriptional activity of ERα[J]. Oncogene, 2009, 28(32): 2894–2902. doi: 10.1038/onc.2009.151
    [21]
    Brandt T, Townsley FM, Teufel DP, et al. Molecular basis for modulation of the p53 target selectivity by KLF4[J]. PLoS One, 2012, 7(10): e48252. doi: 10.1371/journal.pone.0048252
    [22]
    Zhang W, Geiman DE, Shields JM, et al. The gut-enriched Kruppel-like factor (Kruppel-like factor 4) mediates the transactivating effect of p53 on the p21WAF1/Cip1 promoter[J]. J Biol Chem, 2000, 275(24): 18391–18398. doi: 10.1074/jbc.C000062200
    [23]
    Kachuri L, Latifovic L, Liu G, et al. Systematic review of genetic variation in chromosome 5p15.33 and telomere length as predictive and prognostic biomarkers for lung cancer[J]. Cancer Epidemiol Biomarkers Prev, 2016, 25(12): 1537–1549. doi: 10.1158/1055-9965.EPI-16-0200
    [24]
    Ahn JM, Kim MS, Kim YI, et al. Proteogenomic analysis of human chromosome 9-encoded genes from human samples and lung cancer tissues[J]. J Proteome Res, 2014, 13(1): 137–146. doi: 10.1021/pr400792p
    [25]
    Liu W, Zhuang C, Huang T, et al. Loss of CDKN2A at chromosome 9 has a poor clinical prognosis and promotes lung cancer progression[J]. Mol Genet Genomic Med, 2020, 8(12): e1521. doi: 10.1002/mgg3.1521
    [26]
    Wang X, Chang S, Wang T, et al. IL7R is correlated with immune cell infiltration in the tumor microenvironment of lung adenocarcinoma[J]. Front Pharmacol, 2022, 13: 857289. doi: 10.3389/fphar.2022.857289
    [27]
    Shi L, Xu Z, Yang Q, et al. IL-7-mediated IL-7R-JAK3/STAT5 signalling pathway contributes to chemotherapeutic sensitivity in non-small-cell lung cancer[J]. Cell Prolif, 2019, 52(6): e12699. doi: 10.1111/cpr.12699
    [28]
    Paulissen G, El Hour M, Rocks N, et al. Control of allergen-induced inflammation and hyperresponsiveness by the metalloproteinase ADAMTS-12[J]. J Immunol, 2012, 189(8): 4135–4143. doi: 10.4049/jimmunol.1103739
    [29]
    Rabadán R, Mohamedi Y, Rubin U, et al. Identification of relevant genetic alterations in cancer using topological data analysis[J]. Nat Commun, 2020, 11(1): 3808. doi: 10.1038/s41467-020-17659-7
    [30]
    Nielsen AO, Jensen CS, Arredouani MS, et al. Variants of the ADRB2 gene in COPD: systematic review and meta-analyses of disease risk and treatment response[J]. COPD:J Chronic Obstruct Pulm Dis, 2017, 14(4): 451–460. doi: 10.1080/15412555.2017.1320370
    [31]
    Ji L, Xu F, Zhang J, et al. ADRB2 expression predicts the clinical outcomes and is associated with immune cells infiltration in lung adenocarcinoma[J]. Sci Rep, 2022, 12(1): 15994. doi: 10.1038/s41598-022-19991-y
    [32]
    Wang L, Zhao H, Zhang L, et al. HSP90AA1, ADRB2, TBL1XR1 and HSPB1 are chronic obstructive pulmonary disease-related genes that facilitate squamous cell lung cancer progression[J]. Oncol Lett, 2020, 19(3): 2115–2122. doi: 10.3892/ol.2020.11318
    [33]
    Gazdar AF, Bunn PA, Minna JD. Small-cell lung cancer: what we know, what we need to know and the path forward[J]. Nat Rev Cancer, 2017, 17(12): 725–737. doi: 10.1038/nrc.2017.87
    [34]
    Barta JA, McMahon SB. Lung-enriched mutations in the p53 tumor suppressor: a paradigm for tissue-specific gain of oncogenic function[J]. Mol Cancer Res, 2019, 17(1): 3–9. doi: 10.1158/1541-7786.MCR-18-0357
  • Related Articles

