• ISSN 1674-8301
  • CN 32-1810/R
Volume 36 Issue 3
May  2022
Turn off MathJax
Article Contents
Wei Ye, Xiaoyu Liu, Ruiting He, Liming Gou, Ming Lu, Gang Yang, Jiaqi Wen, Xufei Wang, Fang Liu, Sujuan Ma, Weifeng Qian, Shaochang Jia, Tong Ding, Luan Sun, Wei Gao. Improving antibody affinity through in vitro mutagenesis in complementarity determining regions[J]. The Journal of Biomedical Research, 2022, 36(3): 155-166. doi: 10.7555/JBR.36.20220003
Citation: Wei Ye, Xiaoyu Liu, Ruiting He, Liming Gou, Ming Lu, Gang Yang, Jiaqi Wen, Xufei Wang, Fang Liu, Sujuan Ma, Weifeng Qian, Shaochang Jia, Tong Ding, Luan Sun, Wei Gao. Improving antibody affinity through in vitro mutagenesis in complementarity determining regions[J]. The Journal of Biomedical Research, 2022, 36(3): 155-166. doi: 10.7555/JBR.36.20220003

Improving antibody affinity through in vitro mutagenesis in complementarity determining regions

doi: 10.7555/JBR.36.20220003
More Information
  • Corresponding author: Wei Gao and Luan Sun, School of Basic Medical Sciences, Nanjing Medical University, 101 Longmian Road, Nanjing, Jiangsu 211166, China. Tel/Fax: +86-25-86869471/+86-25-86869471, E-mails: gao@njmu.edu.cn and sunluan@njmu.edu.cn; 
  • Received: 2022-01-03
  • Revised: 2022-02-26
  • Accepted: 2022-03-02
  • Published: 2022-03-28
  • Issue Date: 2022-05-28
  • High-affinity antibodies are widely used in diagnostics and for the treatment of human diseases. However, most antibodies are isolated from semi-synthetic libraries by phage display and do not possess in vivo affinity maturation, which is triggered by antigen immunization. It is therefore necessary to engineer the affinity of these antibodies by way of in vitro assaying. In this study, we optimized the affinity of two human monoclonal antibodies which were isolated by phage display in a previous related study. For the 42A1 antibody, which targets the liver cancer antigen glypican-3, the variant T57H in the second complementarity-determining region of the heavy chain (CDR-H2) exhibited a 2.6-fold improvement in affinity, as well as enhanced cell-binding activity. For the I4A3 antibody to severe acute respiratory syndrome coronavirus 2, beneficial single mutations in CDR-H2 and CDR-H3 were randomly combined to select the best synergistic mutations. Among these, the mutation S53P-S98T improved binding affinity (about 3.7 fold) and the neutralizing activity (about 12 fold) compared to the parent antibody. Taken together, single mutations of key residues in antibody CDRs were enough to increase binding affinity with improved antibody functions. The mutagenic combination of key residues in different CDRs creates additive enhancements. Therefore, this study provides a safe and effective in vitro strategy for optimizing antibody affinity.

     

  • loading
  • [1]
    Basu K, Green EM, Cheng Y, et al. Why recombinant antibodies—benefits and applications[J]. Curr Opin Biotechnol, 2019, 60: 153–158. doi: 10.1016/j.copbio.2019.01.012
    [2]
    Lu RM, Hwang YC, Liu IJ, et al. Development of therapeutic antibodies for the treatment of diseases[J]. J Biomed Sci, 2020, 27(1): 1. doi: 10.1186/s12929-019-0592-z
    [3]
    Urquhart L. Top companies and drugs by sales in 2020[J]. Nat Rev Drug Discov, 2021, 20(4): 253. doi: 10.1038/d41573-021-00050-6
    [4]
    Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface[J]. Science, 1985, 228(4705): 1315–1317. doi: 10.1126/science.4001944
    [5]
    Lerner RA, Kang AS, Bain JD, et al. Antibodies without immunization[J]. Science, 1992, 258(5086): 1313–1314. doi: 10.1126/science.1455226
    [6]
