4.6

CiteScore

2.2

Impact Factor
  • ISSN 1674-8301
  • CN 32-1810/R
Qian Sun, Yusi Hu, Saiyue Deng, Yanyu Xiong, Zhili Huang. A visualization pipeline for in vivo two-photon volumetric astrocytic calcium imaging[J]. The Journal of Biomedical Research, 2022, 36(5): 358-367. DOI: 10.7555/JBR.36.20220099
Citation: Qian Sun, Yusi Hu, Saiyue Deng, Yanyu Xiong, Zhili Huang. A visualization pipeline for in vivo two-photon volumetric astrocytic calcium imaging[J]. The Journal of Biomedical Research, 2022, 36(5): 358-367. DOI: 10.7555/JBR.36.20220099

A visualization pipeline for in vivo two-photon volumetric astrocytic calcium imaging

Funds: This study was supported in part by Shanghai Committee of Science and Technology (Grant No. 20ZR1403500) and the Shanghai Medical Research Council. The cartoon image was obtained from Scidraw.io.
More Information
  • Corresponding author:

    Zhili Huang, Department of Pharmacology, School of Basic Medical Science, Fudan University, 130 Dong'an Road, Shanghai 200032, China. Tel/Fax: +86-21-54237043/+86-21-54237103, E-mail: huangzl@fudan.edu.cn

  • Received Date: April 30, 2022
  • Revised Date: June 18, 2022
  • Accepted Date: July 10, 2022
  • Available Online: August 09, 2022
  • Astrocytes, the multi-functional glial cells with the most abundant population in the brain, integrate information across their territories to regulate neuronal synaptic and cerebrovascular activities. Astrocytic calcium (Ca2+) signaling is the major readout of cellular functional state of astrocytes. The conventional two-photon in vivo imaging usually focuses on a single horizontal focal plane to capture the astrocytic Ca2+ signals, which leaves >80% spatial information undetected. To fully probe the Ca2+ activity across the whole astrocytic territory, we developed a pipeline for imaging and visualizing volumetric astrocytic Ca2+ time-lapse images. With the pipeline, we discovered a new signal distribution pattern from three-dimensional (3D) astrocytic Ca2+ imaging data of mice under isoflurane anesthetic states. The tools developed in this study enable a better understanding of the spatiotemporal patterns of astrocytic activity in 3D space.
  • This study was supported in part by Shanghai Committee of Science and Technology (Grant No. 20ZR1403500) and the Shanghai Medical Research Council. The cartoon image was obtained from Scidraw.io.

    CLC number: R338.2, Document code: A

    The authors reported no conflict of interests.

    These authors contributed equally to this work.