    [1]Shenya Xu, Zhutao Ding, Shuai Ben, Chen Li, Silu Chen, Lingyan Zhao, Shuwei Li, Dongying Gu. piR-61298 promotes colorectal cancer progression through destabilizing p53 by interacting with USP10[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.39.20250137
    [2]Zhaoye Qian, Zhe Zhang, Lanqi Cen, Yaohua Ke, Jie Shao, Manman Tian, Baorui Liu. Mycobacterium smegmatis enhances shikonin-induced immunogenic cell death—an efficient in situ tumor vaccine strategy[J]. The Journal of Biomedical Research, 2024, 38(4): 369-381. DOI: 10.7555/JBR.38.20240049
    [3]Vitaly Chasov, Damir Davletshin, Elvina Gilyazova, Regina Mirgayazova, Anna Kudriaeva, Raniya Khadiullina, Youyong Yuan, Emil Bulatov. Anticancer therapeutic strategies for targeting mutant p53-Y220C[J]. The Journal of Biomedical Research, 2024, 38(3): 222-232. DOI: 10.7555/JBR.37.20230093
    [4]Liming Gou, Gang Yang, Sujuan Ma, Tong Ding, Luan Sun, Fang Liu, Jin Huang, Wei Gao. Galectin-14 promotes hepatocellular carcinoma tumor growth via enhancing heparan sulfate proteoglycan modification[J]. The Journal of Biomedical Research, 2023, 37(6): 418-430. DOI: 10.7555/JBR.37.20230085
    [5]Wenqian Xia, Xiao Han, Lin Wang. E26 transformation-specific 1 is implicated in the inhibition of osteogenic differentiation induced by chronic high glucose by directly regulating Runx2 expression[J]. The Journal of Biomedical Research, 2022, 36(1): 39-47. DOI: 10.7555/JBR.35.20210123
    [6]Xu Wenbin, Yan Han, Xu Lulu, Li Mingna, Gao Wentao, Jiang Kuirong, Wu Junli, Miao Yi. Correlation between radiologic features on contrast-enhanced CT and pathological tumor grades in pancreatic neuroendocrine neoplasms[J]. The Journal of Biomedical Research, 2021, 35(3): 179-188. DOI: 10.7555/JBR.34.20200039
    [7]Yang Lukun, Tautz Timothy, Zhang Shulin, Fomina Alla, Liu Hong. The current status of malignant hyperthermia[J]. The Journal of Biomedical Research, 2020, 34(2): 75-85. DOI: 10.7555/JBR.33.20180089
    [8]Lihong Chen, Lianxiang Li, Feng Chen, Dalin He. Immunoexpression and prognostic role of p53 in different subtypes of epithelial ovarian carcinoma[J]. The Journal of Biomedical Research, 2012, 26(4): 274-277. DOI: 10.7555/JBR.26.20110103
    [9]Lifeng Zhang, Ning Shao, Qianqian Yu, Lixin Hua, Yuanyuan Mi, Ninghan Feng. Association between p53 Pro72Arg polymorphism and prostate cancer risk: a meta-analysis[J]. The Journal of Biomedical Research, 2011, 25(1): 25-32. DOI: 10.1016/S1674-8301(11)60003-1
    [10]Zhenyu He, Chuanbing Shi, Hao Wen, Fanglong Li, Baolin Wang, Jie Wang. The potential of carcinoembryonic antigen, p53, Ki-67 and glutathion Stransferase-π as clinico-histopathological markers for colorectal cancer[J]. The Journal of Biomedical Research, 2010, 24(1): 51-57.
  • Other Related Supplements

  • Cited by

    Periodical cited type(1)

    1. Espósito ACC, Cassiano DP, Bagatin E, et al. Regarding the alterations in oxidative stress status induced by melasma treatments. Arch Dermatol Res, 2021. DOI:10.1007/s00403-021-02205-2. Online ahead of print

    Other cited types(0)

Catalog

    Corresponding author: Yujie Sun, yujiesun@njmu.edu.cn

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    Figures(6)

    Article Metrics

    Article views (383) PDF downloads (201) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return