[1] |
Musil J, Procházka J, Krofta K, et al. Effect of chronic systemic hypoxia of the methaemoglobin type on the rat myocardium and its resistance to anoxia[J]. Physiol Bohemoslov, 1966, 15(4): 357–361. https://pubmed.ncbi.nlm.nih.gov/4224277/
|
[2] |
Poupa O, Krofta K, Prochazka J, et al. The resistance of the myocardium to anoxia in animals acclimated to simulated altitude[J]. Physiol Bohemoslov, 1965, 14: 233–237. https://pubmed.ncbi.nlm.nih.gov/14330883/
|
[3] |
Poupa O, Krofta K, Rakusan K, et al. Myoglobin content of the heart and resistance of the isolated myocardium to anoxia in vitro during adaptation to high altitude hypoxia[J]. Physiol Bohemoslov, 1966, 15(5): 450–453. https://pubmed.ncbi.nlm.nih.gov/4230152/
|
[4] |
|
[5] |
Meerson FZ, Gomzakov OA, Shimkovich MV. Adaptation to high altitude hypoxia as a factor preventing development of myocardial ischemic necrosis[J]. Am J Cardiol, 1973, 31(1): 30–34. doi: 10.1016/0002-9149(73)90806-0
|
[6] |
Meerson FZ, Ustinova EE, Orlova EH. Prevention and elimination of heart arrhythmias by adaptation to intermittent high altitude hypoxia[J]. Clin Cardiol, 1987, 10(12): 783–789. doi: 10.1002/clc.4960101202
|
[7] |
Kronenberg RS, Safar P, Lee J, et al. Pulmonary artery pressure and alveolar gas exchange in man during acclimatization to 12, 470 ft[J]. J Clin Invest, 1971, 50(4): 827–837. doi: 10.1172/JCI106554
|
[8] |
Pen̄aloza D, Sime F. Chronic cor pulmonale due to loss of altitude acclimatization (chronic mountain sickness)[J]. Am J Med, 1971, 50(6): 728–743. doi: 10.1016/0002-9343(71)90181-1
|
[9] |
Sime F, Peñaloza D, Ruiz L. Bradycardia, increased cardiac output, and reversal of pulmonary hypertension in altitude natives living at sea level[J]. Br Heart J, 1971, 33(5): 647–657. doi: 10.1136/hrt.33.5.647
|
[10] |
Yellon DM, Downey JM. Preconditioning the myocardium: from cellular physiology to clinical cardiology[J]. Physiol Rev, 2003, 83(4): 1113–1151. doi: 10.1152/physrev.00009.2003
|
[11] |
Heusch G. Myocardial ischaemia-reperfusion injury and cardioprotection in perspective[J]. Nat Rev Cardiol, 2020, 17(12): 773–789. doi: 10.1038/s41569-020-0403-y
|
[12] |
Neckář J, Ošťádal B, Kolář F. Myocardial infarct size-limiting effect of chronic hypoxia persists for five weeks of normoxic recovery[J]. Physiol Res, 2004, 53(6): 621–628. https://pubmed.ncbi.nlm.nih.gov/15588130/
|
[13] |
Zhang Y, Zhong N, Zhu H, et al. Antiarrhythmic and antioxidative effects of intermittent hypoxia exposure on rat myocardium[J]. Acta Physiol Sin, 2000, 52(2): 89–92. https://pubmed.ncbi.nlm.nih.gov/11961574/
|
[14] |
Meerson FZ, Boev VM, Kots II, et al. The effect of adaptation to periodic hypoxia on the tolerance of untrained subjects for physical loading and idiopathic cardiac arrhythmias[J]. Fiziol Cheloveka (in Russian), 1990, 16(1): 94–105. https://pubmed.ncbi.nlm.nih.gov/2358161/
|
[15] |
Aleshin IA, Tin’kov AN, Kots II, et al. Experience in treating patients with cardiovascular diseases by means of adaptation to periodic barochamber hypoxia[J]. Ter Arkh (in Russian), 1997, 69(1): 54–58. https://pubmed.ncbi.nlm.nih.gov/9163053/
|
[16] |
Uskina EV, Maslov LN, Lishmanov YB. Antiarrhythmic effect of hypoxic preconditioning is mediated by activation of μ- and δ-opioid receptors[J]. Bull Exp Biol Med, 1998, 125(3): 239–241. doi: 10.1007/BF02496869
|
[17] |
Li J, Xu J, Xiao J, et al. Preservation of TSPO by chronic intermittent hypobaric hypoxia confers antiarrhythmic activity[J]. J Cell Mol Med, 2011, 15(1): 134–140. doi: 10.1111/j.1582-4934.2009.00949.x
|
[18] |
Zhou J, Ma H, Liu Y, et al. The anti-arrhythmic effect of chronic intermittent hypobaric hypoxia in rats with metabolic syndrome induced with fructose[J]. Can J Physiol Pharmacol, 2015, 93(4): 227–232. doi: 10.1139/cjpp-2014-0343
|
[19] |
Estrada JA, Williams AG Jr, Sun J, et al. δ-Opioid receptor (DOR) signaling and reactive oxygen species (ROS) mediate intermittent hypoxia induced protection of canine myocardium[J]. Basic Res Cardiol, 2016, 111(2): 17. doi: 10.1007/s00395-016-0538-5
|
[20] |
Barbé C, Rochetaing A, Kreher P. Ischemic tolerance of the heart by adaptation to chronic hypoxia is suppressed by high subchronic carbon monoxide exposure[J]. Inhal Toxicol, 2001, 13(3): 219–232. doi: 10.1080/08958370150502458
|
[21] |
Morand J, Arnaud C, Pepin JL, et al. Chronic intermittent hypoxia promotes myocardial ischemia-related ventricular arrhythmias and sudden cardiac death[J]. Sci Rep, 2018, 8(1): 2997. doi: 10.1038/s41598-018-21064-y
|
[22] |
Manukhina EB, Belkina LM, Terekhina OL, et al. Normobaric, intermittent hypoxia conditioning is cardio- and vasoprotective in rats[J]. Exp Biol Med, 2013, 238(12): 1413–1420. doi: 10.1177/1535370213508718
|
[23] |
Mallet RT, Ryou MG, Williams AG, et al. β 1-Adrenergic receptor antagonism abrogates cardioprotective effects of intermittent hypoxia[J]. Basic Res Cardiol, 2006, 101(5): 436–446. doi: 10.1007/s00395-006-0599-y
|
[24] |
Naryzhnaya NV, Mukhamedzyanov AV, Lasukova TV, et al. Involvement of autonomic nervous system in antiarrhythmic effect of intermittent hypobaric hypoxia[J]. Bull Exp Biol Med, 2017, 163(3): 299–301. doi: 10.1007/s10517-017-3789-8
|
[25] |
Kohutova J, Elsnicova B, Holzerova K, et al. Anti-arrhythmic cardiac phenotype elicited by chronic intermittent hypoxia is associated with alterations in connexin-43 expression, phosphorylation, and distribution[J]. Front Endocrinol, 2019, 9: 789. doi: 10.3389/fendo.2018.00789
|
[26] |
Asemu G, Neckár J, Szárszoi O, et al. Effects of adaptation to intermittent high altitude hypoxia on ischemic ventricular arrhythmias in rats[J]. Physiol Res, 2000, 49(5): 597–606. https://pubmed.ncbi.nlm.nih.gov/11191364/
|
[27] |
Neckár J, Borchert GH, Hlousková P, et al. Brief daily episode of normoxia inhibits cardioprotection conferred by chronic continuous hypoxia. Role of oxidative stress and BK Ca channels[J]. Curr Pharm Des, 2013, 19(39): 6880–6889. doi: 10.2174/138161281939131127115154
|
[28] |
Lishmanov IB, Naryzhnaia NV, Maslov LN, et al. The opiatergic link between the antiarrhythmic effect of adaptation and hypoxia in the model of ischemia and reperfusion in vivo[J]. Patol Fiziol Eksp Ter (in Russian), 2003, (1): 19–21. https://pubmed.ncbi.nlm.nih.gov/12652938/
|
[29] |
Wolfe BB, Voelkel NF. Effects of hypoxia on atrial muscarinic cholinergic receptors and cardiac parasympathetic responsiveness[J]. Biochem Pharmacol, 1983, 32(13): 1999–2002. doi: 10.1016/0006-2952(83)90418-5
|
[30] |
