Citation: | Alexey N. Inyushkin, Vitalii S. Poletaev, Elena M. Inyushkina, Igor S. Kalberdin, Andrey A. Inyushkin. Irisin/BDNF signaling in the muscle-brain axis and circadian system: A review[J]. The Journal of Biomedical Research, 2024, 38(1): 1-16. DOI: 10.7555/JBR.37.20230133 |
In mammals, the timing of physiological, biochemical and behavioral processes over a 24-h period is controlled by circadian rhythms. To entrain the master clock located in the suprachiasmatic nucleus of the hypothalamus to a precise 24-h rhythm, environmental zeitgebers are used by the circadian system. This is done primarily by signals from the retina via the retinohypothalamic tract, but other cues like exercise, feeding, temperature, anxiety, and social events have also been shown to act as non-photic zeitgebers. The recently identified myokine irisin is proposed to serve as an entraining non-photic signal of exercise. Irisin is a product of cleavage and modification from its precursor membrane fibronectin type Ⅲ domain-containing protein 5 (FNDC5) in response to exercise. Apart from well-known peripheral effects, such as inducing the "browning" of white adipocytes, irisin can penetrate the blood-brain barrier and display the effects on the brain. Experimental data suggest that FNDC5/irisin mediates the positive effects of physical activity on brain functions. In several brain areas, irisin induces the production of brain-derived neurotrophic factor (BDNF). In the master clock, a significant role in gating photic stimuli in the retinohypothalamic synapse for BDNF is suggested. However, the brain receptor for irisin remains unknown. In the current review, the interactions of physical activity and the irisin/BDNF axis with the circadian system are reconceptualized.
None.
The study was supported by the Russian Science Foundation (Grant No. 23-25-00152).
CLC number: R741, Document code: A
The authors reported no conflict of interests.
[1] |
Legård GE, Pedersen BK. Muscle as an endocrine organ[M]//Zoladz JA. Muscle and Exercise Physiology. London: Academic Press, 2019: 285–307.
|
[2] |
Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis[J]. Nature, 2012, 481(7382): 463–468. doi: 10.1038/nature10777
|
[3] |
Wu J, Boström P, Sparks LM, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human[J]. Cell, 2012, 150(2): 366–376. doi: 10.1016/j.cell.2012.05.016
|
[4] |
Wrann CD, White JP, Salogiannnis J, et al. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway[J]. Cell Metab, 2013, 18(5): 649–659. doi: 10.1016/j.cmet.2013.09.008
|
[5] |
Wrann CD. FNDC5/Irisin - their role in the nervous system and as a mediator for beneficial effects of exercise on the brain[J]. Brain Plast, 2015, 1(1): 55–61. doi: 10.3233/BPL-150019
|
[6] |
Hastings MH, Maywood ES, Reddy AB. Two decades of circadian time[J]. J Neuroendocrinol, 2008, 20(6): 812–819. doi: 10.1111/j.1365-2826.2008.01715.x
|
[7] |
Zhang R, Lahens NF, Ballance HI, et al. A circadian gene expression atlas in mammals: implications for biology and medicine[J]. Proc Natl Acad Sci U S A, 2014, 111(45): 16219–16224. doi: 10.1073/pnas.1408886111
|
[8] |
Mure LS, Le HD, Benegiamo G, et al. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues[J]. Science, 2018, 359(6381): eaao0318. doi: 10.1126/science.aao0318
|
[9] |
Aton SJ, Herzog ED. Come together, right..now: synchronization of rhythms in a mammalian circadian clock[J]. Neuron, 2005, 48(4): 531–534. doi: 10.1016/j.neuron.2005.11.001
|
[10] |
Eastman CI, Suh C, Tomaka VA, et al. Circadian rhythm phase shifts and endogenous free-running circadian period differ between African-Americans and European-Americans[J]. Sci Rep, 2015, 5: 8381. doi: 10.1038/srep08381
|
[11] |
Tahara Y, Aoyama S, Shibata S. The mammalian circadian clock and its entrainment by stress and exercise[J]. J Physiol Sci, 2017, 67(1): 1–10. doi: 10.1007/s12576-016-0450-7
|
[12] |
Liu C, Li S, Liu T, et al. Transcriptional coactivator PGC-1α integrates the mammalian clock and energy metabolism[J]. Nature, 2007, 447(7143): 477–481. doi: 10.1038/nature05767
|
[13] |
Welsh DK, Takahashi JS, Kay SA. Suprachiasmatic nucleus: cell autonomy and network properties[J]. Annu Rev Physiol, 2010, 72: 551–577. doi: 10.1146/annurev-physiol-021909-135919
|
[14] |
Harfmann BD, Schroder EA, Esser KA. Circadian rhythms, the molecular clock, and skeletal muscle[J]. J Biol Rhythms, 2015, 30(2): 84–94. doi: 10.1177/0748730414561638
|
[15] |
Tahara Y, Shibata S. Entrainment of the mouse circadian clock: effects of stress, exercise, and nutrition[J]. Free Radic Biol Med, 2018, 119: 129–138. doi: 10.1016/j.freeradbiomed.2017.12.026
|
[16] |
Miyazaki M, Schroder E, Edelmann SE, et al. Age-associated disruption of molecular clock expression in skeletal muscle of the spontaneously hypertensive rat[J]. PLoS One, 2011, 6(11): e27168. doi: 10.1371/journal.pone.0027168