    Bradbury ARM, Sidhu S, Dübel S, et al. Beyond natural antibodies: the power of in vitro display technologies[J]. Nat Biotechnol, 2011, 29(3): 245–254. doi: 10.1038/nbt.1791
    [7]
    Roth KDR, Wenzel EV, Ruschig M, et al. Developing recombinant antibodies by phage display against infectious diseases and toxins for diagnostics and therapy[J]. Front Cell Infect Microbiol, 2021, 11: 697876. doi: 10.3389/fcimb.2021.697876
    [8]
    Sun L, Gao F, Gao Z, et al. Shed antigen-induced blocking effect on CAR-T cells targeting Glypican-3 in hepatocellular carcinoma[J]. J Immunother Cancer, 2021, 9(4): e001875. doi: 10.1136/jitc-2020-001875
    [9]
    Liu X, Gao F, Jiang L, et al. 32A9, a novel human antibody for designing an immunotoxin and CAR-T cells against glypican-3 in hepatocellular carcinoma[J]. J Transl Med, 2020, 18(1): 295. doi: 10.1186/s12967-020-02462-1
    [10]
    Li N, Wei L, Liu X, et al. A frizzled-like cysteine-rich domain in Glypican-3 mediates wnt binding and regulates hepatocellular carcinoma tumor growth in mice[J]. Hepatology, 2019, 70(4): 1231–1245. doi: 10.1002/hep.30646
    [11]
    Shi R, Shan C, Duan X, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2[J]. Nature, 2020, 584(7819): 120–124. doi: 10.1038/s41586-020-2381-y
    [12]
    Walls AC, Park YJ, Tortorici MA, et al. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein[J]. Cell, 2020, 181(2): 281–292.e6. doi: 10.1016/j.cell.2020.02.058
    [13]
    Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation[J]. Science, 2020, 367(6483): 1260–1263. doi: 10.1126/science.abb2507
    [14]
    Gao W, Liu X, Gao F, et al. Neutralizing antibody for resisting novel coronavirus SARS-CoV-2 and application thereof (in Chinese): CN, 202010342471.6[P]. 2020-08-28.
    [15]
    Gao W, Gou L, Lu M, et al. Anti-Glypican-3 acid-resistant fully-humanized antibody, immunotoxins thereof, chimeric antigen recipient cells thereof and application (in Chinese): CN, 202110303641.4[P]. 2021-07-06.
    [16]
    Ministro J, Manuel AM, Goncalves J. Therapeutic antibody engineering and selection strategies[J]. Adv Biochem Eng Biotechnol, 2020, 171: 55–86. doi: 10.1007/10_2019_116
    [17]
    Barbas III CF, Bain JD, Hoekstra DM, et al. Semisynthetic combinatorial antibody libraries: a chemical solution to the diversity problem[J]. Proc Natl Acad Sci U S A, 1992, 89(10): 4457–4461. doi: 10.1073/pnas.89.10.4457
    [18]
    Hoet RM, Cohen EH, Kent RB, et al. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity[J]. Nat Biotechnol, 2005, 23(3): 344–348. doi: 10.1038/nbt1067
    [19]
    De Wildt RMT, Mundy CR, Gorick BD, et al. Antibody arrays for high-throughput screening of antibody–antigen interactions[J]. Nat Biotechnol, 2000, 18(9): 989–994. doi: 10.1038/79494
    [20]
    Hoogenboom HR. Selecting and screening recombinant antibody libraries[J]. Nat Biotechnol, 2005, 23(9): 1105–1116. doi: 10.1038/nbt1126
    [21]
    Tabasinezhad M, Talebkhan Y, Wenzel W, et al. Trends in therapeutic antibody affinity maturation: from in-vitro towards next-generation sequencing approaches[J]. Immunol Lett, 2019, 212: 106–113. doi: 10.1016/j.imlet.2019.06.009
    [22]
    Wark KL, Hudson PJ. Latest technologies for the enhancement of antibody affinity[J]. Adv Drug Deliv Rev, 2006, 58(5-6): 657–670. doi: 10.1016/j.addr.2006.01.025
    [23]
    Tiller KE, Chowdhury R, Li T, et al. Facile affinity maturation of antibody variable domains using natural diversity mutagenesis[J]. Front Immunol, 2017, 8: 986. doi: 10.3389/fimmu.2017.00986
    [24]
    Xu JL, Davis MM. Diversity in the CDR3 region of VH is sufficient for most antibody specificities[J]. Immunity, 2000, 13(1): 37–45. doi: 10.1016/S1074-7613(00)00006-6