De Ferrari GM, Vanoli E, Curcuruto P, et al. Prevention of life-threatening arrhythmias by pharmacologic stimulation of the muscarinic receptors with oxotremorine[J]. Am Heart J, 1992, 124(4): 883–890. doi: 10.1016/0002-8703(92)90968-2
|
[31] |
Bober SL, Ciriello J, Jones DL. Atrial arrhythmias and autonomic dysfunction in rats exposed to chronic intermittent hypoxia[J]. Am J Physiol Heart Circ Physiol, 2018, 314(6): H1160–H1168. doi: 10.1152/ajpheart.00173.2017
|
[32] |
Wu W, Lu Z. Loss of anti-arrhythmic effect of vagal nerve stimulation on ischemia-induced ventricular tachyarrhythmia in aged rats[J]. Tohoku J Exp Med, 2011, 223(1): 27–33. doi: 10.1620/tjem.223.27
|
[33] |
Vanoli E, De Ferrari GM, Stramba-Badiale M, et al. Vagal stimulation and prevention of sudden death in conscious dogs with a healed myocardial infarction[J]. Circ Res, 1991, 68(5): 1471–1481. doi: 10.1161/01.RES.68.5.1471
|
[34] |
Wang S, Han H, Jiang Y, et al. Activation of cardiac M 3 muscarinic acetylcholine receptors has cardioprotective effects against ischaemia-induced arrhythmias[J]. Clin Exp Pharmacol Physiol, 2012, 39(4): 343–349. doi: 10.1111/j.1440-1681.2012.05672.x
|
[35] |
Lin M, Liu R, Gozal D, et al. Chronic intermittent hypoxia impairs baroreflex control of heart rate but enhances heart rate responses to vagal efferent stimulation in anesthetized mice[J]. Am J Physiol Heart Circ Physiol, 2007, 293(2): H997–H1006. doi: 10.1152/ajpheart.01124.2006
|
[36] |
Stembridge M, Ainslie PN, Hughes MG, et al. Ventricular structure, function, and mechanics at high altitude: chronic remodeling in Sherpa vs. short-term lowlander adaptation[J]. J Appl Physiol, 2014, 117(3): 334–343. doi: 10.1152/japplphysiol.00233.2014
|
[37] |
Herrera EA, Farías JG, González-Candia A, et al. Ω3 Supplementation and intermittent hypobaric hypoxia induce cardioprotection enhancing antioxidant mechanisms in adult rats[J]. Mar Drugs, 2015, 13(2): 838–860. doi: 10.3390/md13020838
|
[38] |
Wu S, Li Y, Shi Z, et al. Alteration of cholinergic anti-inflammatory pathway in rat with ischemic cardiomyopathy-modified electrophysiological function of heart[J]. J Am Heart Assoc, 2017, 6(9): e006510. doi: 10.1161/JAHA.117.006510
|
[39] |
Zhang Y, Zhong N, Zhou Z. Effects of intermittent hypoxia on action potential and contraction in non-ischemic and ischemic rat papillary muscle[J]. Life Sci, 2000, 67(20): 2465–2471. doi: 10.1016/S0024-3205(00)00832-8
|
[40] |
Naryzhnaia NV, Neckar J, Maslov LN, et al. The role of sarcolemmal and mitochondrial K(ATP)-channels in realization of the cardioprotection and antiarrhythmic effect of different regimens of hypobaric adaptation[J]. Ross Fiziol Zh Im I M Sechenova (in Russian), 2009, 95(8): 837–849. https://pubmed.ncbi.nlm.nih.gov/19803213/
|
[41] |
Neckář J, Papoušek F, Nováková O, et al. Cardioprotective effects of chronic hypoxia and ischaemic preconditioning are not additive[J]. Basic Res Cardiol, 2002, 97(2): 161–167. doi: 10.1007/s003950200007
|
[42] |
Tsibulnikov SY, Maslov LN, Naryzhnaya NV, et al. Role of protein kinase C, PI3 kinase, tyrosine kinases, NO-synthase, K ATP channels and MPT pore in the signaling pathway of the cardioprotective effect of chronic continuous hypoxia[J]. Gen Physiol Biophys, 2018, 37(5): 537–547. doi: 10.4149/gpb_2018013
|
[43] |
|
[44] |
Neckář J, Marková I, Novák F, et al. Increased expression and altered subcellular distribution of PKC-δin chronically hypoxic rat myocardium: involvement in cardioprotection[J]. Am J Physiol Heart Circ Physiol, 2005, 288(4): H1566–H1572. doi: 10.1152/ajpheart.00586.2004
|
[45] |
Kolář F, Neckář J, Ošťádal B. MCC-134, a blocker of mitochondrial and opener of sarcolemmal ATP-sensitive K + channels, abrogates cardioprotective effects of chronic hypoxia[J]. Physiol Res, 2005, 54(4): 467–471. https://pubmed.ncbi.nlm.nih.gov/16117602/
|
[46] |
Meng X, Yu H, Zhang W, et al. ZFP580, a novel zinc-finger transcription factor, is involved in cardioprotection of intermittent high-altitude hypoxia against myocardial ischemia-reperfusion injury[J]. PLoS One, 2014, 9(4): e94635. doi: 10.1371/journal.pone.0094635
|
[47] |
Xu W, Yu Z, Xie Y, et al. Therapeutic effect of intermittent hypobaric hypoxia on myocardial infarction in rats[J]. Basic Res Cardiol, 2011, 106(3): 329–342. doi: 10.1007/s00395-011-0159-y
|
[48] |
Bourdier G, Flore P, Sanchez H, et al. High-intensity training reduces intermittent hypoxia-induced ER stress and myocardial infarct size[J]. Am J Physiol Heart Circ Physiol, 2016, 310(2): H279–H289. doi: 10.1152/ajpheart.00448.2015
|
[49] |
Milano G, Abruzzo PM, Bolotta A, et al. Impact of the phosphatidylinositide 3-kinase signaling pathway on the cardioprotection induced by intermittent hypoxia[J]. PLoS One, 2013, 8(10): e76659. doi: 10.1371/journal.pone.0076659
|
[50] |
Maslov LN, Naryzhnaia NV, Tsibulnikov SY, et al. Role of endogenous opioid peptides in the infarct size-limiting effect of adaptation to chronic continuous hypoxia[J]. Life Sci, 2013, 93(9–11): 373–379. doi: 10.1016/j.lfs.2013.07.018
|
[51] |
Moulin S, Arnaud C, Bouyon S, et al. Curcumin prevents chronic intermittent hypoxia-induced myocardial injury[J]. Ther Adv Chronic Dis, 2020, 11: 2040622320922104. doi: 10.1177/2040622320922104
|
[52] |
Wang Z, Si L. Hypoxia-inducible factor-1α and vascular endothelial growth factor in the cardioprotective effects of intermittent hypoxia in rats[J]. Ups J Med Sci, 2013, 118(2): 65–74. doi: 10.3109/03009734.2013.766914
|
[53] |
Kasparova D, Neckar J, Dabrowska L, et al. Cardioprotective and nonprotective regimens of chronic hypoxia diversely affect the myocardial antioxidant systems[J]. Physiol Genomics, 2015, 47(12): 612–620. doi: 10.1152/physiolgenomics.00058.2015
|
[54] |
Kolář F, Ježková J, Balková P, et al. Role of oxidative stress in PKC-δupregulation and cardioprotection induced by chronic intermittent hypoxia[J]. Am J Physiol Heart Circ Physiol, 2007, 292(1): H224–H230. doi: 10.1152/ajpheart.00689.2006
|
[55] |
Hrdlička J, Neckář J, Papoušek F, et al. Beneficial effect of continuous normobaric hypoxia on ventricular dilatation in rats with post-infarction heart failure[J]. Physiol Res, 2016, 65(5): 867–870. doi: 10.33549/physiolres.933308
|
[56] |
Zhu W, Xie Y, Chen L, et al. Intermittent high altitude hypoxia inhibits opening of mitochondrial permeability transition pores against reperfusion injury[J]. J Mol Cell Cardiol, 2006, 40(1): 96–106. doi: 10.1016/j.yjmcc.2005.09.016
|
[57] |