|
[17] |
Higashida K, Kim SH, Jung SR, et al. Effects of resveratrol and SIRT1 on PGC-1α activity and mitochondrial biogenesis: a reevaluation[J]. PLoS Biol, 2013, 11(7): e1001603. doi: 10.1371/journal.pbio.1001603
|
[18] |
Puigserver P, Wu Z, Park CW, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis[J]. Cell, 1998, 92(6): 829–839. doi: 10.1016/S0092-8674(00)81410-5
|
[19] |
Ryan MT, Hoogenraad NJ. Mitochondrial-nuclear communications[J]. Annu Rev Biochem, 2007, 76: 701–722. doi: 10.1146/annurev.biochem.76.052305.091720
|
[20] |
Nakahata Y, Kaluzova M, Grimaldi B, et al. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control[J]. Cell, 2008, 134(2): 329–340. doi: 10.1016/j.cell.2008.07.002
|
[21] |
Chang HC, Guarente L. SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging[J]. Cell, 2013, 153(7): 1448–1460. doi: 10.1016/j.cell.2013.05.027
|
[22] |
Ashton A, Foster RG, Jagannath A. Photic entrainment of the circadian system[J]. Int J Mol Sci, 2022, 23(2): 729. doi: 10.3390/ijms23020729
|
[23] |
Hannibal J. Comparative neurology of circadian photoreception: the retinohypothalamic tract (RHT) in sighted and naturally blind mammals[J]. Front Neurosci, 2021, 15: 640113. doi: 10.3389/fnins.2021.640113
|
[24] |
Michel S, Colwell CS. Cellular communication and coupling within the suprachiasmatic nucleus[J]. Chronobiol Int, 2001, 18(4): 579–600. doi: 10.1081/CBI-100106074
|
[25] |
Grone BP, Chang D, Bourgin P, et al. Acute light exposure suppresses circadian rhythms in clock gene expression[J]. J Biol Rhythms, 2011, 26(1): 78–81. doi: 10.1177/0748730410388404
|
[26] |
Mendoza JY, Dardente H, Escobar C, et al. Dark pulse resetting of the suprachiasmatic clock in Syrian hamsters: behavioral phase-shifts and clock gene expression[J]. Neuroscience, 2004, 127(2): 529–537. doi: 10.1016/j.neuroscience.2004.05.026
|
[27] |
Richardson CE, Gradisar M, Short MA, et al. Can exercise regulate the circadian system of adolescents? Novel implications for the treatment of delayed sleep-wake phase disorder[J]. Sleep Med Rev, 2017, 34: 122–129. doi: 10.1016/j.smrv.2016.06.010
|
[28] |
Sen S, Raingard H, Dumont S, et al. Ultradian feeding in mice not only affects the peripheral clock in the liver, but also the master clock in the brain[J]. Chronobiol Int, 2017, 34(1): 17–36. doi: 10.1080/07420528.2016.1231689
|
[29] |
Wams EJ, Riede SJ, van der Laan I, et al. Mechanisms of non-photic entrainment[M]//Kumar V. Biological Timekeeping: Clocks, Rhythms and Behaviour. New Delhi: Springer, 2017: 395–404.
|
[30] |
Reebs SG, Mrosovsky N. Effects of induced wheel running on the circadian activity rhythms of Syrian hamsters: entrainment and phase response curve[J]. J Biol Rhythms, 1989, 4(1): 39–48. doi: 10.1177/074873048900400103
|
[31] |
van Oosterhout F, Lucassen EA, Houben T, et al. Amplitude of the SCN clock enhanced by the behavioral activity rhythm[J]. PLoS One, 2012, 7(6): e39693. doi: 10.1371/journal.pone.0039693
|
[32] |
Saderi N, Cazarez-Márquez F, Buijs FN, et al. The NPY intergeniculate leaflet projections to the suprachiasmatic nucleus transmit metabolic conditions[J]. Neuroscience, 2013, 246: 291–300. doi: 10.1016/j.neuroscience.2013.05.004
|
[33] |
Inyushkin AN, Petrova AA, Tkacheva MA, et al. Effects of neuropeptide Y on neuron spike activity in the rat suprachiasmatic nucleus in vitro[J]. Neurosci Behav Physiol, 2017, 47(3): 337–344. doi: 10.1007/s11055-017-0402-6
|
[34] |
Melancon MO, Lorrain D, Dionne IJ. Exercise and sleep in aging: emphasis on serotonin[J]. Pathol Biol, 2014, 62(5): 276–283. doi: 10.1016/j.patbio.2014.07.004
|
[35] |
Richards J, Gumz ML. Advances in understanding the peripheral circadian clocks[J]. FASEB J, 2012, 26(9): 3602–3613. doi: 10.1096/fj.12-203554
|
[36] |
Yamazaki S, Numano R, Abe M, et al. Resetting central and peripheral circadian oscillators in transgenic rats[J]. Science, 2000, 288(5466): 682–685. doi: 10.1126/science.288.5466.682
|
[37] |
Schiaffino S, Blaauw B, Dyar KA. The functional significance of the skeletal muscle clock: lessons from Bmal1 knockout models[J]. Skelet Muscle, 2016, 6: 33. doi: 10.1186/s13395-016-0107-5
|
[38] |
Schroder EA, Esser KA. Circadian rhythms, skeletal muscle molecular clocks, and exercise[J]. Exerc Sport Sci Rev, 2013, 41(4): 224–229. doi: 10.1097/JES.0b013e3182a58a70
|
[39] |
Hodge BA, Wen Y, Riley LA, et al. The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle[J]. Skelet Muscle, 2015, 5: 17. doi: 10.1186/s13395-015-0039-5
|
[40] |
Pizarro A, Hayer K, Lahens NF, et al. CircaDB: a database of mammalian circadian gene expression profiles[J]. Nucleic Acids Res, 2013, 41(D1): D1009–D1013. doi: 10.1093/nar/gks1161
|
[41] |
Riley LA, Esser KA. The role of the molecular clock in skeletal muscle and what it is teaching us about muscle-bone crosstalk[J]. Curr Osteoporos Rep, 2017, 15(3): 222–230. doi: 10.1007/s11914-017-0363-2
