4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Min Xue, Yuanyuan Guo, Qin Yan, Di Qin, Chun Lu. Preparation and application of polyclonal antibodies against KSHV v-cyclin[J]. The Journal of Biomedical Research, 2013, 27(5): 421-429. DOI: 10.7555/JBR.27.20120085
Citation: Min Xue, Yuanyuan Guo, Qin Yan, Di Qin, Chun Lu. Preparation and application of polyclonal antibodies against KSHV v-cyclin[J]. The Journal of Biomedical Research, 2013, 27(5): 421-429. DOI: 10.7555/JBR.27.20120085

Preparation and application of polyclonal antibodies against KSHV v-cyclin

More Information
  • Received Date: October 15, 2012
  • We prepared rabbit polyclonal antibodies against Kaposi's sarcoma-associated herpesvirus (KSHV)-encoded v-cyclin (ORF 72) and detected the natural viral protein using these polyclonal antibodies. Three antigenic polypep?tides of v-cyclin were designed and synthesized. A fragment of the v-cyclin gene was cloned into a eukaryotic expression vector pEF-MCS-Flag-IRES/Puro to construct a recombinant vector, pEF v-cyclin. Then, pEF v-cyclin was transfected into 293T and EA.hy926 cells to obtain v-cyclin-Flag fusion proteins. Six New Zealand white rabbits were immunized with KLH-conjugated peptides to generate polyclonal antibodies against v-cyclin. The polyclonal antibodies were then characterized by ELISA and Western blotting assays. Finally, the polyclonal anti?bodies against v-cyclin were used to detect natural viral protein expressed in BCBL-1, BC-3, and JSC-1 cells. The results showed that using the Flag antibody, v-cyclin-Flag fusion protein was detected in 293T and EA.hy926 cells transfected with pEF-v-cyclin. Furthermore, ELISA showed that the titer of the induced polyclonal rabbit anti-v-cyclin antibodies was higher than 1:8,000. In Western blotting assays, the antibodies reacted specifically with the v-cyclin-Flag fusion protein as well as the natural viral protein. The recombinant expression vector pEF-v-cyclin was constructed successfully, and the polyclonal antibodies prepared can be used for various biological tests in?cluding ELISA and Western blotting assays.
  • Related Articles

    [1]Minqin Xu, Lihua Zhang, Lan Lin, Zhiyi Qiang, Wei Liu, Jian Yang. Cisplatin increases carboxylesterases through increasing PXR mediated by the decrease of DEC1[J]. The Journal of Biomedical Research, 2023, 37(6): 431-447. DOI: 10.7555/JBR.37.20230047
    [2]Yue Xiao, Yue Peng, Chi Zhang, Wei Liu, Kehan Wang, Jing Li. hucMSC-derived exosomes protect ovarian reserve and restore ovarian function in cisplatin treated mice[J]. The Journal of Biomedical Research, 2023, 37(5): 382-393. DOI: 10.7555/JBR.36.20220166
    [3]Haozhe Xu, Yiming Zhou, Jing Guo, Tao Ling, Yujie Xu, Ting Zhao, Chuanxin Shi, Zhongping Su, Qiang You. Elevated extracellular calcium ions accelerate the proliferation and migration of HepG2 cells and decrease cisplatin sensitivity[J]. The Journal of Biomedical Research, 2023, 37(5): 340-354. DOI: 10.7555/JBR.37.20230067
    [4]Li Wanlin, Wu Min, Wang Qianqian, Xu Kun, Lin Fan, Wang Qianghu, Guo Renhua. A comparative genomics analysis of lung adenocarcinoma for Chinese population by using panel of recurrent mutations[J]. The Journal of Biomedical Research, 2021, 35(1): 11-20. DOI: 10.7555/JBR.34.20200068
    [5]Liu Shuying, Lu Shan. Antibody responses in COVID-19 patients[J]. The Journal of Biomedical Research, 2020, 34(6): 410-415. DOI: 10.7555/JBR.34.20200134
    [6]Zhu Ping, Shan Xia, Liu Jinhui, Zhou Xin, Zhang Huo, Wang Tongshan, Wu Jianqing, Zhu Wei, Liu Ping. miR-3622b-5p regulates cisplatin resistance of human gastric cancer cell line by targeting BIRC5[J]. The Journal of Biomedical Research, 2019, 33(6): 382-390. DOI: 10.7555/JBR.33.20180078
    [7]Aixia Zhang, Brian Cao. Generation and characterization of an anti-GP73 monoclonal antibody for immunoblotting and sandwich ELISA[J]. The Journal of Biomedical Research, 2012, 26(6): 467-473. DOI: 10.7555/JBR.26.20120057
    [8]Xinjian Liu, Xiaomin Feng, Qi Tang, Zhongcan Wang, Zhenning Qiu, Yuhua Li, Changjun Wang, Zhenqing Feng, Jin Zhu, Xiaohong Guan. Characterization and potential diagnostic application of monoclonal antibodies specific to rabies virus[J]. The Journal of Biomedical Research, 2010, 24(5): 395-403. DOI: 10.1016/S1674-8301(10)60053-X
    [9]Chen Tao, Li Dan, Fuya ling, Gongzi Peng. In vivo and in vitro effects of QHF combined with chemotherapy on hepatocellular carcinoma[J]. The Journal of Biomedical Research, 2010, 24(2): 161-168.
    [10]Daozhen Chen, Qiusha Tang, Wenqun Xue, Jingying Xiang, Li Zhang, Xinru Wang. The preparation and characterization of folate-conjugated human serum albumin magnetic cisplatin nanoparticles[J]. The Journal of Biomedical Research, 2010, 24(1): 26-32.
  • Cited by