  • [1]
    Zhou B, Zuo Y, Jiang R. Astrocyte morphology: diversity, plasticity, and role in neurological diseases[J]. CNS Neurosci Ther, 2019, 25(6): 665–673. doi: 10.1111/cns.13123
    [2]
    Araque A, Carmignoto G, Haydon PG, et al. Gliotransmitters travel in time and space[J]. Neuron, 2014, 81(4): 728–739. doi: 10.1016/j.neuron.2014.02.007
    [3]
    Chung WS, Allen NJ, Eroglu C. Astrocytes control synapse formation, function, and elimination[J]. Cold Spring Harb Perspect Biol, 2015, 7(9): a020370. doi: 10.1101/cshperspect.a020370
    [4]
    Perea G, Navarrete M, Araque A. Tripartite synapses: astrocytes process and control synaptic information[J]. Trends Neurosci, 2009, 32(8): 421–431. doi: 10.1016/j.tins.2009.05.001
    [5]
    Tran CHT, Peringod G, Gordon GR. Astrocytes integrate behavioral state and vascular signals during functional hyperemia[J]. Neuron, 2018, 100(5): 1133–1148.e3. doi: 10.1016/j.neuron.2018.09.045
    [6]
    Otsu Y, Couchman K, Lyons DG, et al. Calcium dynamics in astrocyte processes during neurovascular coupling[J]. Nat Neurosci, 2015, 18(2): 210–218. doi: 10.1038/nn.3906
    [7]
    Institoris Á, Rosenegger DG, Gordon GR. Arteriole dilation to synaptic activation that is sub-threshold to astrocyte endfoot Ca2+ transients[J]. J Cereb Blood Flow Metab, 2015, 35(9): 1411–1415. doi: 10.1038/jcbfm.2015.141
    [8]
    Di Castro MA, Chuquet J, Liaudet N, et al. Local Ca2+ detection and modulation of synaptic release by astrocytes[J]. Nat Neurosci, 2011, 14(10): 1276–1284. doi: 10.1038/nn.2929
    [9]
    Perea G, Araque A. Astrocytes potentiate transmitter release at single hippocampal synapses[J]. Science, 2007, 317(5841): 1083–1086. doi: 10.1126/science.1144640
    [10]
    Bazargani N, Attwell D. Astrocyte calcium signaling: the third wave[J]. Nat Neurosci, 2016, 19(2): 182–189. doi: 10.1038/nn.4201
    [11]
    Buskila Y, Bellot-Saez A, Morley JW. Generating brain waves, the power of astrocytes[J]. Front Neurosci, 2019, 13: 1125. doi: 10.3389/fnins.2019.01125
    [12]
    Ding F, O'Donnell J, Thrane AS, et al. α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice[J]. Cell Calcium, 2013, 54(6): 387–394. doi: 10.1016/j.ceca.2013.09.001
    [13]
    Poskanzer KE, Yuste R. Astrocytic regulation of cortical UP states[J]. Proc Natl Acad Sci U S A, 2011, 108(45): 18453–18458. doi: 10.1073/pnas.1112378108
    [14]
    Volterra A, Liaudet N, Savtchouk I. Astrocyte Ca2+ signalling: an unexpected complexity[J]. Nat Rev Neurosci, 2014, 15(5): 327–335. doi: 10.1038/nrn3725
    [15]
    Shigetomi E, Bushong EA, Haustein MD, et al. Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses[J]. J Gen Physiol, 2013, 141(5): 633–647. doi: 10.1085/jgp.201210949
    [16]
    Ujita S, Sasaki T, Asada A, et al. cAMP-dependent calcium oscillations of astrocytes: an implication for pathology[J]. Cereb Cortex, 2017, 27(2): 1602–1614. doi: 10.1093/cercor/bhv310
    [17]
    Nimmerjahn A, Bergles DE. Large-scale recording of astrocyte activity[J]. Curr Opin Neurobiol, 2015, 32: 95–106. doi: 10.1016/j.conb.2015.01.015
    [18]
    Pacholko AG, Wotton CA, Bekar LK. Astrocytes-the ultimate effectors of long-range neuromodulatory networks?[J]. Front Cell Neurosci, 2020, 14: 581075. doi: 10.3389/fncel.2020.581075
    [19]
    Kiyoshi CM, Du Y, Zhong S, et al. Syncytial isopotentiality: a system-wide electrical feature of astrocytic networks in the brain[J]. GLIA, 2018, 66(12): 2756–2769. doi: 10.1002/glia.23525
    [20]
    Rusakov DA. Disentangling calcium-driven astrocyte physiology[J]. Nat Rev Neurosci, 2015, 16(4): 226–233. doi: 10.1038/nrn3878
    [21]
    Ingiosi AM, Hayworth CR, Harvey DO, et al. A role for astroglial calcium in mammalian sleep and sleep regulation[J]. Curr Biol, 2020, 30(22): 4373–4383.e7. doi: 10.1016/j.cub.2020.08.052
    [22]
    Bojarskaite L, Bjørnstad DM, Pettersen KH, et al. Astrocytic Ca2+ signaling is reduced during sleep and is involved in the regulation of slow wave sleep[J]. Nat Commun, 2020, 11(1): 3240. doi: 10.1038/s41467-020-17062-2
    [23]
    Thrane AS, Rangroo Thrane V, Zeppenfeld D, et al. General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex[J]. Proc Natl Acad Sci U S A, 2012, 109(46): 18974–18979. doi: 10.1073/pnas.1209448109
    [24]
    Bindocci E, Savtchouk I, Liaudet N, et al. Three-dimensional Ca2+ imaging advances understanding of astrocyte biology[J]. Science, 2017, 356(6339): eaai8185. doi: 10.1126/science.aai8185
    [25]
    Hildebrandt IJ, Su H, Weber WA. Anesthesia and other considerations for in vivo imaging of small animals[J]. ILAR J, 2008, 49(1): 17–26. doi: 10.1093/ilar.49.1.17
    [26]
    Savtchouk I, Carriero G, Volterra A. Studying axon-astrocyte functional interactions by 3D two-photon Ca2+ imaging: a practical guide to experiments and "big data" analysis[J]. Front Cell Neurosci, 2018, 12: 98. doi: 10.3389/fncel.2018.00098
    [27]
    Sitdikova G, Zakharov A, Janackova S, et al. Isoflurane suppresses early cortical activity[J]. Ann Clin Transl Neurol, 2014, 1(1): 15–26. doi: 10.1002/acn3.16
    [28]
    Sullender CT, Richards LM, He F, et al. Dynamics of isoflurane-induced vasodilation and blood flow of cerebral vasculature revealed by multi-exposure speckle imaging[J]. J Neurosci Methods, 2022, 366: 109434. doi: 10.1016/j.jneumeth.2021.109434
    [29]
    Hudetz AG. General anesthesia and human brain connectivity[J]. Brain Connect, 2012, 2(6): 291–302. doi: 10.1089/brain.2012.0107
    [30]
    Akerboom J, Chen TW, Wardill TJ, et al. Optimization of a GCaMP calcium indicator for neural activity imaging[J]. J Neurosci, 2012, 32(40): 13819–13840. doi: 10.1523/JNEUROSCI.2601-12.2012
    [31]
    Rasmussen R, Nedergaard M, Petersen NC. Sulforhodamine 101, a widely used astrocyte marker, can induce cortical seizure-like activity at concentrations commonly used[J]. Sci Rep, 2016, 6(1): 30433. doi: 10.1038/srep30433
    [32]
    Matyash V, Kettenmann H. Heterogeneity in astrocyte morphology and physiology[J]. Brain Res Rev, 2010, 63(1–2): 2–10. doi: 10.1016/j.brainresrev.2009.12.001
    [33]
    Lanjakornsiripan D, Pior BJ, Kawaguchi D, et al. Layer-specific morphological and molecular differences in neocortical astrocytes and their dependence on neuronal layers[J]. Nat Commun, 2018, 9(1): 1623. doi: 10.1038/s41467-018-03940-3
    [34]
    Pnevmatikakis EA, Soudry D, Gao Y, et al. Simultaneous denoising, deconvolution, and demixing of calcium imaging data[J]. Neuron, 2016, 89(2): 285–299. doi: 10.1016/j.neuron.2015.11.037
    [35]
    Radstake FDW, Raaijmakers EAL, Luttge R, et al. CALIMA: the semi-automated open-source calcium imaging analyzer[J]. Comput Methods Programs Biomed, 2019, 179: 104991. doi: 10.1016/j.cmpb.2019.104991
    [36]
    Giovannucci A, Friedrich J, Gunn P, et al. CaImAn an open source tool for scalable calcium imaging data analysis[J]. eLife, 2019, 8: e38173. doi: 10.7554/eLife.38173
    [37]
    Wang Y, DelRosso NV, Vaidyanathan TV, et al. Accurate quantification of astrocyte and neurotransmitter fluorescence dynamics for single-cell and population-level physiology[J]. Nat Neurosci, 2019, 22(11): 1936–1944. doi: 10.1038/s41593-019-0492-2
    [38]
    Scharwächter L, Schmitt FJ, Pallast N, et al. Network analysis of neuroimaging in mice[J]. Neuroimage, 2022, 253: 119110. doi: 10.1016/j.neuroimage.2022.119110
    [39]
    Ding Z, Newton AT, Xu R, et al. Spatio-temporal correlation tensors reveal functional structure in human brain[J]. PLoS One, 2013, 8(12): e82107. doi: 10.1371/journal.pone.0082107
    [40]
    Hashimoto Y, Ogata Y, Honda M, et al. Deep feature extraction for resting-state functional MRI by self-supervised learning and application to schizophrenia diagnosis[J]. Front Neurosci, 2021, 15: 696853. doi: 10.3389/fnins.2021.696853
  • Related Articles