Ma H, Li Q, Ma H, et al. Chronic intermittent hypobaric hypoxia ameliorates ischemia/reperfusion-induced calcium overload in heart via Na +/Ca 2+ exchanger in developing rats[J]. Cell Physiol Biochem, 2014, 34(2): 313–324. doi: 10.1159/000363001
|
[58] |
Maslov LN, Naryzhnaya NV, Prokudina ES, et al. Preserved cardiac mitochondrial function and reduced ischaemia/reperfusion injury afforded by chronic continuous hypoxia: role of opioid receptors[J]. Clin Exp Pharmacol Physiol, 2015, 42(5): 496–501. doi: 10.1111/1440-1681.12383
|
[59] |
Prokudina ES, Naryzhnaya NV, Mukhomedzyanov AV, et al. Effect of chronic continuous normobaric hypoxia on functional state of cardiac mitochondria and tolerance of isolated rat heart to ischemia and reperfusion: role of µ and δ 2 opioid receptors[J]. Physiol Res, 2019, 68(6): 909–920. doi: 10.33549/physiolres.933945
|
[60] |
Naryzhnaya NV, Prokudina ES, Nesterov EA, et al. The role of cardiac opioid receptors in the cardioprotective effect of continuous normobaric hypoxia[J]. Bull Exp Biol Med, 2020, 168(6): 727–729. doi: 10.1007/s10517-020-04789-7
|
[61] |
|
[62] |
Borchert GH, Yang C, Kolář F. Mitochondrial BK Ca channels contribute to protection of cardiomyocytes isolated from chronically hypoxic rats[J]. Am J Physiol Heart Circ Physiol, 2011, 300(2): H507–H513. doi: 10.1152/ajpheart.00594.2010
|
[63] |
|
[64] |
Xu S, Jia L, Liu X, et al. Effect of chronic intermittent hypobaric hypoxia on cardiac function in female metabolic syndrome rats[J]. Adapt Med, 2021, 13: 8–15. doi: 10.4247/AM.2021.ACB257
|
[65] |
Dong J, Zhu H, Zhu W, et al. Intermittent hypoxia attenuates ischemia/reperfusion induced apoptosis in cardiac myocytes via regulating Bcl-2/Bax expression[J]. Cell Res, 2003, 13(5): 385–391. doi: 10.1038/sj.cr.7290184
|
[66] |
Kolar D, Gresikova M, Waskova-Arnostova P, et al. Adaptation to chronic continuous hypoxia potentiates Akt/HK2 anti-apoptotic pathway during brief myocardial ischemia/reperfusion insult[J]. Mol Cell Biochem, 2017, 432(1–2): 99–108. doi: 10.1007/s11010-017-3001-5
|
[67] |
Xie S, Deng Y, Pan Y, et al. Chronic intermittent hypoxia induces cardiac hypertrophy by impairing autophagy through the adenosine 5’-monophosphate-activated protein kinase pathway[J]. Arch Biochem Biophys, 2016, 606: 41–52. doi: 10.1016/j.abb.2016.07.006
|
[68] |
Chang JC, Hu W, Lee WS, et al. Intermittent hypoxia induces autophagy to protect cardiomyocytes from endoplasmic reticulum stress and apoptosis[J]. Front Physiol, 2019, 10: 995. doi: 10.3389/fphys.2019.00995
|
[69] |
Gyongyosi A, Terraneo L, Bianciardi P, et al. The impact of moderate chronic hypoxia and hyperoxia on the level of apoptotic and autophagic proteins in myocardial tissue[J]. Oxid Med Cell Longev, 2018, 2018: 5786742. doi: 10.1155/2018/5786742
|
[70] |
Nedvedova I, Kolar D, Elsnicova B, et al. Mitochondrial genome modulates myocardial Akt/Glut/HK salvage pathway in spontaneously hypertensive rats adapted to chronic hypoxia[J]. Physiol Genomics, 2018, 50(7): 532–541. doi: 10.1152/physiolgenomics.00040.2017
|
[71] |
Rathod KS, Koganti S, Jain AK, et al. Complete versus culprit only revascularisation in patients with cardiogenic shock complicating acute myocardial infarction: incidence and outcomes from the London heart attack group[J]. Cardiovasc Revasc Med, 2020, 21(3): 350–358. doi: 10.1016/j.carrev.2019.06.007
|
[72] |
Kopylov YN, Golubeva LY. Effect of adaptation to periodic hypoxia on stability of myocardial energy metabolism and contractility parameters in the presence of acute anoxia and reoxygenation[J]. Bull Exp Biol Med, 1991, 111(1): 27–30. doi: 10.1007/BF00841231
|
[73] |
Krylatov AV, Tsibulnikov SY, Mukhomedzyanov AV, et al. The role of natriuretic peptides in the regulation of cardiac tolerance to ischemia/reperfusion and postinfarction heart remodeling[J]. J Cardiovasc Pharmacol Ther, 2021, 26(2): 131–148. doi: 10.1177/1074248420952243
|
[74] |
Casserly B, Pietras L, Schuyler J, et al. Cardiac atria are the primary source of ANP release in hypoxia-adapted rats[J]. Life Sci, 2010, 87(11–12): 382–389. doi: 10.1016/j.lfs.2010.07.013
|
[75] |
Lordick F, Hauck RW, Senekowitsch R, et al. Atrial natriuretic peptide in acute hypoxia-exposed healthy subjects and in hypoxaemic patients[J]. Eur Respir J, 1995, 8(2): 216–221. doi: 10.1183/09031936.95.08020216
|
[76] |
Winter RJD, Meleagros L, Pervez S, et al. Atrial natriuretic peptide levels in plasma and in cardiac tissues after chronic hypoxia in rats[J]. Clin Sci (Lond), 1989, 76(1): 95–101. doi: 10.1042/cs0760095
|
[77] |
Bullard AJ, Govewalla P, Yellon DM. Erythropoietin protects the myocardium against reperfusion injury in vitro and in vivo[J]. Basic Res Cardiol, 2005, 100(5): 397–403. doi: 10.1007/s00395-005-0537-4
|
[78] |
Piperno A, Galimberti S, Mariani R. Modulation of hepcidin production during hypoxia-induced erythropoiesis in humans in vivo: data from the HIGHCARE project[J]. Blood, 2011, 117(10): 2953–2959. doi: 10.1182/blood-2010-08-299859
|
[79] |
Feizi H, Rajaee K, Keyhanmanesh R, et al. Effect of ghrelin on renal erythropoietin production in chronic hypoxic rats[J]. Endocr Regul, 2014, 48(1): 3–8. doi: 10.4149/endo_2014_01_3
|
[80] |
Schmidt W, Spielvogel H, Eckardt KU, et al. Effects of chronic hypoxia and exercise on plasma erythropoietin in high-altitude residents[J]. J Appl Physiol, 1993, 74(4): 1874–1878. doi: 10.1152/jappl.1993.74.4.1874
|
[81] |
Zhang S, Ma K, Liu Y, et al. Stabilization of hypoxia-inducible factor by DMOG inhibits development of chronic hypoxia-induced right ventricular remodeling[J]. J Cardiovasc Pharmacol, 2016, 67(1): 68–75. doi: 10.1097/FJC.0000000000000315
|
[82] |
Asimakis GK, Inners-McBride K, Conti VR, et al. Transient β adrenergic stimulation can precondition the rat heart against postischaemic contractile dysfunction[J]. Cardiovasc Res, 1994, 28(11): 1726–1734. doi: 10.1093/cvr/28.11.1726
|
[83] |
Ravingerová T, Pancza D, Ziegelhoffer A, et al. Preconditioning modulates susceptibility to ischemia-induced arrhythmias in the rat heart: the role of α-adrenergic stimulation and K(ATP) channels[J]. Physiol Res, 2002, 51(2): 109–119. https://www.biomed.cas.cz/physiolres/pdf/51/51_109.pdf
|
[84] |
Shin MK, Han W, Joo H, et al. Effect of adrenal medullectomy on metabolic responses to chronic intermittent hypoxia in the frequently sampled intravenous glucose tolerance test[J]. J Appl Physiol, 2017, 122(4): 767–774. doi: 10.1152/japplphysiol.00975.2016
|
[85] |