|
[42] |
Maak S, Norheim F, Drevon CA, et al. Progress and challenges in the biology of FNDC5 and irisin[J]. Endocr Rev, 2021, 42(4): 436–456. doi: 10.1210/endrev/bnab003
|
[43] |
Roca-Rivada A, Castelao C, Senin LL, et al. FNDC5/irisin is not only a myokine but also an adipokine[J]. PLoS One, 2013, 8(4): e60563. doi: 10.1371/journal.pone.0060563
|
[44] |
Huh JY. The role of exercise-induced myokines in regulating metabolism[J]. Arch Pharm Res, 2018, 41(1): 14–29. doi: 10.1007/s12272-017-0994-y
|
[45] |
Mattson MP, Moehl K, Ghena N, et al. Intermittent metabolic switching, neuroplasticity and brain health[J]. Nat Rev Neurosci, 2018, 19(2): 63–80. https://www.nstl.gov.cn/paper_detail.html?id=ef87d2288e906ac1a09d969b0229074f
|
[46] |
Handschin C, Spiegelman BM. The role of exercise and PGC1α in inflammation and chronic disease[J]. Nature, 2008, 454(7203): 463–469. doi: 10.1038/nature07206
|
[47] |
Lecker SH, Zavin A, Cao P, et al. Expression of the irisin precursor FNDC5 in skeletal muscle correlates with aerobic exercise performance in patients with heart failure[J]. Circ Heart Fail, 2012, 5(6): 812–818. doi: 10.1161/CIRCHEARTFAILURE.112.969543
|
[48] |
Zhang W, Chang L, Zhang C, et al. Irisin: a myokine with locomotor activity[J]. Neurosci Lett, 2015, 595: 7–11. doi: 10.1016/j.neulet.2015.03.069
|
[49] |
Zhang Y, Li R, Meng Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling[J]. Diabetes, 2014, 63(2): 514–525. doi: 10.2337/db13-1106
|
[50] |
Phillips C, Baktir MA, Srivatsan M, et al. Neuroprotective effects of physical activity on the brain: a closer look at trophic factor signaling[J]. Front Cell Neurosci, 2014, 8: 170. doi: 10.3389/fncel.2014.00170
|
[51] |
Jodeiri Farshbaf M, Alviña K. Multiple roles in neuroprotection for the exercise derived myokine Irisin[J]. Front Aging Neurosci, 2021, 13: 649929. doi: 10.3389/fnagi.2021.649929
|
[52] |
Piya MK, Harte AL, Sivakumar K, et al. The identification of irisin in human cerebrospinal fluid: influence of adiposity, metabolic markers, and gestational diabetes[J]. Am J Physiol Endocrinol Metab, 2014, 306(5): E512–E518. doi: 10.1152/ajpendo.00308.2013
|
[53] |
Jodeiri Farshbaf M, Ghaedi K, Megraw TL, et al. Does PGC1α/FNDC5/BDNF elicit the beneficial effects of exercise on neurodegenerative disorders?[J]. Neuromolecular Med, 2016, 18(1): 1–15. doi: 10.1007/s12017-015-8370-x
|
[54] |
Steiner JL, Murphy EA, McClellan JL, et al. Exercise training increases mitochondrial biogenesis in the brain[J]. J Appl Physiol, 2011, 111(4): 1066–1071. doi: 10.1152/japplphysiol.00343.2011
|
[55] |
Cheng A, Wan R, Yang JL, et al. Involvement of PGC-1α in the formation and maintenance of neuronal dendritic spines[J]. Nat Commun, 2012, 3: 1250. doi: 10.1038/ncomms2238
|
[56] |
Zsuga J, More CE, Erdei T, et al. Blind spot for sedentarism: redefining the diseasome of physical inactivity in view of circadian system and the irisin/BDNF axis[J]. Front Neurol, 2018, 9: 818. doi: 10.3389/fneur.2018.00818
|
[57] |
Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks[J]. Annu Rev Physiol, 2010, 72: 517–549. doi: 10.1146/annurev-physiol-021909-135821
|
[58] |
Marchant EG, Mistlberger RE. Entrainment and phase shifting of circadian rhythms in mice by forced treadmill running[J]. Physiol Behav, 1996, 60(2): 657–663. doi: 10.1016/S0031-9384(96)80045-X
|
[59] |
Schroeder AM, Truong D, Loh DH, et al. Voluntary scheduled exercise alters diurnal rhythms of behaviour, physiology and gene expression in wild-type and vasoactive intestinal peptide-deficient mice[J]. J Physiol, 2012, 590(23): 6213–6226. doi: 10.1113/jphysiol.2012.233676
|
[60] |
Hughes ATL, Samuels RE, Baño-Otálora B, et al. Timed daily exercise remodels circadian rhythms in mice[J]. Commun Biol, 2021, 4(1): 761. doi: 10.1038/s42003-021-02239-2
|
[61] |
Ehlen JC, Brager AJ, Baggs J, et al. Bmal1 function in skeletal muscle regulates sleep[J]. eLife, 2017, 6: e26557. doi: 10.7554/eLife.26557
|
[62] |
Weinert D, Weiß T. A nonlinear interrelationship between period length and the amount of activity—Age-dependent changes[J]. Biol Rhythm Res, 1997, 28(1): 105–120. doi: 10.1076/brhm.28.1.105.12983
|
[63] |
Weinert D, Schottner K. An inbred lineage of Djungarian hamsters with a strongly attenuated ability to synchronize[J]. Chronobiol Int, 2007, 24(6): 1065–1079. doi: 10.1080/07420520701791588
|
[64] |
Antle MC, Sterniczuk R, Smith VM, et al. Non-photic modulation of phase shifts to long light pulses[J]. J Biol Rhythms, 2007, 22(6): 524–533. doi: 10.1177/0748730407306882
|
[65] |
Steinlechner S, Stieglitz A, Ruf T. Djungarian hamsters: a species with a labile circadian pacemaker? Arrhythmicity under a light-dark cycle induced by short light pulses[J]. J Biol Rhythms, 2002, 17(3): 248–258. doi: 10.1177/074873040201700308