    [1]Ziyu Zhao, Yi Zhou, Jinxing Guan, Yan Yan, Jing Zhao, Zhihang Peng, Feng Chen, Yang Zhao, Fang Shao. The relationship between compartment models and their stochastic counterparts: A comparative study with examples of the COVID-19 epidemic modeling[J]. The Journal of Biomedical Research, 2024, 38(2): 175-188. DOI: 10.7555/JBR.37.20230137
    [2]Gurumurthy Channabasavaiah B., Saunders Thomas L., Ohtsuka Masato. Designing and generating a mouse model: frequently asked questions[J]. The Journal of Biomedical Research, 2021, 35(2): 76-90. DOI: 10.7555/JBR.35.20200197
    [3]Quintero-Rincón Antonio, D'Giano Carlos, Batatia Hadj. A quadratic linear-parabolic model-based EEG classification to detect epileptic seizures[J]. The Journal of Biomedical Research, 2020, 34(3): 205-212. DOI: 10.7555/JBR.33.20190012
    [4]Wang Le Yi, McKelvey George M., Wang Hong. Multi-outcome predictive modelling of anesthesia patients[J]. The Journal of Biomedical Research, 2019, 33(6): 430-434. DOI: 10.7555/JBR.33.20180088
    [5]Maglione Michele, Salvador Enrico, Ruaro Maria E., Melato Mauro, Tromba Giuliana, Angerame Daniele, Bevilacqua Lorenzo. Bone regeneration with adipose derived stem cells in a rabbit model[J]. The Journal of Biomedical Research, 2019, 33(1): 38-45. DOI: 10.7555/JBR.32.20160066
    [6]Robert Scott Kiss, Allan Sniderman. Shunts, channels and lipoprotein endosomal traffic: a new model of cholesterol homeostasis in the hepatocyte[J]. The Journal of Biomedical Research, 2017, 31(2): 95-107. DOI: 10.7555/JBR.31.20160139
    [7]Mingming Gao, Guo Xin, Xu Qiu, Yuhui Wang, George Liu. Establishment of a rat model with diet-induced coronary atherosclerosis[J]. The Journal of Biomedical Research, 2017, 31(1): 47-55. DOI: 10.7555/JBR.31.20160020
    [8]Jiawei Liao, Wei Huang, George Liu. Animal models of coronary heart disease[J]. The Journal of Biomedical Research, 2017, 31(1): 3-10. DOI: 10.7555/JBR.30.20150051
    [9]Zengdi Zhang, Sanen Li, Steven Y Cheng. The miR-183~96~182 cluster promotes tumorigenesis in a mouse model of medulloblastoma[J]. The Journal of Biomedical Research, 2013, 27(6): 486-494. DOI: 10.7555/JBR.27.20130010
    [10]Keh-Dong Shiang, Fouad Kandeel. A computational model of the human glucose-insulin regulatory system[J]. The Journal of Biomedical Research, 2010, 24(5): 347-364. DOI: 10.1016/S1674-8301(10)60048-6
  • Cited by