Zoccal DB, Bonagamba LGH, Oliveira FRT, et al. Increased sympathetic activity in rats submitted to chronic intermittent hypoxia[J]. Exp Physiol, 2007, 92(1): 79–85. doi: 10.1113/expphysiol.2006.035501
|
[86] |
Oštádal B, Ressl J, Urbanová D, et al. The effect of beta adrenergic blockade on pulmonary hypertension, right ventricular hypertrophy and polycythaemia, induced in rats by intermittent high altitude hypoxia[J]. Basic Res Cardiol, 1978, 73(5): 422–432. doi: 10.1007/BF01906523
|
[87] |
Zhu B, Simonis U, Cecchini G, et al. Comparison of pyrroloquinoline quinone and/or metoprolol on myocardial infarct size and mitochondrial damage in a rat model of ischemia/reperfusion injury[J]. J Cardiovasc Pharmacol Ther, 2006, 11(2): 119–128. doi: 10.1177/1074248406288757
|
[88] |
Hu A, Jiao X, Gao E, et al. Chronic β-adrenergic receptor stimulation induces cardiac apoptosis and aggravates myocardial ischemia/reperfusion injury by provoking inducible nitric-oxide synthase-mediated nitrative stress[J]. J Pharmacol Exp Ther, 2006, 318(2): 469–475. doi: 10.1124/jpet.106.102160
|
[89] |
Du X, Gao X, Kiriazis H, et al. Transgenic α 1A-adrenergic activation limits post-infarct ventricular remodeling and dysfunction and improves survival[J]. Cardiovasc Res, 2006, 71(4): 735–743. doi: 10.1016/j.cardiores.2006.06.015
|
[90] |
León-Velarde F, Bourin MC, Germack R, et al. Differential alterations in cardiac adrenergic signaling in chronic hypoxia or norepinephrine infusion[J]. Am J Physiol Regul Integr Comp Physiol, 2001, 280(1): R274–R281. doi: 10.1152/ajpregu.2001.280.1.R274
|
[91] |
Wang P, Gallagher KP, Downey JM, et al. Pretreatment with endothelin-1 mimics ischemic preconditioning against infarction in isolated rabbit heart[J]. J Mol Cell Cardiol, 1996, 28(3): 579–588. doi: 10.1006/jmcc.1996.0054
|
[92] |
Bugge E, Ytrehus K. Endothelin-1 can reduce infarct size through protein kinase C and K ATP channels in the isolated rat heart[J]. Cardiovasc Res, 1996, 32(5): 920–929. doi: 10.1016/S0008-6363(96)00129-0
|
[93] |
Duda M, Konior A, Klemenska E, et al. Preconditioning protects endothelium by preventing ET-1-induced activation of NADPH oxidase and xanthine oxidase in post-ischemic heart[J]. J Mol Cell Cardiol, 2007, 42(2): 400–410. doi: 10.1016/j.yjmcc.2006.10.014
|
[94] |
Zhang M, Gu W, Hong X. Involvement of endothelin 1 in remote preconditioning-induced cardioprotection through connexin 43 and Akt/GSK-3β signaling pathway[J]. Sci Rep, 2018, 8(1): 10941. doi: 10.1038/s41598-018-29196-x
|
[95] |
Tamareille S, Terwelp M, Amirian J, et al. Endothelin-1 release during the early phase of reperfusion is a mediator of myocardial reperfusion injury[J]. Cardiology, 2013, 125(4): 242–249. doi: 10.1159/000350655
|
[96] |
Blumberg FC, Wolf K, Arzt M, et al. Effects of ET-A receptor blockade on eNOS gene expression in chronic hypoxic rat lungs[J]. J Appl Physiol, 2003, 94(2): 446–452. doi: 10.1152/japplphysiol.00239.2002
|
[97] |
Pan P, Zhang X, Qian H, et al. Effects of electro-acupuncture on endothelium-derived endothelin-1 and endothelial nitric oxide synthase of rats with hypoxia-induced pulmonary hypertension[J]. Exp Biol Med, 2010, 235(5): 642–648. doi: 10.1258/ebm.2010.009353
|
[98] |
Wang N, Chang Y, Chen L, et al. Tanshinone IIA protects against chronic intermittent hypoxia-induced myocardial injury via activating the endothelin 1 pathway[J]. Biomed Pharmacother, 2017, 95: 1013–1020. doi: 10.1016/j.biopha.2017.08.036
|
[99] |
Hamid SA, Baxter GF. Adrenomedullin limits reperfusion injury in experimental myocardial infarction[J]. Basic Res Cardiol, 2005, 100(5): 387–396. doi: 10.1007/s00395-005-0538-3
|
[100] |
|
[101] |
|
[102] |
Wang S, Yu Z, Liu K, et al. Synthesis and release of pulmonary tissue adrenomedullin on hypoxic pulmonary hypertension in rats and its significance[J]. Chin J Tuberc Respir Dis, 2001, 24(12): 725–727. https://pubmed.ncbi.nlm.nih.gov/11930700/
|
[103] |
|
[104] |
Tsibulnikov S, Maslov L, Voronkov N, et al. Thyroid hormones and the mechanisms of adaptation to cold[J]. Hormones, 2020, 19(3): 329–339. doi: 10.1007/s42000-020-00200-2
|
[105] |
Jeddi S, Zaman J, Zadeh-Vakili A, et al. Involvement of inducible nitric oxide synthase in the loss of cardioprotection by ischemic postconditioning in hypothyroid rats[J]. Gene, 2016, 580(2): 169–176. doi: 10.1016/j.gene.2016.01.014
|
[106] |
Maslov LN, Khaliulin I, Oeltgen PR, et al. Prospects for creation of cardioprotective and antiarrhythmic drugs based on opioid receptor agonists[J]. Med Res Rev, 2016, 36(5): 871–923. doi: 10.1002/med.21395
|
[107] |
Naryzhnaya NV, Maslov LN, Prokudina ES, et al. Contribution of opioid receptors to the cytoprotective effect of the adaptation to chronic hypoxia at anoxia/reoxygenation of isolated cardiomyocytes[J]. Bull Exp Biol Med, 2015, 159(2): 209–212. doi: 10.1007/s10517-015-2924-7
|
[108] |
Pei J, Zhou J, Bian J, et al. Impaired [Ca 2+] i and pH iresponses to κ-opioid receptor stimulation in the heart of chronically hypoxic rats[J]. Am J Physiol Cell Physiol, 2000, 279(5): C1483–C1494. doi: 10.1152/ajpcell.2000.279.5.C1483
|
[109] |
|
[110] |
Wu J, Li P, Wu X, et al. Chronic intermittent hypoxia decreases pain sensitivity and increases the expression of HIF1α and opioid receptors in experimental rats[J]. Sleep Breath, 2015, 19(2): 561–568. doi: 10.1007/s11325-014-1047-0
|
[111] |
Li C, Chen L, Song M, et al. Ferulic acid protects cardiomyocytes from TNF-α/cycloheximide-induced apoptosis by regulating autophagy[J]. Arch Pharm Res, 2020, 43(8): 863–874. doi: 10.1007/s12272-020-01252-z
|
[112] |
Degterev A, Hitomi J, Germscheid M, et al. Identification of RIP1 kinase as a specific cellular target of necrostatins[J]. Nat Chem Biol, 2008, 4(5): 313–321. doi: 10.1038/nchembio.83
|
[113] |
Gao C, Liu Y, Yu Q, et al. TNF-α antagonism ameliorates myocardial ischemia-reperfusion injury in mice by upregulating adiponectin[J]. Am J Physiol Heart Circ Physiol, 2015, 308(12): H1583–H1591. doi: 10.1152/ajpheart.00346.2014
|
[114] |
Chytilová A, Borchert GH, Mandíková-Alánová P, et al. Tumour necrosis factor- α contributes to improved cardiac ischaemic tolerance in rats adapted to chronic continuous hypoxia[J]. Acta Physiol, 2015, 214(1): 97–108. doi: 10.1111/apha.12489
|
[115] |
Alánová P, Chytilová A, Neckář J, et al. Myocardial ischemic tolerance in rats subjected to endurance exercise training during adaptation to chronic hypoxia[J]. J Appl Physiol, 2017, 122(6): 1452–1461. doi: 10.1152/japplphysiol.00671.2016
|
[116] |
Bilenko MV. Ischemic and reperfusion injury to organs[M]. Editors: Medicine, Moscow, 1989.