|
[66] |
Mrosovsky N. Locomotor activity and non-photic influences on circadian clocks[J]. Biol Rev, 1996, 71(3): 343–372. doi: 10.1111/j.1469-185X.1996.tb01278.x
|
[67] |
Youngstedt SD, Elliott JA, Kripke DF. Human circadian phase-response curves for exercise[J]. J Physiol, 2019, 597(8): 2253–2268. doi: 10.1113/JP276943
|
[68] |
Buxton OM, Lee CW, L'Hermite-Balériaux M, et al. Exercise elicits phase shifts and acute alterations of melatonin that vary with circadian phase[J]. Am J Physiol Regul Integr Comp Physiol, 2003, 284(3): R714–R724. doi: 10.1152/ajpregu.00355.2002
|
[69] |
Buxton OM, Frank SA, L'Hermite-Balériaux M, et al. Roles of intensity and duration of nocturnal exercise in causing phase delays of human circadian rhythms[J]. Am J Physiol, 1997, 273(3): E536–E542. doi: 10.1152/ajpendo.1997.273.3.E536
|
[70] |
Yamanaka Y, Hashimoto S, Tanahashi Y, et al. Physical exercise accelerates reentrainment of human sleep-wake cycle but not of plasma melatonin rhythm to 8-h phase-advanced sleep schedule[J]. Am J Physiol Regul Integr Comp Physiol, 2010, 298(3): R681–R691. doi: 10.1152/ajpregu.00345.2009
|
[71] |
Lang C, Richardson C, Short MA, et al. Low-intensity scheduled morning exercise for adolescents with a late chronotype: a novel treatment to advance circadian phase?[J]. Sleep Adv, 2022, 3(1): zpac021. doi: 10.1093/sleepadvances/zpac021
|
[72] |
Kalak N, Gerber M, Kirov R, et al. Daily morning running for 3 weeks improved sleep and psychological functioning in healthy adolescents compared with controls[J]. J Adolesc Health, 2012, 51(6): 615–622. doi: 10.1016/j.jadohealth.2012.02.020
|
[73] |
Tilp M, Scharf C, Payer G, et al. Physical exercise during the morning school-break improves basic cognitive functions[J]. Mind Brain Educ, 2020, 14(1): 24–31. doi: 10.1111/mbe.12228
|
[74] |
Zhai Q, Zeng Y, Gu Y, et al. Time-restricted feeding entrains long-term behavioral changes through the IGF2-KCC2 pathway[J]. iScience, 2022, 25(5): 104267. doi: 10.1016/j.isci.2022.104267
|
[75] |
de Goede P, Wefers J, Brombacher EC, et al. Circadian rhythms in mitochondrial respiration[J]. J Mol Endocrinol, 2018, 60(3): R115–R130. doi: 10.1530/JME-17-0196
|
[76] |
Yamanaka Y, Honma S, Honma KI. Two coupled circadian oscillators are involved in nonphotic acceleration of reentrainment to shifted light cycles in mice[J]. J Biol Rhythms, 2018, 33(6): 614–625. doi: 10.1177/0748730418796300
|
[77] |
Ortega GJ, Romanelli L, Golombek DA. Statistical and dynamical analysis of circadian rhythms[J]. J Theor Biol, 1994, 169(1): 15–21. doi: 10.1006/jtbi.1994.1126
|
[78] |
Leise TL, Harrington ME, Molyneux PC, et al. Voluntary exercise can strengthen the circadian system in aged mice[J]. Age, 2013, 35(6): 2137–2152. doi: 10.1007/s11357-012-9502-y
|
[79] |
Weinert D. Age-dependent changes of the circadian system[J]. Chronobiol Int, 2000, 17(3): 261–283. doi: 10.1081/CBI-100101048
|
[80] |
Weinert D, Schöttner K, Meinecke AC, et al. Voluntary exercise stabilizes photic entrainment of djungarian hamsters (Phodopus sungorus) with a delayed activity onset[J]. Chronobiol Int, 2018, 35(10): 1435–1444. doi: 10.1080/07420528.2018.1490313
|
[81] |
Park TH, Lee HJ, Lee JB. Effect of heat stimulation on circulating irisin in humans[J]. Front Physiol, 2021, 12: 675377. doi: 10.3389/fphys.2021.675377
|
[82] |
Herzog ED, Huckfeldt RM. Circadian entrainment to temperature, but not light, in the isolated suprachiasmatic nucleus[J]. J Neurophysiol, 2003, 90(2): 763–770. doi: 10.1152/jn.00129.2003
|
[83] |
Saini C, Morf J, Stratmann M, et al. Simulated body temperature rhythms reveal the phase-shifting behavior and plasticity of mammalian circadian oscillators[J]. Genes Dev, 2012, 26(6): 567–580. doi: 10.1101/gad.183251.111
|
[84] |
A M, Wales TE, Zhou H, et al. Irisin acts through its integrin receptor in a two-step process involving extracellular Hsp90α[J]. Mol Cell, 2023, 83(11): 1903–1920.e12. doi: 10.1016/j.molcel.2023.05.008
|
[85] |
Franco OH, de Laet C, Peeters A, et al. Effects of physical activity on life expectancy with cardiovascular disease[J]. Arch Intern Med, 2005, 165(20): 2355–2360. doi: 10.1001/archinte.165.20.2355
|
[86] |
Görgens SW, Eckardt K, Jensen J, et al. Exercise and regulation of adipokine and myokine production[J]. Prog Mol Biol Transl Sci, 2015, 135: 313–336. https://www.sciencedirect.com/science/article/abs/pii/S1877117315001349
|
[87] |
Pérez-Martínez P, Mikhailidis DP, Athyros VG, et al. Lifestyle recommendations for the prevention and management of metabolic syndrome: an international panel recommendation[J]. Nutr Rev, 2017, 75(5): 307–326. doi: 10.1093/nutrit/nux014
|
[88] |
Ozemek C, Laddu DR, Lavie CJ, et al. An update on the role of cardiorespiratory fitness, structured exercise and lifestyle physical activity in preventing cardiovascular disease and health risk[J]. Prog Cardiovasc Dis, 2018, 61(5-6): 484–490. doi: 10.1016/j.pcad.2018.11.005