    Periodical cited type(9)

    1. Nasimi Shad A, Moghbeli M. Integrins as the pivotal regulators of cisplatin response in tumor cells. Cell Commun Signal, 2024, 22(1): 265. DOI:10.1186/s12964-024-01648-0
    2. Li J, Peng L, Chen Q, et al. Integrin β1 in Pancreatic Cancer: Expressions, Functions, and Clinical Implications. Cancers (Basel), 2022, 14(14): 3377. DOI:10.3390/cancers14143377
    3. Dötzer K, Schlüter F, Koch FEV, et al. Integrin α2β1 Represents a Prognostic and Predictive Biomarker in Primary Ovarian Cancer. Biomedicines, 2021, 9(3): 289. DOI:10.3390/biomedicines9030289
    4. Khine HEE, Ecoy GAU, Roytrakul S, et al. Chemosensitizing activity of peptide from Lentinus squarrosulus (Mont.) on cisplatin-induced apoptosis in human lung cancer cells. Sci Rep, 2021, 11(1): 4060. DOI:10.1038/s41598-021-83606-1
    5. Moreira AM, Pereira J, Melo S, et al. The Extracellular Matrix: An Accomplice in Gastric Cancer Development and Progression. Cells, 2020, 9(2): 394. DOI:10.3390/cells9020394
    6. Haeger A, Alexander S, Vullings M, et al. Collective cancer invasion forms an integrin-dependent radioresistant niche. J Exp Med, 2020, 217(1): e20181184. DOI:10.1084/jem.20181184
    7. Yang XG, Zhu LC, Wang YJ, et al. Current Advance of Therapeutic Agents in Clinical Trials Potentially Targeting Tumor Plasticity. Front Oncol, 2019, 9: 887. DOI:10.3389/fonc.2019.00887
    8. Manini I, Ruaro ME, Sgarra R, et al. Semaphorin-7A on Exosomes: A Promigratory Signal in the Glioma Microenvironment. Cancers (Basel), 2019, 11(6): 758. DOI:10.3390/cancers11060758
    9. Raab-Westphal S, Marshall JF, Goodman SL. Integrins as Therapeutic Targets: Successes and Cancers. Cancers (Basel), 2017, 9(9): 110. DOI:10.3390/cancers9090110

    Other cited types(0)

Catalog

    Article Metrics

    Article views (3464) PDF downloads (1120) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return