|
[117] |
Krylatov AV, Maslov LN, Voronkov NS, et al. Reactive oxygen species as intracellular signaling molecules in the cardiovascular system[J]. Curr Cardiol Rev, 2018, 14(4): 290–300. doi: 10.2174/1573403X14666180702152436
|
[118] |
Lien CF, Lee WS, Wang IC, et al. Intermittent hypoxia-generated ROS contributes to intracellular zinc regulation that limits ischemia/reperfusion injury in adult rat cardiomyocyte[J]. J Mol Cell Cardiol, 2018, 118: 122–132. doi: 10.1016/j.yjmcc.2018.03.014
|
[119] |
Chang JC, Lien CF, Lee WS, et al. Intermittent hypoxia prevents myocardial mitochondrial Ca 2+ overload and cell death during ischemia/reperfusion: the role of reactive oxygen species[J]. Cells, 2019, 8(6): 564. doi: 10.3390/cells8060564
|
[120] |
Mrakic-Sposta S, Gussoni M, Dellanoce C, et al. Effects of acute and sub-acute hypobaric hypoxia on oxidative stress: a field study in the Alps[J]. Eur J Appl Physiol, 2021, 121(1): 297–306. doi: 10.1007/s00421-020-04527-x
|
[121] |
Mallet RT, Burtscher J, Richalet JP, et al. Impact of high altitude on cardiovascular health: current perspectives[J]. Vasc Health Risk Manag, 2021, 17: 317–335. doi: 10.2147/VHRM.S294121
|
[122] |
|
[123] |
Heusch G. Molecular basis of cardioprotection: signal transduction in ischemic pre-, post-, and remote conditioning[J]. Circ Res, 2015, 116(4): 674–699. doi: 10.1161/CIRCRESAHA.116.305348
|
[124] |
|
[125] |
McCreight JC, Schneider SE, Wilburn DB, et al. Evolution of microRNA in primates[J]. PLoS One, 2017, 12(6): e0176596. doi: 10.1371/journal.pone.0176596
|
[126] |
Tsibulnikov SY, Maslov LN, Gorbunov AS, et al. A review of humoral factors in remote preconditioning of the heart[J]. J Cardiovasc Pharmacol Ther, 2019, 24(5): 403–421. doi: 10.1177/1074248419841632
|
[127] |
Chen Y, Ye X, Yan F. MicroRNA 3113-5p is a novel marker for early cardiac ischemia/reperfusion injury[J]. Diagn Pathol, 2019, 14(1): 121. doi: 10.1186/s13000-019-0894-1
|
[128] |
He S, Liu P, Jian Z, et al. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-Jun pathway[J]. Biochem Biophys Res Commun, 2013, 441(4): 763–769. doi: 10.1016/j.bbrc.2013.10.151
|
[129] |
|
[130] |
Huang J, Li X, Li H, et al. Down-regulation of microRNA-184 contributes to the development of cyanotic congenital heart diseases[J]. Int J Clin Exp Pathol, 2015, 8(11): 14221–14227. https://pubmed.ncbi.nlm.nih.gov/26823736/
|
[131] |
Zhou Y, Jia W, Jian Z, et al. Downregulation of microRNA-199a-5p protects cardiomyocytes in cyanotic congenital heart disease by attenuating endoplasmic reticulum stress[J]. Mol Med Rep, 2017, 16(3): 2992–3000. doi: 10.3892/mmr.2017.6934
|
[132] |
He W, Che H, Jin C, et al. Effects of miR-23b on hypoxia-induced cardiomyocytes apoptosis[J]. Biomed Pharmacother, 2017, 96: 812–817. doi: 10.1016/j.biopha.2017.09.148
|
[133] |
Ren J, Liu W, Li G, et al. Atorvastatin attenuates myocardial hypertrophy induced by chronic intermittent hypoxia in vitro partly through miR-31/PKCε pathway[J]. Curr Med Sci, 2018, 38(3): 405–412. doi: 10.1007/s11596-018-1893-2
|
[134] |
Zhang K, Ma Z, Wang W, et al. Beneficial effects of tolvaptan on atrial remodeling induced by chronic intermittent hypoxia in rats[J]. Cardiovasc Ther, 2018, 36(6): e12466. doi: 10.1111/1755-5922.12466
|
[135] |
Santolini J. What does "NO-synthase" stand for ?[J]. Front Biosci, 2019, 24(1): 133–171. doi: 10.2741/4711
|
[136] |
Cohen MV, Downey JM. Signalling pathways and mechanisms of protection in pre- and postconditioning: historical perspective and lessons for the future[J]. Br J Pharmacol, 2015, 172(8): 1913–1932. doi: 10.1111/bph.12903
|
[137] |
Ferreiro CR, Chagas ACP, Carvalho MHC, et al. Influence of hypoxia on nitric oxide synthase activity and gene expression in children with congenital heart disease: a novel pathophysiological adaptive mechanism[J]. Circulation, 2001, 103(18): 2272–2276. doi: 10.1161/01.CIR.103.18.2272
|
[138] |
|
[139] |
Jung F, Palmer LA, Zhou N, et al. Hypoxic regulation of inducible nitric oxide synthase via hypoxia inducible factor-1 in cardiac myocytes[J]. Circ Res, 2000, 86(3): 319–325. doi: 10.1161/01.RES.86.3.319
|
[140] |
Rouet-Benzineb P, Eddahibi S, Raffestin B, et al. Induction of cardiac nitric oxide synthase 2 in rats exposed to chronic hypoxia[J]. J Mol Cell Cardiol, 1999, 31(9): 1697–1708. doi: 10.1006/jmcc.1999.1005
|
[141] |
Yuan X, Zhu D, Guo X, et al. Telmisartan attenuates myocardial apoptosis induced by chronic intermittent hypoxia in rats: modulation of nitric oxide metabolism and inflammatory mediators[J]. Sleep Breath, 2015, 19(2): 703–709. doi: 10.1007/s11325-014-1081-y
|
[142] |
Thompson LP, Dong Y. Chronic hypoxia decreases endothelial nitric oxide synthase protein expression in fetal guinea pig hearts[J]. J Soc Gynecol Investig, 2005, 12(6): 388–395. doi: 10.1016/j.jsgi.2005.04.011
|
[143] |
La Padula PH, Etchegoyen M, Czerniczyniec A, et al. Cardioprotection after acute exposure to simulated high altitude in rats. Role of nitric oxide[J]. Nitric Oxide, 2018, 73: 52–59. doi: 10.1016/j.niox.2017.12.007
|
[144] |
Felaco M, Grilli A, Gorbunov N, et al. Endothelial NOS expression and ischemia-reperfusion in isolated working rat heart from hypoxic and hyperoxic conditions[J]. Biochim Biophys Acta, 2000, 1524(2-3): 203–211. doi: 10.1016/S0304-4165(00)00159-8
|
[145] |
Forkel J, Chen X, Wandinger S, et al. Responses of chronically hypoxic rat hearts to ischemia: K ATP channel blockade does not abolish increased RV tolerance to ischemia[J]. Am J Physiol Heart Circ Physiol, 2004, 286(2): H545–H551. doi: 10.1152/ajpheart.00022.2003
|
[146] |
Quing M, Görlach A, Schumacher K, et al. The hypoxia-inducible factor HIF-1 promotes intramyocardial expression of VEGF in infants with congenital cardiac defects[J]. Basic Res Cardiol, 2007, 102(3): 224–232. doi: 10.1007/s00395-007-0639-2
|
[147] |
Shi Y, Pritchard KA, Holman P, et al. Chronic myocardial hypoxia increases nitric oxide synthase and decreases caveolin-3[J]. Free Radic Biol Med, 2000, 29(8): 695–703. doi: 10.1016/S0891-5849(00)00364-6
|
[148] |
La Padula P, Bustamante J, Czerniczyniec A, et al. Time course of regression of the protection conferred by simulated high altitude to rat myocardium: correlation with mtNOS[J]. J Appl Physiol, 2008, 105(3): 951–957. doi: 10.1152/japplphysiol.90400.2008
|
[149] |
Ghafourifar P, Cadenas E. Mitochondrial nitric oxide synthase[J]. Trends Pharmacol Sci, 2005, 26(4): 190–195. doi: 10.1016/j.tips.2005.02.005
|
[150] |
Thompson L, Dong Y, Evans L. Chronic hypoxia increases inducible NOS-derived nitric oxide in fetal guinea pig hearts[J]. Pediatr Res, 2009, 65(2): 188–192. doi: 10.1203/PDR.0b013e31818d6ad0
|
[151] |
Milano G, Corno AF, Samaja M, et al. Daily reoxygenation decreases myocardial injury and improves post-ischaemic recovery after chronic hypoxia[J]. Eur J Cardiothorac Surg, 2010, 37(4): 942–949. doi: 10.1016/j.ejcts.2009.10.030
|
[152] |