|
[89] |
Smith PJ, Blumenthal JA, Hoffman BM, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials[J]. Psychosom Med, 2010, 72(3): 239–252. doi: 10.1097/PSY.0b013e3181d14633
|
[90] |
Pascoe MC, Parker AG. Physical activity and exercise as a universal depression prevention in young people: a narrative review[J]. Early Interv Psychiatry, 2019, 13(4): 733–739. doi: 10.1111/eip.12737
|
[91] |
Pedersen BK. Physical activity and muscle-brain crosstalk[J]. Nat Rev Endocrinol, 2019, 15(7): 383–392. doi: 10.1038/s41574-019-0174-x
|
[92] |
Vanderlinden J, Boen F, van Uffelen JGZ. Effects of physical activity programs on sleep outcomes in older adults: a systematic review[J]. Int J Behav Nutr Phys Act, 2020, 17(1): 11. doi: 10.1186/s12966-020-0913-3
|
[93] |
Cotman CW, Berchtold NC, Christie LA. Exercise builds brain health: key roles of growth factor cascades and inflammation[J]. Trends Neurosci, 2007, 30(9): 464–472. doi: 10.1016/j.tins.2007.06.011
|
[94] |
Norheim F, Raastad T, Thiede B, et al. Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training[J]. Am J Physiol Endocrinol Metab, 2011, 301(5): E1013–E1021. doi: 10.1152/ajpendo.00326.2011
|
[95] |
Moon HY, Becke A, Berron D, et al. Running-induced systemic cathepsin B secretion is associated with memory function[J]. Cell Metab, 2016, 24(2): 332–340. doi: 10.1016/j.cmet.2016.05.025
|
[96] |
De la Rosa A, Solana E, Corpas R, et al. Long-term exercise training improves memory in middle-aged men and modulates peripheral levels of BDNF and Cathepsin B[J]. Sci Rep, 2019, 9(1): 3337. doi: 10.1038/s41598-019-40040-8
|
[97] |
Ma C, Ding H, Deng Y, et al. Irisin: a new code uncover the relationship of skeletal muscle and cardiovascular health during exercise[J]. Front Physiol, 2021, 12: 620608. doi: 10.3389/fphys.2021.620608
|
[98] |
Lourenco MV, Frozza RL, de Freitas GB, et al. Exercise-linked FNDC5/irisin rescues synaptic plasticity and memory defects in Alzheimer's models[J]. Nat Med, 2019, 25(1): 165–175. doi: 10.1038/s41591-018-0275-4
|
[99] |
Ruan Q, Zhang L, Ruan J, et al. Detection and quantitation of irisin in human cerebrospinal fluid by tandem mass spectrometry[J]. Peptides, 2018, 103: 60–64. doi: 10.1016/j.peptides.2018.03.013
|
[100] |
EI Hayek L, Khalifeh M, Zibara V, et al. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF)[J]. J Neurosci, 2019, 39(13): 2369–2382. doi: 10.1523/jneurosci.1661-18.2019
|
[101] |
Kim H, Wrann CD, Jedrychowski M, et al. Irisin mediates effects on bone and fat via αV integrin receptors[J]. Cell, 2018, 175(7): 1756–1768.e17. doi: 10.1016/j.cell.2018.10.025
|
[102] |
Bi J, Zhang J, Ren Y, et al. Irisin reverses intestinal epithelial barrier dysfunction during intestinal injury via binding to the integrin αVβ5 receptor[J]. J Cell Mol Med, 2020, 24(1): 996–1009. doi: 10.1111/jcmm.14811
|
[103] |
Oguri Y, Shinoda K, Kim H, et al. CD81 controls beige fat progenitor cell growth and energy balance via FAK signaling[J]. Cell, 2020, 182(3): 563–577.e20. doi: 10.1016/j.cell.2020.06.021
|
[104] |
Estell EG, Le PT, Vegting Y, et al. Irisin directly stimulates osteoclastogenesis and bone resorption in vitro and in vivo[J]. eLife, 2020, 9: e58172. doi: 10.7554/eLife.58172
|
[105] |
Waseem R, Shamsi A, Mohammad T, et al. FNDC5/Irisin: physiology and pathophysiology[J]. Molecules, 2022, 27(3): 1118. doi: 10.3390/molecules27031118
|
[106] |
Marosi K, Mattson MP. BDNF mediates adaptive brain and body responses to energetic challenges[J]. Trends Endocrinol Metab, 2014, 25(2): 89–98. doi: 10.1016/j.tem.2013.10.006
|
[107] |
Chao MV, Rajagopal R, Lee FS. Neurotrophin signalling in health and disease[J]. Clin Sci (Lond), 2006, 110(2): 167–173. doi: 10.1042/CS20050163
|
[108] |
Huang TL, Lee CT, Liu YL. Serum brain-derived neurotrophic factor levels in patients with major depression: effects of antidepressants[J]. J Psychiatr Res, 2008, 42(7): 521–525. doi: 10.1016/j.jpsychires.2007.05.007
|
[109] |
Dean C, Liu H, Staudt T, et al. Distinct subsets of Syt-IV/BDNF vesicles are sorted to axons versus dendrites and recruited to synapses by activity[J]. J Neurosci, 2012, 32(16): 5398–5413. doi: 10.1523/JNEUROSCI.4515-11.2012
|
[110] |
Yang JL, Lin YT, Chuang PC, et al. BDNF and exercise enhance neuronal DNA repair by stimulating CREB-mediated production of apurinic/apyrimidinic endonuclease 1[J]. Neuromol Med, 2014, 16(1): 161–174. doi: 10.1007/s12017-013-8270-x
|
[111] |
Autry AE, Bambah-Mukku D. The role of brain-derived neurotrophic factor in neural circuit development and function[M]//Rubenstein J, Rakic P, Chen B, et al. Synapse Development and Maturation: Comprehensive Developmental Neuroscience. 2nd ed. London: Academic Press, 2020: 443–466.