    [25]
    Lippow SM, Wittrup KD, Tidor B. Computational design of antibody-affinity improvement beyond in vivo maturation[J]. Nat Biotechnol, 2007, 25(10): 1171–1176. doi: 10.1038/nbt1336
    [26]
    Kuroda D, Shirai H, Jacobson MP, et al. Computer-aided antibody design[J]. Protein Eng Des Sel, 2012, 25(10): 507–521. doi: 10.1093/protein/gzs024
    [27]
    Pérez AMW, Sormanni P, Andersen JS, et al. In vitro and in silico assessment of the developability of a designed monoclonal antibody library[J]. MAbs, 2019, 11(2): 388–400. doi: 10.1080/19420862.2018.1556082
    [28]
    Silva D, Santos G, Barroca M, et al. Inverse PCR for point mutation introduction[J]. Methods Mol Biol, 2017, 1620: 87–100. doi: 10.1007/978-1-4939-7060-5_5
    [29]
    Nie J, Li Q, Wu J, et al. Establishment and validation of a pseudovirus neutralization assay for SARS-CoV-2[J]. Emerg Microbes Infect, 2020, 9(1): 680–686. doi: 10.1080/22221751.2020.1743767
    [30]
    Xiong H, Wu Y, Cao J, et al. Robust neutralization assay based on SARS-CoV-2 S-protein-bearing vesicular stomatitis virus (VSV) pseudovirus and ACE2-overexpressing BHK21 cells[J]. Emerg Microbes Infect, 2020, 9(1): 2105–2113. doi: 10.1080/22221751.2020.1815589
    [31]
    Hwang JK, Wang C, Du Z, et al. Sequence intrinsic somatic mutation mechanisms contribute to affinity maturation of VRC01-class HIV-1 broadly neutralizing antibodies[J]. Proc Natl Acad Sci U S A, 2017, 114(32): 8614–8619. doi: 10.1073/pnas.1709203114
    [32]
    Kepler TB, Liao H, Alam SM, et al. Immunoglobulin gene insertions and deletions in the affinity maturation of HIV-1 broadly reactive neutralizing antibodies[J]. Cell Host Microbe, 2014, 16(3): 304–313. doi: 10.1016/j.chom.2014.08.006
    [33]
    MacCallum RM, Martin ACR, Thornton JM. Antibody-antigen interactions: contact analysis and binding site topography[J]. J Mol Biol, 1996, 262(5): 732–745. doi: 10.1006/jmbi.1996.0548
    [34]
    Skamaki K, Emond S, Chodorge M, et al. In vitro evolution of antibody affinity via insertional scanning mutagenesis of an entire antibody variable region[J]. Proc Natl Acad Sci U S A, 2020, 117(44): 27307–27318. doi: 10.1073/pnas.2002954117
    [35]
    Wei L, Chahwan R, Wang S, et al. Overlapping hotspots in CDRs are critical sites for V region diversification[J]. Proc Natl Acad Sci U S A, 2015, 112(7): E728–E737. doi: 10.1073/pnas.1500788112
    [36]
    Jackson JR, Sathe G, Rosenberg M, et al. In vitro antibody maturation. Improvement of a high affinity, neutralizing antibody against IL-1 beta[J]. J Immunol, 1995, 154(7): 3310–3319. https://pubmed.ncbi.nlm.nih.gov/7897213/
    [37]
    Rajpal A, Beyaz N, Haber L, et al. A general method for greatly improving the affinity of antibodies by using combinatorial libraries[J]. Proc Natl Acad Sci U S A, 2005, 102(24): 8466–8471. doi: 10.1073/pnas.0503543102
    [38]
    Steidl S, Ratsch O, Brocks B, et al. In vitro affinity maturation of human GM-CSF antibodies by targeted CDR-diversification[J]. Mol Immunol, 2008, 46(1): 135–144. doi: 10.1016/j.molimm.2008.07.013
    [39]
    Rawat P, Sharma D, Srivastava A, et al. Exploring antibody repurposing for COVID-19: beyond presumed roles of therapeutic antibodies[J]. Sci Rep, 2021, 11(1): 10220. doi: 10.1038/s41598-021-89621-6
    [40]
    Sharma D, Rawat P, Janakiraman V, et al. Elucidating important structural features for the binding affinity of spike - SARS-CoV-2 neutralizing antibody complexes[J]. Proteins, 2022, 90(3): 824–834. doi: 10.1002/prot.26277
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (344) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return