Yu X, Ge L, Niu L, et al. The dual role of inducible nitric oxide synthase in myocardial ischemia/reperfusion injury: friend or foe?[J]. Oxid Med Cell Longev, 2018, 2018: 8364848. doi: 10.1155/2018/8364848
|
[153] |
Baker JE, Holman P, Kalyanaraman B, et al. Adaptation to chronic hypoxia confers tolerance to subsequent myocardial ischemia by increased nitric oxide production[J]. Ann N Y Acad Sci, 1999, 874: 236–253. doi: 10.1111/j.1749-6632.1999.tb09239.x
|
[154] |
Earley S, Walker BR. Increased nitric oxide production following chronic hypoxia contributes to attenuated systemic vasoconstriction[J]. Am J Physiol Heart Circ Physiol, 2003, 284(5): H1655–H1661. doi: 10.1152/ajpheart.00964.2002
|
[155] |
Fitzpatrick CM, Shi Y, Hutchins WC, et al. Cardioprotection in chronically hypoxic rabbits persists on exposure to normoxia: role of NOS and K ATP channels[J]. Am J Physiol Heart Circ Physiol, 2005, 288(1): H62–H68. doi: 10.1152/ajpheart.00701.2004
|
[156] |
Rafiee P, Shi Y, Kong X, et al. Activation of protein kinases in chronically hypoxic infant human and rabbit hearts: role in cardioprotection[J]. Circulation, 2002, 106(2): 239–245. doi: 10.1161/01.CIR.0000022018.68965.6D
|
[157] |
Morel OE, Buvry A, Le Corvoisier P, et al. Effects of nifedipine-induced pulmonary vasodilatation on cardiac receptors and protein kinase C isoforms in the chronically hypoxic rat[J]. Pflugers Arch, 2003, 446(3): 356–364. doi: 10.1007/s00424-003-1034-y
|
[158] |
Naryzhnaya NV, Maslov IN, Khaliulin IG, et al. Chronic continuous nor-Mobaric hypoxia augments cell tolerance to anoxia (reoxyge-nation: the role of protein kinases[J]. Ross Fiziol Zh Im I M Sechenova (in Russian), 2016, 102(12): 1462–1471. https://pubmed.ncbi.nlm.nih.gov/30198641/
|
[159] |
El Alwani M, Usta J, Nemer G, et al. Regulation of the sphingolipid signaling pathways in the growing and hypoxic rat heart[J]. Prostaglandins Other Lipid Mediat, 2005, 78(1–4): 249–263. doi: 10.1016/j.prostaglandins.2005.09.002
|
[160] |
Hlaváčková M, Kožichová K, Neckář J, et al. Up-regulation and redistribution of protein kinase C-δ in chronically hypoxic heart[J]. Mol Cell Biochem, 2010, 345(1-2): 271–282. doi: 10.1007/s11010-010-0581-8
|
[161] |
Hlavácková M, Neckár J, Jezková J, et al. Dietary polyunsaturated fatty acids alter myocardial protein kinase C expression and affect cardioprotection induced by chronic hypoxia[J]. Exp Biol Med, 2007, 232(6): 823–832. https://pubmed.ncbi.nlm.nih.gov/17526775/
|
[162] |
Su Z, Liu Y, Zhang H. Adaptive cardiac metabolism under chronic hypoxia: mechanism and clinical implications[J]. Front Cell Dev Biol, 2021, 9: 625524. doi: 10.3389/fcell.2021.625524
|
[163] |
de Miranda DC, de Oliveira Faria G, Hermidorff MM, et al. Pre- and post-conditioning of the heart: an overview of cardioprotective signaling pathways[J]. Curr Vasc Pharmacol, 2021, 19(5): 499–524. doi: 10.2174/1570161119666201120160619
|
[164] |
Micova P, Hahnova K, Hlavackova M, et al. Chronic intermittent hypoxia affects the cytosolic phospholipase A 2α/cyclooxygenase 2 pathway via β 2-adrenoceptor-mediated ERK/p38 stimulation[J]. Mol Cell Biochem, 2016, 423(1-2): 151–163. doi: 10.1007/s11010-016-2833-8
|
[165] |
Zeng C, Liang B, Jiang R, et al. Protein kinase C isozyme expression in right ventricular hypertrophy induced by pulmonary hypertension in chronically hypoxic rats[J]. Mol Med Rep, 2017, 16(4): 3833–3840. doi: 10.3892/mmr.2017.7098
|
[166] |
Ling H, Gray CBB, Zambon AC, et al. Ca 2+/calmodulin-dependent protein kinase II δ mediates myocardial ischemia/reperfusion injury through nuclear factor-κB[J]. Circ Res, 2013, 112(6): 935–944. doi: 10.1161/CIRCRESAHA.112.276915
|
[167] |
Yang Y, Jiang K, Liu X, et al. CaMKII in regulation of cell death during myocardial reperfusion injury[J]. Front Mol Biosci, 2021, 8: 668129. doi: 10.3389/fmolb.2021.668129
|
[168] |
Zhao P, Pan J, Li F, et al. Effects of chronic hypoxia on the expression of calmodulin and calcicum/calmodulin-dependent protein kinase II and the calcium activity in myocardial cells in young rats[J]. Chin J Contemp Pediatr, 2008, 10(3): 381–385. https://d.wanfangdata.com.cn/periodical/zgddekzz200803028
|
[169] |
Nehra S, Bhardwaj V, Kar S, et al. Chronic hypobaric hypoxia induces right ventricular hypertrophy and apoptosis in rats: therapeutic potential of nanocurcumin in improving adaptation[J]. High Alt Med Biol, 2016, 17(4): 342–352. doi: 10.1089/ham.2016.0032
|
[170] |
Xie Y, Zhu W, Zhu Y, et al. Intermittent high altitude hypoxia protects the heart against lethal Ca 2+ overload injury[J]. Life Sci, 2004, 76(5): 559–572. doi: 10.1016/j.lfs.2004.09.017
|
[171] |
Gui L, Guo X, Zhang Z, et al. Activation of CaMKIIδA promotes Ca 2+ leak from the sarcoplasmic reticulum in cardiomyocytes of chronic heart failure rats[J]. Acta Pharmacol Sin, 2018, 39(10): 1604–1612. doi: 10.1038/aps.2018.20
|
[172] |
Strnisková M, Ravingerová T, Neckár J, et al. Changes in the expression and/or activation of regulatory proteins in rat hearts adapted to chronic hypoxia[J]. Gen Physiol Biophys, 2006, 25(1): 25–41. http://www.gpb.sav.sk/2006_01_25.pdf
|
[173] |
Milano G, von Segesser LK, Morel S, et al. Phosphorylation of phosphatidylinositol-3-kinase-protein kinase B and extracellular signal-regulated kinases 1/2 mediate reoxygenation-induced cardioprotection during hypoxia[J]. Exp Biol Med, 2010, 235(3): 401–410. doi: 10.1258/ebm.2009.009153
|
[174] |
Ravingerová T, Matejíková J, Neckář J, et al. Differential role of PI3K/Akt pathway in the infarct size limitation and antiarrhythmic protection in the rat heart[J]. Mol Cell Biochem, 2007, 297(1-2): 111–120. doi: 10.1007/s11010-006-9335-z
|
[175] |
Jia W, Jian Z, Li J, et al. Upregulated ATF6 contributes to chronic intermittent hypoxia-afforded protection against myocardial ischemia/reperfusion injury[J]. Int J Mol Med, 2016, 37(5): 1199–1208. doi: 10.3892/ijmm.2016.2535
|
[176] |
|
[177] |
García-Niño WR, Zazueta C, Buelna-Chontal M, et al. Mitochondrial quality control in cardiac-conditioning strategies against ischemia-reperfusion injury[J]. Life (Basel), 2021, 11(11): 1123. doi: 10.3390/LIFE11111123
|
[178] |
Morel S, Milano G, Ludunge KM, et al. Brief reoxygenation episodes during chronic hypoxia enhance posthypoxic recovery of LV function: role of mitogen-activated protein kinase signaling pathways[J]. Basic Res Cardiol, 2006, 101(4): 336–345. doi: 10.1007/s00395-006-0596-1
|
[179] |
Milano G, Morel S, Bonny C, et al. A peptide inhibitor of c-Jun NH 2-terminal kinase reduces myocardial ischemia-reperfusion injury and infarct size in vivo[J]. Am J Physiol Heart Circ Physiol, 2007, 292(4): H1828–H1835. doi: 10.1152/ajpheart.01117.2006
|
[180] |
Heidbreder M, Naumann A, Tempel K, et al. Remote vs. ischaemic preconditioning: the differential role of mitogen-activated protein kinase pathways[J]. Cardiovasc Res, 2008, 78(1): 108–115. doi: 10.1093/cvr/cvm114
|
[181] |
Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin[M]//Aggarwal BB, Surh YJ, Shishodia S. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. New York: Springer, 2007: 105–125.