|
[112] |
Fargali S, Sadahiro M, Jiang C, et al. Role of neurotrophins in the development and function of neural circuits that regulate energy homeostasis[J]. J Mol Neurosci, 2012, 48(3): 654–659. doi: 10.1007/s12031-012-9790-9
|
[113] |
Ishikawa C, Li H, Ogura R, et al. Effects of gravity changes on gene expression of BDNF and serotonin receptors in the mouse brain[J]. PLoS One, 2017, 12(6): e0177833. doi: 10.1371/journal.pone.0177833
|
[114] |
Zsuga J, Biro K, Papp C, et al. The "proactive" model of learning: integrative framework for model-free and model-based reinforcement learning utilizing the associative learning-based proactive brain concept[J]. Behav Neurosci, 2016, 130(1): 6–18. doi: 10.1037/bne0000116
|
[115] |
Autry AE. Function of brain-derived neurotrophic factor in the hypothalamus: implications for depression pathology[J]. Front Mol Neurosci, 2022, 15: 1028223. doi: 10.3389/fnmol.2022.1028223
|
[116] |
Liang FQ, Sohrabji F, Miranda R, et al. Expression of brain-derived neurotrophic factor and its cognate receptor, TrkB, in the rat suprachiasmatic nucleus[J]. Exp Neurol, 1998, 151(2): 184–193. doi: 10.1006/exnr.1998.6804
|
[117] |
Griffin ÉW, Mullally S, Foley C, et al. Aerobic exercise improves hippocampal function and increases BDNF in the serum of young adult males[J]. Physiol Behav, 2011, 104(5): 934–941. doi: 10.1016/j.physbeh.2011.06.005
|
[118] |
Kobilo T, Liu QR, Gandhi K, et al. Running is the neurogenic and neurotrophic stimulus in environmental enrichment[J]. Learn Mem, 2011, 18(9): 605–609. doi: 10.1101/lm.2283011
|
[119] |
Vaynman S, Ying Z, Gomez-Pinilla F. Hippocampal BDNF mediates the efficacy of exercise on synaptic plasticity and cognition[J]. Eur J Neurosci, 2004, 20(10): 2580–2590. doi: 10.1111/j.1460-9568.2004.03720.x
|
[120] |
Zsuga J, Tajti G, Papp C, et al. FNDC5/irisin, a molecular target for boosting reward-related learning and motivation[J]. Med Hypotheses, 2016, 90: 23–28. doi: 10.1016/j.mehy.2016.02.020
|
[121] |
Liang FQ, Walline R, Earnest DJ. Circadian rhythm of brain-derived neurotrophic factor in the rat suprachiasmatic nucleus[J]. Neurosci Lett, 1998, 242(2): 89–92. doi: 10.1016/S0304-3940(98)00062-7
|
[122] |
Liang FQ, Allen G, Earnest D. Role of brain-derived neurotrophic factor in the circadian regulation of the suprachiasmatic pacemaker by light[J]. J Neurosci, 2000, 20(8): 2978–2987. doi: 10.1523/JNEUROSCI.20-08-02978.2000
|
[123] |
Allen GC, Earnest DJ. Overlap in the distribution of TrkB immunoreactivity and retinohypothalamic tract innervation of the rat suprachiasmatic nucleus[J]. Neurosci Lett, 2005, 376(3): 200–204. doi: 10.1016/j.neulet.2004.11.076
|
[124] |
Michel S, Clark JP, Ding JM, et al. Brain-derived neurotrophic factor and neurotrophin receptors modulate glutamate-induced phase shifts of the suprachiasmatic nucleus[J]. Eur J Neurosci, 2006, 24(4): 1109–1116. doi: 10.1111/j.1460-9568.2006.04972.x
|
[125] |
Serchov T, Heumann R. Constitutive activation of ras in neurons: implications for the regulation of the mammalian circadian clock[J]. Chronobiol Int, 2006, 23(1-2): 191–200. doi: 10.1080/07420520500521970
|
[126] |
Serchov T, Heumann R. Ras activity tunes the period and modulates the entrainment of the suprachiasmatic clock[J]. Front Neurol, 2017, 8: 264. doi: 10.3389/fneur.2017.00264
|
[127] |
Girardet C, Lebrun B, Cabirol-Pol MJ, et al. Brain-derived neurotrophic factor/TrkB signaling regulates daily astroglial plasticity in the suprachiasmatic nucleus: electron-microscopic evidence in mouse[J]. Glia, 2013, 61(7): 1172–1177. doi: 10.1002/glia.22509
|
[128] |
Kim YI, Choi HJ, Colwell CS. Brain-derived neurotrophic factor regulation of N-methyl-D-aspartate receptor-mediated synaptic currents in suprachiasmatic nucleus neurons[J]. J Neurosci Res, 2006, 84(7): 1512–1520. doi: 10.1002/jnr.21063
|
[129] |
Lin SY, Wu K, Levine ES, et al. BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities[J]. Mol Brain Res, 1998, 55(1): 20–27. doi: 10.1016/S0169-328X(97)00349-5
|