    Periodical cited type(5)

    1. Langyan S, Bhardwaj R, Kumari J, et al. Nutritional Diversity in Native Germplasm of Maize Collected From Three Different Fragile Ecosystems of India. Front Nutr, 2022, 9: 812599. DOI:10.3389/fnut.2022.812599
    2. Juvinao-Quintero DL, Cardenas A, Perron P, et al. Associations between an integrated component of maternal glycemic regulation in pregnancy and cord blood DNA methylation. Epigenomics, 2021, 13(18): 1459-1472. DOI:10.2217/epi-2021-0220
    3. Zhang J, Wu X. Predict Health Care Accessibility for Texas Medicaid Gap. Healthcare (Basel), 2021, 9(9): 1214. DOI:10.3390/healthcare9091214
    4. Ayati M, Koyutürk M. PoCos: Population Covering Locus Sets for Risk Assessment in Complex Diseases. PLoS Comput Biol, 2016, 12(11): e1005195. DOI:10.1371/journal.pcbi.1005195
    5. Zhang Q, Zhao Y, Zhang R, et al. A Comparative Study of Five Association Tests Based on CpG Set for Epigenome-Wide Association Studies. PLoS One, 2016, 11(6): e0156895. DOI:10.1371/journal.pone.0156895

    Other cited types(0)

Catalog

    Figures(4)

    Article Metrics

    Article views PDF downloads Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return