|
[182] |
Li Q, Xiang Y, Chen Y, et al. Ginsenoside Rg1 protects cardiomyocytes against hypoxia/reoxygenation injury via activation of Nrf2/HO-1 signaling and inhibition of JNK[J]. Cell Physiol Biochem, 2017, 44(1): 21–37. doi: 10.1159/000484578
|
[183] |
He S, Liu S, Wu X, et al. Protective role of downregulated MLK3 in myocardial adaptation to chronic hypoxia[J]. J Physiol Biochem, 2016, 73(3): 371–380. doi: 10.1007/s13105-017-0561-5
|
[184] |
Zhao Y, An J, Yang S, et al. Hydrogen and oxygen mixture to improve cardiac dysfunction and myocardial pathological changes induced by intermittent hypoxia in rats[J]. Oxid Med Cell Longev, 2019, 2019: 7415212. doi: 10.1155/2019/7415212
|
[185] |
Wagner C, Tillack D, Simonis G, et al. Ischemic post-conditioning reduces infarct size of the in vivo rat heart: role of PI3-K, mTOR, GSK-3β, and apoptosis[J]. Mol Cell Biochem, 2010, 339(1-2): 135–147. doi: 10.1007/s11010-009-0377-x
|
[186] |
|
[187] |
Guan P, Sun ZM, Wang N, et al. Resveratrol prevents chronic intermittent hypoxia-induced cardiac hypertrophy by targeting the PI3K/AKT/mTOR pathway[J]. Life Sci, 2019, 233: 116748. doi: 10.1016/j.lfs.2019.116748
|
[188] |
Wang J, Maimaitili Y, Zheng H, et al. The influence of rapamycin on the early cardioprotective effect of hypoxic preconditioning on cardiomyocytes[J]. Arch Med Sci, 2017, 13(4): 947–955. doi: 10.5114/aoms.2016.59712
|
[189] |
Gu S, Hua H, Guo X, et al. PGC-1α Participates in the protective effect of chronic intermittent hypobaric hypoxia on cardiomyocytes[J]. Cell Physiol Biochem, 2018, 50(5): 1891–1902. doi: 10.1159/000494869
|
[190] |
Zhang H, Liu B, Li T, et al. AMPK activation serves a critical role in mitochondria quality control via modulating mitophagy in the heart under chronic hypoxia[J]. Int J Mol Med, 2018, 41(1): 69–76. https://pubmed.ncbi.nlm.nih.gov/29115402/
|
[191] |
Miura T, Miki T. GSK-3β, a therapeutic target for cardiomyocyte protection[J]. Circ J, 2009, 73(7): 1184–1192. doi: 10.1253/circj.CJ-09-0284
|
[192] |
McCarthy J, Lochner A, Opie LH, et al. PKCε promotes cardiac mitochondrial and metabolic adaptation to chronic hypobaric hypoxia by GSK3β inhibition[J]. J Cell Physiol, 2011, 226(9): 2457–2468. doi: 10.1002/jcp.22592
|
[193] |
Waskova-Arnostova P, Elsnicova B, Kasparova D, et al. Cardioprotective adaptation of rats to intermittent hypobaric hypoxia is accompanied by the increased association of hexokinase with mitochondria[J]. J Appl Physiol, 2015, 119(12): 1487–1493. doi: 10.1152/japplphysiol.01035.2014
|
[194] |
Gross GJ, Peart JN. K ATP channels and myocardial preconditioning: an update[J]. Am J Physiol Heart Circ Physiol, 2003, 285(3): H921–H930. doi: 10.1152/ajpheart.00421.2003
|
[195] |
Grover GJ, Garlid KD. ATP-sensitive potassium channels: a review of their cardioprotective pharmacology[J]. J Mol Cell Cardiol, 2000, 32(4): 677–695. doi: 10.1006/jmcc.2000.1111
|
[196] |
Peart JN, Gross GJ. Sarcolemmal and mitochondrial K ATP channels and myocardial ischemic preconditioning[J]. J Cell Mol Med, 2002, 6(4): 453–464. doi: 10.1111/j.1582-4934.2002.tb00449.x
|
[197] |
Baker JE, Contney SJ, Gross GJ, et al. K ATP channel activation in a rabbit model of chronic myocardial hypoxia[J]. J Mol Cell Cardiol, 1997, 29(2): 845–848. doi: 10.1006/jmcc.1996.0361
|
[198] |
Zhu Z, Burnett CM, Maksymov G, et al. Reduction in number of sarcolemmal K ATP channels slows cardiac action potential duration shortening under hypoxia[J]. Biochem Biophys Res Commun, 2011, 415(4): 637–641. doi: 10.1016/j.bbrc.2011.10.125
|
[199] |
Crawford RM, Jovanović S, Budas GR, et al. Chronic mild hypoxia protects heart-derived H9c2 cells against acute hypoxia/reoxygenation by regulating expression of the SUR2A subunit of the ATP-sensitive K + channel[J]. J Biol Chem, 2003, 278(33): 31444–31455. doi: 10.1074/jbc.M303051200
|
[200] |
Kolar F, Nekar J, Ostadal B, et al. Role of ATP-sensitive K +-channels in antiarrhythmic and cardioprotective action of adaptation to intermittent hypobaric hypoxia[J]. Bull Exp Biol Med, 2008, 145(4): 418–421. doi: 10.1007/s10517-008-0106-6
|
[201] |
Neckář J, Szárszoi O, Koten L, et al. Effects of mitochondrial K ATP modulators on cardioprotection induced by chronic high altitude hypoxia in rats[J]. Cardiovasc Res, 2002, 55(3): 567–575. doi: 10.1016/S0008-6363(02)00456-X
|
[202] |
Lishmanov YB, Naryzhnaya NV, Tsibul’nikov SY, et al. Role of ATP-sensitive K + channels in myocardial infarct size-limiting effect of chronic continuous normobaric hypoxia[J]. Bull Exp Biol Med, 2017, 163(1): 22–24. doi: 10.1007/s10517-017-3728-8
|
[203] |
Testai L, Rapposelli S, Martelli A, et al. Mitochondrial potassium channels as pharmacological target for cardioprotective drugs[J]. Med Res Rev, 2015, 35(3): 520–553. doi: 10.1002/med.21332
|
[204] |
|
[205] |
Li J, Zhou W, Chen W, et al. Mechanism of the hypoxia inducible factor 1/hypoxic response element pathway in rat myocardial ischemia/diazoxide post-conditioning[J]. Mol Med Rep, 2020, 21(3): 1527–1536. doi: 10.3892/mmr.2020.10966
|
[206] |
Lin C, Hsu KC, Huangfu W, et al. Investigating the potential effects of selective histone deacetylase 6 inhibitor ACY1215 on infarct size in rats with cardiac ischemia-reperfusion injury[J]. BMC Pharmacol Toxicol, 2020, 21(1): 21. doi: 10.1186/s40360-020-0400-0
|
[207] |
Wang Z, Zhang Z, Zhao J, et al. Polysaccharides from enteromorpha prolifera ameliorate acute myocardial infarction in vitro and in vivo via up-regulating HIF-1α[J]. Int Heart J, 2019, 60(4): 964–973. doi: 10.1536/ihj.18-519
|
[208] |
Wei Q, Bian Y, Yu F, et al. Chronic intermittent hypoxia induces cardiac inflammation and dysfunction in a rat obstructive sleep apnea model[J]. J Biomed Res, 2016, 30(6): 490–495. doi: 10.7555/JBR.30.20160110
|
[209] |
Sarkar FH, Li Y, Wang Z, et al. NF-κB signaling pathway and its therapeutic implications in human diseases[J]. Int Rev Immunol, 2008, 27(5): 293–319. doi: 10.1080/08830180802276179
|
[210] |
Morgan EN, Boyle EM, Yun W, et al. An essential role for NF-κB in the cardioadaptive response to ischemia[J]. Ann Thorac Surg, 1999, 68(2): 377–382. doi: 10.1016/S0003-4975(99)00646-3
|
[211] |
Yuan C, Wang H, Yuan Z. Ginsenoside Rg1 inhibits myocardial ischaemia and reperfusion injury via HIF-1 α-ERK signalling pathways in a diabetic rat model[J]. Pharmazie, 2019, 74(3): 157–162. https://pubmed.ncbi.nlm.nih.gov/30961682/
|
[212] |
Liu D, Zhang Y, Hu H, et al. Downregulation of microRNA-199a-5p attenuates hypoxia/reoxygenation-induced cytotoxicity in cardiomyocytes by targeting the HIF-1α-GSK3β-mPTP axis[J]. Mol Med Rep, 2019, 19(6): 5335–5344. https://www.spandidos-publications.com/mmr/19/6/5335
|
[213] |
Dong J, Xu M, Zhang W, et al. Effects of sevoflurane pretreatment on myocardial ischemia-reperfusion injury through the Akt/hypoxia-inducible factor 1-alpha (HIF-1α)/vascular endothelial growth factor (VEGF) signaling pathway[J]. Med Sci Monit, 2019, 25: 3100–3107. doi: 10.12659/MSM.914265
|
[214] |