[130] |
Carmignoto G, Pizzorusso T, Tia S, et al. Brain-derived neurotrophic factor and nerve growth factor potentiate excitatory synaptic transmission in the rat visual cortex[J]. J Physiol, 1997, 498(1): 153–164. doi: 10.1113/jphysiol.1997.sp021848
|
[131] |
Vanevski F, Xu B. Molecular and neural bases underlying roles of BDNF in the control of body weight[J]. Front Neurosci, 2013, 7: 37. doi: 10.3389/fnins.2013.00037
|
[132] |
Lemarchand E, Maubert E, Haelewyn B, et al. Stressed neurons protect themselves by a tissue-type plasminogen activator-mediated EGFR-dependent mechanism[J]. Cell Death Differ, 2016, 23(1): 123–131. doi: 10.1038/cdd.2015.76
|
[133] |
Zhang W, Shi Y, Peng Y, et al. Neuron activity–induced Wnt signaling up-regulates expression of brain-derived neurotrophic factor in the pain neural circuit[J]. J Biol Chem, 2018, 293(40): 15641–15651. doi: 10.1074/jbc.RA118.002840
|
[134] |
von Gall C, Duffield GE, Hastings MH, et al. CREB in the mouse SCN: a molecular interface coding the phase-adjusting stimuli light, glutamate, PACAP, and melatonin for clockwork access[J]. J Neurosci, 1998, 18(24): 10389–10397. doi: 10.1523/JNEUROSCI.18-24-10389.1998
|
[135] |
Gau D, Lemberger T, von Gall C, et al. Phosphorylation of CREB Ser142 regulates light-induced phase shifts of the circadian clock[J]. Neuron, 2002, 34(2): 245–253. doi: 10.1016/S0896-6273(02)00656-6
|
[136] |
Badura L, Swanson T, Adamowicz W, et al. An inhibitor of casein kinase Iϵ induces phase delays in circadian rhythms under free-running and entrained conditions[J]. J Pharmacol Exp Ther, 2007, 322(2): 730–738. doi: 10.1124/jpet.107.122846
|
[137] |
Lee B, Almad A, Butcher GQ, et al. Protein kinase C modulates the phase-delaying effects of light in the mammalian circadian clock[J]. Eur J Neurosci, 2007, 26(2): 451–462. doi: 10.1111/j.1460-9568.2007.05664.x
|
[138] |
Bonsall DR, Lall GS. Protein kinase C differentially regulates entrainment of the mammalian circadian clock[J]. Chronobiol Int, 2013, 30(4): 460–469. doi: 10.3109/07420528.2012.741170
|
[1] | Izzatullo Ziyoyiddin o`g`li Abdullaev, Ulugbek Gapparjanovich Gayibov, Sirojiddin Zoirovich Omonturdiev, Sobirova Fotima Azamjonovna, Sabina Narimanovna Gayibova, Takhir Fatikhovich Aripov. Molecular pathways in cardiovascular disease under hypoxia: Mechanisms, biomarkers, and therapeutic targets[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240387 |
[2] | Yan Chen, Xiaoxin He, Jiachen Cai, Qian Li. Functional aspects of the brain lymphatic drainage system in aging and neurodegenerative diseases[J]. The Journal of Biomedical Research, 2024, 38(3): 206-221. DOI: 10.7555/JBR.37.20230264 |
[3] | Haixia Fan, Minheng Zhang, Jie Wen, Shengyuan Wang, Minghao Yuan, Houchao Sun, Liu Shu, Xu Yang, Yinshuang Pu, Zhiyou Cai. Microglia in brain aging: An overview of recent basic science and clinical research developments[J]. The Journal of Biomedical Research, 2024, 38(2): 122-136. DOI: 10.7555/JBR.37.20220220 |
[4] | Qianfeng Chen, Yuxia Zhong, Bohan Li, Yucong Feng, Yuandie Zhang, Tao Wei, Margaret Zaitoun, Shuang Rong, Hua Wan, Qing Feng. Acrolein-triggered atherosclerosis via AMPK/SIRT1-CLOCK/BMAL1 pathway and a protection from intermittent fasting[J]. The Journal of Biomedical Research. DOI: 10.7555/JBR.38.20240025 |
[5] | Xue Geng, Meng Wang, Yunjun Leng, Lin Li, Haiyuan Yang, Yifan Dai, Ying Wang. Protective effects on acute hypoxic-ischemic brain damage in mfat-1 transgenic mice by alleviating neuroinflammation[J]. The Journal of Biomedical Research, 2021, 35(6): 474-490. DOI: 10.7555/JBR.35.20210107 |
[6] | Grapentine Sophie, Bakovic Marica. Significance of bilayer-forming phospholipids for skeletal muscle insulin sensitivity and mitochondrial function[J]. The Journal of Biomedical Research, 2020, 34(1): 1-13. DOI: 10.7555/JBR.33.20180104 |
[7] | Park Gi Young, Kwon Dong Rak, Moon Yong Suk. Low-intensity microcurrent therapy promotes regeneration of atrophied calf muscles in immobilized rabbits[J]. The Journal of Biomedical Research, 2019, 33(1): 30-37. DOI: 10.7555/JBR.32.20180056 |