Jiang L, Zeng H, Ni L, et al. HIF-1α preconditioning potentiates antioxidant activity in ischemic injury: the role of sequential administration of dihydrotanshinone I and protocatechuic aldehyde in cardioprotection[J]. Antioxid Redox Signal, 2019, 31(3): 227–242. doi: 10.1089/ars.2018.7624
|
[215] |
Tranter M, Ren X, Forde T, et al. NF-κB driven cardioprotective gene programs; Hsp70.3 and cardioprotection after late ischemic preconditioning[J]. J Mol Cell Cardiol, 2010, 49(4): 664–672. doi: 10.1016/j.yjmcc.2010.07.001
|
[216] |
Wilhide ME, Tranter M, Ren X, et al. Identification of a NF-κB cardioprotective gene program: NF-κB regulation of Hsp70.1 contributes to cardioprotection after permanent coronary occlusion[J]. J Mol Cell Cardiol, 2011, 51(1): 82–89. doi: 10.1016/j.yjmcc.2011.03.011
|
[217] |
Stein AB, Bolli R, Dawn B, et al. Carbon monoxide induces a late preconditioning-mimetic cardioprotective and antiapoptotic milieu in the myocardium[J]. J Mol Cell Cardiol, 2012, 52(1): 228–236. doi: 10.1016/j.yjmcc.2011.11.005
|
[218] |
Qiao S, Xie H, Wang C, et al. Delayed anesthetic preconditioning protects against myocardial infarction via activation of nuclear factor-κB and upregulation of autophagy[J]. J Anesth, 2013, 27(2): 251–260. doi: 10.1007/s00540-012-1494-3
|
[219] |
Haar L, Ren X, Liu Y, et al. Acute consumption of a high-fat diet prior to ischemia-reperfusion results in cardioprotection through NF-κB-dependent regulation of autophagic pathways[J]. Am J Physiol Heart Circ Physiol, 2014, 307(12): H1705–H1713. doi: 10.1152/ajpheart.00271.2014
|
[220] |
Naryzhnaya NV, Maslov LN, Oeltgen PR. Pharmacology of mitochondrial permeability transition pore inhibitors[J]. Drug Dev Res, 2019, 80(8): 1013–1030. doi: 10.1002/ddr.21593
|
[221] |
Armstrong SC, Liu GS, Downey JM, et al. Potassium channels and preconditioning of isolated rabbit cardiomyocytes: effects of glyburide and pinacidil[J]. J Mol Cell Cardiol, 1995, 27(8): 1765–1774. doi: 10.1016/S0022-2828(95)90986-9
|
[222] |
Xu M, Wang Y, Ayub A, et al. Mitochondrial K ATP channel activation reduces anoxic injury by restoring mitochondrial membrane potential[J]. Am J Physiol Heart Circ Physiol, 2001, 281(3): H1295–H1303. doi: 10.1152/ajpheart.2001.281.3.H1295
|
[223] |
Hausenloy DJ, Schulz R, Girao H, et al. Mitochondrial ion channels as targets for cardioprotection[J]. J Cell Mol Med, 2020, 24(13): 7102–7114. doi: 10.1111/jcmm.15341
|
[224] |
Ozcan C, Bienengraeber M, Dzeja PP, et al. Potassium channel openers protect cardiac mitochondria by attenuating oxidant stress at reoxygenation[J]. Am J Physiol Heart Circ Physiol, 2002, 282(2): H531–H539. doi: 10.1152/ajpheart.00552.2001
|
[225] |
Ichinose M, Yonemochi H, Sato T, et al. Diazoxide triggers cardioprotection against apoptosis induced by oxidative stress[J]. Am J Physiol Heart Circ Physiol, 2003, 284(6): H2235–H2241. doi: 10.1152/ajpheart.01073.2002
|
[226] |
Jung YS, Lee DH, Lim H, et al. KR-31378 protects cardiac H9c2 cells from chemical hypoxia-induced cell death via inhibition of JNK/p38 MAPK activation[J]. Jpn J Physiol, 2004, 54(6): 575–583. doi: 10.2170/jjphysiol.54.575
|
[227] |
Obata T, Yamanaka Y. Block of cardiac atp-sensitive K + channels reduces hydroxyl radicals in the rat myocardium[J]. Arch Biochem Biophys, 2000, 378(2): 195–200. doi: 10.1006/abbi.2000.1830
|
[228] |
Pain T, Yang XM, Critz SD, et al. Opening of mitochondrial K ATP channels triggers the preconditioned state by generating free radicals[J]. Circ Res, 2000, 87(6): 460–466. doi: 10.1161/01.RES.87.6.460
|
[229] |
Carroll R, Gant VA, Yellon DM. Mitochondrial K ATP channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation[J]. Cardiovasc Res, 2001, 51(4): 691–700. doi: 10.1016/S0008-6363(01)00330-3
|
[230] |
Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism[J]. Circ Res, 2001, 88(8): 802–809. doi: 10.1161/hh0801.089342
|
[231] |
Tsuchida A, Miura T, Tanno M, et al. Infarct size limitation by nicorandil: roles of mitochondrial K ATP channels, sarcolemmal K ATP channels, and protein kinase C[J]. J Am Coll Cardiol, 2002, 40(8): 1523–1530. doi: 10.1016/S0735-1097(02)02268-4
|
[232] |
Wang Y, Hirai K, Ashraf M. Activation of mitochondrial ATP-sensitive K + channel for cardiac protection against ischemic injury is dependent on protein kinase C activity[J]. Circ Res, 1999, 85(8): 731–741. doi: 10.1161/01.RES.85.8.731
|
[233] |
Wang Y, Takashi E, Xu M, et al. Downregulation of protein kinase C inhibits activation of mitochondrial K ATP channels by diazoxide[J]. Circulation, 2001, 104(1): 85–90. doi: 10.1161/01.CIR.104.1.85
|
[234] |
Tsukamoto O, Asanuma H, Kim J, et al. A role of opening of mitochondrial ATP-sensitive potassium channels in the infarct size-limiting effect of ischemic preconditioning via activation of protein kinase C in the canine heart[J]. Biochem Biophys Res Commun, 2005, 338(3): 1460–1466. doi: 10.1016/j.bbrc.2005.10.109
|
[235] |
Akao M, Teshima Y, Marbán E. Antiapoptotic effect of nicorandil mediated by mitochondrial atp-sensitive potassium channels in cultured cardiac myocytes[J]. J Am Coll Cardiol, 2002, 40(4): 803–810. doi: 10.1016/S0735-1097(02)02007-7
|
[236] |
Gao Q, Pan H, Qiu S, et al. Atractyloside and 5-hydroxydecanoate block the protective effect of puerarin in isolated rat heart[J]. Life Sci, 2006, 79(3): 217–224. doi: 10.1016/j.lfs.2005.12.040
|
[237] |
Gross ER, Hsu AK, Gross GJ. Delayed cardioprotection afforded by the glycogen synthase kinase 3 inhibitor SB-216763 occurs via a K ATP- and MPTP-dependent mechanism at reperfusion[J]. Am J Physiol Heart Circ Physiol, 2008, 294(3): H1497–H1500. doi: 10.1152/ajpheart.01381.2007
|
[238] |
Bu H, Yang C, Wang M, et al. K ATP channels and MPTP are involved in the cardioprotection bestowed by chronic intermittent hypobaric hypoxia in the developing rat[J]. J Physiol Sci, 2015, 65(4): 367–376. doi: 10.1007/s12576-015-0376-5
|
[239] |
Topsakal R, Eryol NK, Abacı A, et al. The relation between chronic obstructive pulmonary disease and coronary collateral vessels[J]. Angiology, 2005, 56(6): 651–656. doi: 10.1177/000331970505600601
|
[240] |
Tin'kov AN, Aksenov VA. Effects of intermittent hypobaric hypoxia on blood lipid concentrations in male coronary heart disease patients[J]. High Alt Med Biol, 2002, 3(3): 277–282. doi: 10.1089/152702902320604250
|
[241] |
del Pilar Valle M, García-Godos F, Woolcott OO, et al. Improvement of myocardial perfusion in coronary patients after intermittent hypobaric hypoxia[J]. J Nucl Cardiol, 2006, 13(1): 69–74. doi: 10.1016/j.nuclcard.2005.11.008
|
[242] |
Syrkin AL, Glazachev OS, Kopylov FY, et al. Adaptation to intermittent hypoxia-hyperoxia in the rehabilitation of patients with ischemic heart disease: exercise tolerance and quality of life[J]. Kardiologiia (in Russian), 2017, 57(5): 10–16. https://pubmed.ncbi.nlm.nih.gov/28762914/
|
[243] |
Glazachev O, Kopylov P, Susta D, et al. Adaptations following an intermittent hypoxia-hyperoxia training in coronary artery disease patients: a controlled study[J]. Clin Cardiol, 2017, 40(6): 370–376. doi: 10.1002/clc.22670
|