[8] | Didi Zhu, Jiamin Yuan, Rui Zhu, Yao Wang, Zhiyong Qian, Jiangang Zou. Pathway-based analysis of genome-wide association study of circadian phenotypes[J]. The Journal of Biomedical Research, 2018, 32(5): 361-370. DOI: 10.7555/JBR.32.20170102 |
[9] | Fang Chen, Libin Zhou, Yinyang Bai, Rong Zhou, Ling Chen. Hypothalamic-pituitary-adrenal axis hyperactivity accounts for anxiety- and depression-like behaviors in rats perinatally exposed to bisphenol A[J]. The Journal of Biomedical Research, 2015, 29(3): 250-258. DOI: 10.7555/JBR.29.20140058 |
[10] | Ning Shi, Shi-You Chen. Mechanisms simultaneously regulate smooth muscle proliferation and differentiation[J]. The Journal of Biomedical Research, 2014, 28(1): 40-46. DOI: 10.7555/JBR.28.20130130 |
1. | Liu Y, Zhang X, Xiao C, et al. Engineered hydrogels for peripheral nerve repair. Mater Today Bio, 2023, 20: 100668. DOI:10.1016/j.mtbio.2023.100668 |
2. | Zhou H, He Y, Xiong W, et al. MSC based gene delivery methods and strategies improve the therapeutic efficacy of neurological diseases. Bioact Mater, 2022, 23: 409-437. DOI:10.1016/j.bioactmat.2022.11.007 |
3. |
Wang H, Wang F, Wang Y, et al. Study on the Mechanism of BMSCs in Regulating NF-κB Signal Pathway by Targeting miR-449a to Improve the Inflammatory Response to Peripheral Nerve Injury. J Musculoskelet Neuronal Interact, 2022, 22(4): 546-561.
![]() |
4. | Sun Q, Li G, Liu D, et al. Peripheral nerves in the tibial subchondral bone: the role of pain and homeostasis in osteoarthritis. Bone Joint Res, 2022, 11(7): 439-452. DOI:10.1302/2046-3758.117.BJR-2021-0355.R1 |
5. | Chen JT, Schmidt L, Schürger C, et al. Netrin-1 as a Multitarget Barrier Stabilizer in the Peripheral Nerve after Injury. Int J Mol Sci, 2021, 22(18): 10090. DOI:10.3390/ijms221810090 |
6. | Wan QQ, Qin WP, Ma YX, et al. Crosstalk between Bone and Nerves within Bone. Adv Sci (Weinh), 2021, 8(7): 2003390. DOI:10.1002/advs.202003390 |
7. | Ding S, Guo X, Zhu L, et al. Macrophage-derived netrin-1 contributes to endometriosis-associated pain. Ann Transl Med, 2021, 9(1): 29. DOI:10.21037/atm-20-2161 |
8. | Gao R, Peng X, Perry C, et al. Macrophage-derived netrin-1 drives adrenergic nerve-associated lung fibrosis. J Clin Invest, 2021, 131(1): e136542. DOI:10.1172/JCI136542 |
9. | Dun XP, Parkinson DB. Classic axon guidance molecules control correct nerve bridge tissue formation and precise axon regeneration. Neural Regen Res, 2020, 15(1): 6-9. DOI:10.4103/1673-5374.264441 |
10. | Karamzadeh T, Alipour H, Shahriari-Namadi M, et al. Molecular characterization of the netrin-1 UNC-5 receptor in Lucilia sericata larvae. AIMS Genet, 2019, 6(3): 46-54. DOI:10.3934/genet.2019.3.46 |
11. | Ko SY, Price JT, Blatch GL, et al. Netrin-1-like-immunoreactivity Coexpresses With DCC and Has a Differential Level in the Myenteric Cholinergic and Nitrergic Neurons of the Adult Mouse Colon. J Histochem Cytochem, 2019, 67(5): 335-349. DOI:10.1369/0022155418819821 |
12. | Huang CW, Huang WC, Qiu X, et al. The Differentiation Stage of Transplanted Stem Cells Modulates Nerve Regeneration. Sci Rep, 2017, 7(1): 17401. DOI:10.1038/s41598-017-17043-4 |
13. | Dun XP, Parkinson DB. Role of Netrin-1 Signaling in Nerve Regeneration. Int J Mol Sci, 2017, 18(3): 491. DOI:10.3390/ijms18030491 |
14. | Prieto CP, Ortiz MC, Villanueva A, et al. Netrin-1 acts as a non-canonical angiogenic factor produced by human Wharton's jelly mesenchymal stem cells (WJ-MSC). Stem Cell Res Ther, 2017, 8(1): 43. DOI:10.1186/s13287-017-0494-5 |
15. | Lee SS, Lee SJ, Lee SH, et al. Netrin-1-Induced Stem Cell Bioactivity Contributes to the Regeneration of Injured Tissues via the Lipid Raft-Dependent Integrin α6β4 Signaling Pathway. Sci Rep, 2016, 6: 37526. DOI:10.1038/srep37526 |
16. | Li S, Hua Y, Jin J, et al. Association of genetic variants in lncRNA H19 with risk of colorectal cancer in a Chinese population. Oncotarget, 2016, 7(18): 25470-7. DOI:10.18632/oncotarget.8330 |